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Statement of the problem. The inverse

boundary problem is to determine the function z(t) =

u(1, t) ∈ L2[0,∞) (i.e. to determine the boundary

condition), where u(x, t) satisfies

∂u

∂t
=

∂2u

∂x2
+ f(u) (0 < x < 1; t > 0) (1)

u(x,0) = 0; u(0, t) = 0;ux(0, t) = ϕ(t).

Here ϕ ∈ L2[0,∞) is the given function, f : L2[0,∞) →
L2[0,∞) is a mapping under the Lipshcitz condition

‖f(u1)− f(u2)‖L2[0,∞) ≤ L‖u1 − u2‖L2[0,∞).

The problem (1) is ill-posed. Assume that (1)

has an exact solution that belongs to the uniform

regularization class:

Mr = {z(t) : z(t), z′(t) ∈ L2(0,∞); ‖z′(t)‖L2[0,∞) ≤ r}

but only a δ− approximation ϕδ and the error level

δ > 0 such that ‖ϕδ − ϕ‖ < δ are known instead

of the exact data ϕ(t) . The task is, given the

input data Mr, ϕδ, δ , to find a stable approximate

solution to the problem (1) and to estimate its

deviation from the exact solution.



The exact solution to the linear inverse
problem. Before studying the nonlinear problem

(1) consider the corresponding linear problem:

∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
(0 < x < 1; t > 0) (2)

u(x,0) = 0; u(0, t) = 0;ux(0, t) = ϕ(t);

Z = u(1, t) is to be determined. The problem

(2) is ill-posed in L2(0,∞). Consider the following

uniform regularization set for (2):

MR = {Z(t) : Z(t),Z′(t) ∈ L2(0,∞); ‖Z′(t)‖L2(0,∞) ≤ R}

Lemma 1. Let the problem (1) have the solution

that belongs to Mr. Then there exists R > 0 such

that the problem (2) has the solution that belongs

to MR.

Using a priori estimates for the solution to the

corresponding forward problem we prove that the

Fourier transform on the half-line t ∈ (0,∞) can be

applied to the problem (2).



Applying the Fourier transform with respect to t

we obtain the following problem for the ordinary

linear equation:

ũxx(x, λ) = iλũ(x, λ); (3)

ũ(0, λ) = 0 ; ũx(0, λ) = ϕ̃(λ).

Solving (3) we obtain the transform of the exact

solution to the problem (2):

ũ0(λ) =
sh µ0

√
λ

µ0
√

λ
ϕ̃.

Here µ0 = 1+i√
2
; ϕ̃(λ) = Fϕ = 1√

π

∞∫
0

ϕ(t)e−iλtdt is

the Fourier transform of the function ϕ(t) (λ > 0).

Consider the Hilbert space X = L2[0,∞) of complex-

valued square integrable functions . We can reformulate

the problem (2) as the problem of solving the operator

equation

AZ = ϕ,

where the linear operator A : X → X has an unbounded

inverse operator.



An approximate solution to the problem
(2). Instead of the ill-posed problem (2) consider

the following problem for the hyperbolic equation

with a small parameter :

ε
∂2u(x, t, )

∂t2
+

∂u(x, t)

∂t
=

∂2u

∂x2
(0 < x < 1; t > 0) (4)

u(x,0) = ut(x,0) = 0; u(0, t) = 0;ux(0, t) = ϕδ(t).

Here the constant ε > 0 has a simple physical

interpretation. That is we consider the function

Zε
δ(t) = uε

δ(1, t)

with uε
δ(x, t) satisfying (4) as an approximate solution

to the problem (2).

Lemma 2.The problem (4) is well-posed in L2[0,∞).



Using the a priori estimate for the solution to the

first boundary problem for the hyperbolic equation

we show that the Fourier transform can be applied

to the problem (4). Applying the Fourier transform

to (4) we obtain the following problem for the

ordinary linear equation :

ũxx(x, λ) = iλũ(x, λ)− ελ2ũ(x, λ);

ũ(0, λ) = 0; ũx(0, λ) = ϕ̃(λ).

So, we consider the function

Zε
δ = Rεϕδ

with the transform

Z̃ε
δ(λ) =

sh
√

iλ− ελ2√
iλ− ελ2

ϕ̃δ (4′)

as an approximate solution to (2). Here Rε : X →
X is the regularizing operator for (2).



The error estimation for the approximate
solution to (2). We obtain first the sharp

error estimate for the approximate solution to the

problem (2) defined by (4’) on the regularization

class MR. Denote Zε(λ) = Rεϕ. We shall use the

value

∆(ε, δ) = sup{‖Zε
δ(t)−Z(t)‖ : Z ∈ MR; ‖ϕ−ϕδ‖ ≤ δ}

to characterize the accuracy of the approximate

solution under consideration.

We apply M.M.Lavrentyev’s scheme to choose the

regularization parameter. We use the evident inequality

∆(ε, δ) ≤ ∆1(ε, δ) + ∆2(ε),

where

∆2(ε, δ) = sup
‖ϕ−ϕδ‖≤δ

‖Zε
δ−Zε‖; ∆1(δ) = sup

Z∈MR

‖Zε−Z‖.

The sharp estimates of ∆2 and ∆1 are following:

∆2(ε, δ) ≤ δ sup
λ>0

∣∣∣∣∣∣∣
sh

√
iλ− ελ2√

iλ− ελ2

∣∣∣∣∣∣∣ ≤ δe
1√
2ε;

∆1(ε) ≤ r sup
λ≥0

1√
1 + λ2

∣∣∣∣∣ shµ0
√

λ
√

1 + iελ
√

1 + iελ shµ0
√

λ
− 1

∣∣∣∣∣ ≤ rε.



Choosing the relation ε = ε(δ) such that

ε '
1

ln2 δ

(quasi-optimal choice of the regularization parameter)

we obtain the error estimate of the method under

consideration on the set MR:

∆(ε(δ), δ) '
1

ln2 δ

as δ → 0.

Taking into account the error estimates of an optimal

method for (4) on the set MR obtained in [2] and

reminding that the operator F : X → X is isometric

we prove the following theorem.

Theorem 1. The method for approximate solution

of (2) defined by (4) is order-optimal on the uniform

regularization set MR.



An approximate solution to the problem
(1). Instead of the nonlinear ill-posed problem (1)

consider the problem

ε
∂2u(x, t)

∂t2
+

∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
+ f(u) (7)

u(x,0) = ut(x,0) = 0; u(0, t) = 0; ux(0, t) = ϕδ(t).

Lemma 2. The problem (7) is well-posed in L2[0,∞).

Therefore, we consider the function zε
δ(t) = uε

δ(1, t)

with uε
δ(x, t) satisfying (7) as an approximate solution

of (1).



The error estimation for the problem
(1). We use the value

∆(ε, δ) = sup{‖zε
δ(t)− z(t)‖ : z ∈ Mr; ‖ϕ− ϕδ‖ ≤ δ}

to characterize the accuracy of the approximate

solution under consideration. We use the evident

estimate

∆(ε, δ) ≤ ∆1(ε) + ∆2(ε, δ),

where

∆2(ε, δ) = sup
‖ϕ−ϕδ‖≤δ

‖zε
δ(t)− zε(t)‖

∆1(ε) = sup
z∈Mr

‖zε(t)− z(t)‖

Here zε(t) is the solution of the quasi-inversion

problem (7) with the exact data ϕ(t). Taking into

account Lemma 1 and the above error estimate

for the linear problem (2), we obtain the sharp

estimates:

∆2(ε, δ) ≤ C1e
1√
2εδ;

∆1(ε) ≤ C2ε.



We choose the relation ε = ε(δ) to make the order

of the above estimation minimal. We obtain

ε(δ) '
1

ln2 δ

as δ → 0. Consequently, the following theorem is

true.

Theorem 2. There exist the constants δ0, C3, C4

such that the error estimate for the solution of the

problem (1) defined by (7) satisfies inequalities

C3
1

ln2 δ
≤ ∆(ε, δ) ≤ C4

1

ln2 δ

as δ < δ0.
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