## ITERATIVE PROCESSES FOR NONLINEAR EQUATIONS WITH QUASI-MONOTONE OPERATOR AND ITS APPLICATIONS TO INVERSE GEOPHYSICAL PROBLEMS

# V.V.Vasin, G.G.Skorik

Institute of Mathematics and Mechanics UB RAS 620219, Ekaterinburg, GSP-384, RUSSIA *e-mail: vasin@imm.uran.ru* 

International conference "Inverse Problems: Development in Theory and Applications" February 8-13, 2010, Warsaw, POLAND

### **Outline of talk**

- 1. Statement of inverse problem.
- 2. Pseudo-contractive operators and its properties.
- 3. Weak convergence theorem.
- 4. A priori information and strong convergence of iterations.
- **5.** Local condition for integral operators for inverse gravimetry and magnetometry problems.
- 6. Other approaches.
- 7. Applications to inverse geophysical problems.

#### 1. Statement of inverse problem

It is very easy to make a cake from a recipe, but can we write down the recipe if we are given a cake ? R. Feynman

Let  $A: U \to F$  be a nonlinear Frechet differentiable operator acting on a pair of Hilbert spaces and having the discontinuous inverse operator  $A^{-1}$ , therefore, the problem

$$A(u) = f \iff \min\{1/2 \| A(u) - f \|^2 : u \in U\} \iff S(u) \equiv A'(u)^* (A(u) - f) = 0$$
(1)

with the perturbed right-hand side f,  $||f-f_{\delta}|| \le \delta$ , is an essentially ill-posed one. Let the operator A satisfy the following *local condition* in the neighborhood of a solution z of problem (1) (Scherzer,1995; Vasin, 1998):

$$\left\|A(u) - A(z)\right\|^{2} \le \kappa < S(u) - S(z), u - z > \quad \forall u \in S_{\rho}(z),$$

$$\tag{2}$$

or 
$$||A(u) - A(z)||^2 \le \kappa < F(u) - F(z), u - z >, F(u) = (A'(u)^* A(u)' + \alpha I)^{-1} S(u);$$
 (2a)

from (2) *quasi-uniformly monotonicity* of the operator *S* (*or F*) follows:  $\|S(u) - S(z)\|^2 \le \kappa N^2 < S(u) - S(z), u - z > \quad \forall u \in S_{\rho}(z), \kappa > 0, \ \|A'(u)\| \le N.$  We investigate the iterative processes in the form

$$u^{k+1} = u^k - \gamma \beta_k [A'(u^k)^* (A(u^k) - f)] = T(u^k), \qquad (3)$$

where, in particular:

 $\gamma = 1$ ,  $\beta_k = 1$  (Landweber method - LM);  $\gamma = 1, \ \beta_k = \|A(u^k) - f\|^2 / \|S(u^k)\|$  (Minimal error method - MEM);  $\gamma = 1, \ \beta_k = \|S(u^k)\|^2 / \|A'(u^k) S(u^k)\|^2$  (Steepest descent method - SDM);  $\gamma = 1, \ \beta_{\iota} = (A'(u^{k})^{*}A'(u^{k}) + \alpha_{\iota}I)^{-1}$  (Levenberg-Marquardt method).

**Remark.** Introducing the parameter  $\gamma$  allow us to obtain *pseudocontractivity* of the step operator T for these methods, to guarantee weak convergence of iterations.

#### **2. Pseudo-contractive operators and its properties**

**Definition 1.** A mapping  $T: U \to U$  is called *M* - pseudo-contractive if  $M = Fix(T) \neq \emptyset$  and there exists a constant  $\upsilon > 0$  such that

$$||T(u) - z||^2 \le ||u - z||^2 - \upsilon ||u - T(u)||^2 \quad \forall u \in U, \ z \in M.$$

**Theorem 1.** Let  $T_i$  be  $M_i$  - pseudo-contractive and  $\bigcap_{i=1}^m M_i = M$ . Then

$$T = T_{i_1} T_{i_2} \dots T_{i_m}, \quad T = \sum_{i=1}^m \alpha_i T_i, \quad \alpha_i \in (0.1), \quad \sum_{i=1}^m \alpha_i = 1$$

are *M* - pseudo-contractive operators (Vasin, 1988).

**Corollary 1.** If  $T_i$  is pseudo-contractive operator and  $Fix(T_i) = M_i = M$ , then

$$T = \sum_{i=1}^{m} \alpha_i T_{i_1}^{n_{i_1}} T_{i_2}^{n_{i_2}} \dots T_{i_m}^{n_{i_m}}, \ \alpha_i \in (0.1), \ \sum_{i=1}^{m} \alpha_i = 1$$

is pseudo-contractive one.

#### **3. Weak convergence theorem**

**Theorem 3.** Let at a neighborhood  $S_{\rho}(z)$  of a solution z the following conditions hold:

$$\|A(u) - A(z)\|^{2} \le \kappa < S(u) - S(z), u - z > \quad \forall \, u \in S_{\rho}(z) , \qquad (4)$$

 $u^k \to \overline{u} \quad (weakly), \quad S(u^k) = A'(u^k)^* (Au - f) \to 0 \Rightarrow S(\overline{u}) = 0 \Rightarrow \overline{u} = z.$  (\*)

Then for LM as  $\beta = 1$ ,  $\gamma < 2/\kappa N^2$ , MEM and SDM as  $\gamma < 2/\kappa$ , the step operator is pseudo-contractive, and the following properties are valid:

- 1)  $u^{k} \rightarrow z$  (weakly); 2)  $\|u^{k+1} - z\| < \|u^{k} - z\|, k = 0, 1, ...;$ 3)  $\sum_{k=0}^{\infty} \|u^{k+1} - u^{k}\|^{2} \le \|u^{0} - z\|^{2} / \nu(\kappa, \beta);$
- 4)  $\lim_{k\to\infty} \|A(u) f\| = 0.$

**Theorem 4.** Let instead of (4) the following condition hold:  $||A(u)-A(z)||^2 \le \kappa < F(u) - F(z), u - z >, F(u) = (A'(u)^*A(u)' + \alpha I)^{-1}S(u).$  (4a) Then for L-MM with  $\gamma < 2\alpha^2 / \kappa N^2$  properties 1)-4) are valid.

#### 4. A priori information and strong convergence of iterations

For nonlinear equations the condition

 $u^k \rightarrow \overline{u} \text{ (weakly)}, \quad S(u^k) = A'(u^k)^* (Au - f) \rightarrow 0 \Rightarrow S(\overline{u}) = 0$ 

(which can be changed by weak closeness of operator *A*) is difficult checked. To overcome this problem, we suppose additionally that a solution of equation (1) belongs to a boundedly compact set which can be presented in the form (Ivanov et al, 1978)  $Q = K + U_n$ , where *K* is a absolutely convex compact set and  $U_n$  is a finite-dimensional space, in particular; one of these sets can be trivial.

Let us pass from the previous gradient type methods to the modified processes

$$u^{k+1} = P_Q T(u^k) \equiv V(u^k), \quad u^0 \in S_\rho(z),$$
(5)

where  $P_{Q}$  the metric projection onto the set Q.

**Theorem 5.** Let the operator A meet the local condition (4). Then the modified gradient type methods (5): MLM as  $\beta = 1$ ,  $\gamma < 2/\kappa N^2$ , MMEM, MSDM as  $\gamma < 2/\kappa$ , converge strongly to a solution z.

If local condition (4a) is fulfilled, then ML-MM converges strongly to z.

Now we consider the modified iterative process for an approximate given right-hand side of equation (1):  $||f - f_{\delta}|| \le \delta$ :

$$u_{\delta}^{k+1} = P_Q \{ u_{\delta}^k - \gamma \beta_k [A'(u_{\delta}^k)^* (A(u_{\delta}^k) - f_{\delta})] \}$$
(6)

where  $\beta_k$  determines one of three gradient methods.

**Theorem 6.** Let Q be a compact set. Then iterations (6) with the stopping rule on the base of the discrepancy principle (existence of such  $k(\delta)$  is assumed)

$$k(\delta): \left\| A(u_{\delta}^{k(\delta)}) - f_{\delta} \right\| \leq \tau \delta < \left\| A(u_{\delta}^{k}) - f_{\delta} \right\|, \quad k = 0, 1, \dots, k(\delta) - 1,$$

generate the regularized family of approximate solutions for problem (1), i.e.,

 $\lim_{\delta\to 0} \left\| u_{\delta}^{k(\delta)} - z \right\| = 0.$ 

### **5. Local condition for integral operators**

**Theorem 7.** Let A be *n*-dimensional nonlinear integral operator

$$[A(u)](x) = \int_{\Pi} K(x, x', u(x')) dx' = f(x),$$

$$|K'_{u}(x,x,z)| \ge K_{1} > 0, |K'_{u}(x,x',u) - K'_{u}(x,x',z)| \le L|u-z| \quad (**)$$
  
for  $x,x' \in \Pi \subset \mathbb{R}^{n}, u, z \in M \in U$ .

Then for the operator *A* the local condition is fulfilled for  $u \in M \cap S_{\rho}(z)$ ,  $\rho < K_1/L$ .

**Remark 1.** This property follows from the presentation  $A'(u) = R_u A'(z), ||R_u - I|| \le C ||u - z||$  that for special one-dimensional integral operators was earlier considered (Hanke, Neubauer, Scherzer, 1995; Gilyazov, Gol'dman, 2000).

$$[A(u)](x) = \gamma \Delta \sigma \{ \int_{\Pi} \frac{1}{[(x_1 - x_1')^2 + (x_2 - x_2')^2 + H^2]^{1/2}} dx' - \int_{\Pi} \frac{1}{[(x_1 - x_1')^2 + (x_2 - x_2')^2 + u(x')^2]^{1/2}} dx' \} = f(x)$$
(7)

$$[A(u)](x) = \Delta J \{ \int_{\Pi} \frac{H}{[(x_1 - x_1')^2 + (x_2 - x_2')^2 + H^2]^{3/2}} dx' - \int_{\Pi} \frac{u(x')}{[(x_1 - x_1')^2 + (x_2 - x_2')^2 + u(x')^2]^{3/2}} dx' \} = f(x), \quad (8)$$

where  $x \in \Pi \subset R^2$ ,  $\Delta \sigma = \sigma_1 - \sigma_2$  is a jump of density between layers of media,  $\Delta J$  is a jump of magnetization vector  $x_3$ -component.

**Corollary 1.** Let z be a unique solution of gravimetry or magnetometry problems (7), (8) in the set  $M = \{u: 0 < k_0 \le u \le k_1\}$ .

Then for the integral operator A from (7) or (8) in  $S_{\rho}(z) \cap M$  ( $\rho < K_1/2L$ ) the local condition holds.



**Theorem 8.** Let *z* be a unique solution of gravimetry (6) or magnetometry problem (7) in  $S_{\rho}(z) \cap Q \cap M$ , where  $M = \{u: 0 < m_0 \le u(x) \le m_1\}$   $(x \in \Pi \subset R^2)$  and *Q* is a boundedly compact set in  $L_2(\Pi)$ .

Then the iterative process

$$u^{k+1} = P_Q T P_M(u^k), \quad u^0 \in S_\rho(z) \cap M \cap Q \tag{9}$$

where *T* is the step operator of the gradient type method and  $P_M$ ,  $P_Q$  are metric projection, generates the sequence  $\{u^k\}$  and  $\lim_{k\to\infty} ||u^k - z|| = 0$ .

**Remark 1.** If  $z \in Q = \{u : \|u\|_{W_2^1(\Pi)} \le r\}$ , then Q is a compact set in  $L_2(\Pi)$ .

**Remark 2.** If iterative process (9) is realized after finite-dimensional approximation of integral equations, then it is not obligatory to use the projections  $P_O, P_M$ . We can construct iteration for all methods in the form

$$u_n^{k+1} = T(u_n^k), \quad u_n^0 \in S_\rho(z_n) \cap M_n,$$

because in real calculation for gravimetry and magnetometry problems the condition  $u^k \in M_n = \{u_{i,j} : 0 < m_0 \le u_{i,j} \le m_1, i, j = 1, 2, ..., n\}$  is usually fulfilled.

## 6. Other approaches

**6.1. Additional Tikhonov regularization.** In structural inverse magnetometry problem, outside oscillations of solution on boundary of the range  $\Pi$  can arise. In this case using the Tikhonov regularization allow us to obtain more smooth solution. Let us consider the Tikhonov method in the form

$$\min\{\|A(u) - f_{\delta}\|^{2} + \alpha \|u - u^{0}\|: u \in M \cap W_{2}^{1}(\Pi)\}$$
(10)

where  $A: W_2^1(\Pi) \to L_2(\Pi)$  is the integral operator gravimetry or magnetometry problem,  $M = \{ u(x_1, x_2): 0 < m_0 \le u(x_1, x_2) \le m_1 a.e. \}.$ 

**Theorem 9.** Let *z* be a unique solution of equation (7) or (8) in  $M \cap W_2^1(\Pi)$ . Then the minimization problem (10) has a solution  $u^{\alpha}$  and the strong convergence holds:

$$\lim_{\delta \to 0} \left\| u^{\alpha(\delta)} - z \right\|_{L_2(\Pi)} = 0,$$

where  $\alpha(\delta)$  is such a dependence that  $\alpha(\delta) \rightarrow 0$ ,  $\delta^2/\alpha(\delta) \rightarrow 0$  as  $\delta \rightarrow 0$ .

**Remark 1.** For solving (10) gradient method like the Landweber process or Fletcher-Reevs type method can be applied. Besides, for regularized problem (10) the quadrature method of approximation can be justified (**Vasin, Ageev, 2005**).

#### 7. Applications to geophysical problems

Not everything that can be counted count, and not everything that count can be counted. A. Einstein For a domain D of the Middle Urals three-layer model of the lower halfspace with two interfaces  $S_1, S_2$  and asymptotic planes  $x_3 = 2, x_3 = 10$  was investigated. The domain D has sizes  $D = \{0 \le x_1 \le 55 \text{ km}, 0 \le x_2 \le 68 \text{ km}\}.$ 

The gravity field was measured on the mesh with the steps

$$\Delta x_1 = 1 km, \ \Delta x_2 = 2 km$$

After finding the anomalous gravity field for every contact surface  $S_1$ ,  $S_2$  the gravity equation for the density jumps  $\Delta_1 \sigma = 0.48 \ g/cm^3$ ,  $\Delta_2 \sigma = 0.23 \ g/cm^3$  was solved.



Fig.1. Interface between media  $S_1$  (Middle Urals, H=2 km,  $\Delta \sigma = 0.48$ )



Fig. 2. Interface between media  $s_2$  (Middle Urals, H=10 km,  $\Delta \sigma$ =0.23)



Fig. 4. Interface reconstructed from real magnetic data (North Urals region)  $\Delta x_1$ =2.08 km,  $\Delta x_2$ =1.38 km,  $\Delta J$ = - 0.1 A/m



Fig. 5. Interface reconstructed from model gravity data  $\Delta x_1=0.5$  km,  $\Delta x_2=2$  km,  $\Delta \sigma=0.5$  g/cm<sup>3</sup>, rel. error = 2.7%



Fig. 5. Interface reconstructed from model magnetic data  $\Delta x_1$ =0.5 km,  $\Delta x_2$ =2 km,  $\Delta J$ =-2.5 A/m, rel. error = 2.2%



# Conclusion

- Convergence for iterative methods of gradient type was investigated for nonlinear inverse gravimetry and magnetometry problems on retrieval interfaces between two media with different constant characteristics (density, magnetization vector component).
- Efficiency of these iterative methods was demonstrated for synthetic and real gravity and magnetic data.
- Numerical results for real gravity and magnetic data are in satisfactory concordance with *a priori* geophysical information getting, in particular, by seismic sounding.

## References

- 1. Vasin V.V., Eremin I.I. Operators and Iterative Processes of Fejer Type. Theory and Applications. Berlin-New York: Walter de Gruyter, 2009.
- 2. Vasin V.V. On convergence of gradient type methods for nonlinear equations. Dokl. Akad. Nauk. 1998. Vol. 359. No. 1. P. 7-9.
- 3. Vasin V.V., Ageev A.L. III-Posed Problems with A Priori Information. Utrecht, The Netherlands: VSP, 1995.
- 4. Scherzer O. Convergence criteria of iterative methods based on Landweber iteration for solving nonlinear problem. J. Math. Anal. Appl. 1995. Vol. 194. P. 911-933.
- 5. Hanke M., Neubauer A., Scherzer O. A convergence analysis of the Landweber iteration for nonlinear ill-posed problems. Numer. Math. 1995. Vol. 72. P. 21-37.
- 6. Gilyazov S.F. and Gol'dman N.I. Regularization of III-Posed Problems by Iteration Methods. Dordrecht / Boston / London: Kluwer Acad. Publ., 2000.
- 7. Bakushinsky A.B., Kokurin M.Yu., Kozlov A.I. Stabilizing Gradient Type Methods for Solution of Non-Regular Nonlinear Operator Equations. Moscow: LKI, 2007.
- 8. Hanke M. A regularizing Levenberg-Marquardt scheme, with application to inverse groundwater problem. Inverse Problem. 1997. Vol.13. P. 79-95.
- 9. Kaltenbacher B., Neubauer A., Scherzer O. Iterative Regularization Methods for Nonlinear III-Posed Problems. Berlin-New York: Walter de Gruyter, 2008.

From the previous results and the work of **M.Hanke** (Inv. Problems 13 (1997) 79-95) the following theorem follows.

**Theorem 4.** Let in the Levenberg-Marquardt method (L-MM)

$$\mathcal{U}^{k+1} = u^k - (A'(u^k)^* A'(u^k) + \alpha_k I)^{-1} (A'(u^k)^* (A(u^k) - f))$$

the parameter  $\alpha_k$  be chosen by the discrepancy principle

$$\alpha_{k} : \left\| f - A(u^{k}) - F'(u^{k})(u^{k+1}(\alpha_{k}) - u^{k}) \right\| = q \left\| f - F(u^{k}) \right\|, \quad q < 1,$$

the local condition (4), and the property

$$u^k \rightarrow \bar{u} \text{ (weakly)}, \ S(u^k) \rightarrow 0 \Longrightarrow S(\bar{u}) = 0$$
 (\*)

be fulfilled. Then  $\mathcal{U}^k \to \mathcal{Z}$  (weakly) and the properties 2)-4) hold.

**Remark 1**. In finite-dimensional case the property (\*) follows from the local condition.

**6.2. Stabilizing methods of gradient type.** In the approach suggested we use *a priori* information in the form  $z \in Q = K + U_n$  where *K* is compactum and  $U_n$  is a finite-dimensional subspace. There is an another method of taking into account of *a priori* information (Bakushinsky et al, 2007). It is supposed that for a solution *z* the following estimate is known:

$$\left\|z-P_{Q}z\right\|\leq\Delta,$$

where Q is a finite-dimensional subspace and  $P_Q$  the operator of orthogonal projection. Here, for the same conditions

$$||A'(u)|| \le N, ||A'(u) - A'(v)|| \le ||u - v||, KerA'(z) \cap Q = \emptyset$$

iterative process

$$u^{k+1} = P_Q \{ u^k - \beta [A'(u^k)^* (A(u^k) - f_\delta)] \}$$
(11)

is considered.

**Theorem 10 (Bakushinsky et al, 2007).** Iterative process (11) generates sequence  $\{u^k\}$ , for which the following relation hold:

$$u^{k} \to \overline{z} = \arg\min\left\{ \left\| A(u) - f_{\delta} \right\| : u \in Q \right\}$$
$$\left\| z - \overline{z} \right\| \le C \left( \Delta + \delta \right), \quad \left\| f - f_{\delta} \right\| \le \delta.$$

Thus, the iterations converge to  $\overline{z}$  from a neighborhood  $S_r(z)$  of the solution z with radius r that is proportional to errors of approximation and input data. It should be noted that in this case a stopping rule is not necessary.

**Remark.** If instead estimate  $||z - P_Q z|| \le \Delta$  we have  $z \in Q$ , where Q is finite-dimensional subspace, then we arrive to the situation considered above; therefore, in this case gradient method (11) converges monotonically to a solution z (Theorem 3).

**Theorem 2.** If the local condition (2) or (2a) is fulfilled, then for appropriate the parameter  $\gamma$  the step operators for the gradient methods or the Levenberg-Marquardt method are pseudo-contractive (in detail, see Theorem 3).

**Remark 1.** The properties presented in Theorem1 and 2 provide an opportunity to implement a natural decomposition of a problem and to decompose an algorithm into some simple procedures, using parallelization technique.

**Remark 2.** As  $M_i = M$  these properties mean that using several methods of such type, we can construct new and new hybrid iterative processes for solving equation (1).

**Remark 3.** In particular, due to this property and closeness of the operator *S* (*or A*), we have weak convergence of iterations (Theorem 3) and, using *a priori* information, we can modify the iterative process to obtain the strong convergence

# **Discretization of problems**

- 1. Stummel F. Discrete Konvergentz linearer Operatoren . Math. Ann. 1970. Bd. 190, Nr. 1. S.45-92; 1971. Bd. 190, Nr.2. S. 231-264.
- 2. Grigorieff R.D. Zur Theorie Approximations regularer Operatoren. Math. Nachr. 1973. Bd. 55, Nr. 3. S. 233-249; S. 251-263.
- 3. Vainikko G. Functionalanalysis der Diskretisierungmethoden. Leipzig: Teubner Verlag, 1976.
- Вайникко Г.М. Анализ дискретизационных методов. Тарту: Изд-во Тартус. Ун-та, 1976.