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Introduction
• (X, τX) and (Y, τY) topological spaces, F : D(F) ⊆ X → Y
• for y0 ∈ Y we want to solve the ill-posed equation

F(x) = y0, x ∈ D(F),

• don’t know y0, but only in some sense noisy data yδ ∈ Y
• approximate solution: minimize

S(F(x), yδ) + αΩ(x) over x ∈ D(F)

• S : Y × Y → [0,∞] (non-metric) fitting functional
• Ω : X → (−∞,∞] stabilizing functional
• assumptions on F, S, Ω that guarantee existence, stability,

and convergence?
• convergence rates?
• based on: PhD thesis C. Pöschl (Innsbruck, Austria),

Diploma thesis J. Geissler
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Problems and Difficulties
• main problem: ‖F(x)− yδ‖ replaced by S(F(x), yδ) without

modifying the proofs
• S : Y × Y → [0,∞] plays different roles:

• fitting functional
‖F(x)− yδ‖p  S(F(x), yδ)(p),

• bounding noisy data
‖y0 − yδ‖ ≤ δ  S(y0, yδ) ≤ δ, S(yδ, y0) ≤ δ,

• sufficient condition for convergence rates
‖F(x)− y0‖κ  S(F(x), y0)κ

• proofs based on norms need triangle inequality
S(y1, y2) ≤ s

(
S(y1, y3) + S(y3, y2)

)
or

S(y1, y2) ≤ s
(
S(y1, y3) + S(y2, y3)

)
(s ≥ 1)

(usually not satisfied by non-metric S)
• yδ ∈ Y in practice? (often discrete data)
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Example: modeling

x

y
2
8
6
5
7
1

z

F

energy density particlesunknown quantity detector

• Y := {y ∈ L1(T, µ) : y ≥ 0 a.e.}, µ(T) <∞, Z = Rn
+

• T1, . . . ,Tn ⊆ T pairwise disjoint: detector cells (pixels)
• MAP estimation: z Poisson distribution (n-dimensional)
• leads to

n∑
i=1

(
zi ln

zi∫
Ti

F(x) dµ
+
∫

Ti

F(x) dµ− zi

)
+ αΩ(x)→ min

x∈D(F)
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Example: definition of the fitting functional

• auxiliary function g : [0,∞)× [0,∞)→ (−∞,∞],

g(u, v) :=


v ln v

u + u− v, u, v ∈ (0,∞),
u, u ∈ (0,∞), v = 0,
∞, u = 0, v ∈ (0,∞),
0, u = v = 0

• Yb
a := {y ∈ L1(T, µ) : a ≤ y ≤ b a.e.} ⊆ Y, 0 ≤ a < b <∞

• fitting functional S : Y × Z → [0,∞],

S(y, z) :=

{∑n
i=1 g

(∫
Ti

y dµ, zi
)
, y ∈ Yb

a ,

∞, else
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Basic assumptions
• (X, τX), (Y, τY), (Z, τZ) topological spaces; consider

Tz
α(x) := S(F(x), z) + αΩ(x)→ min

x∈D(F)

• assumptions on F : D(F) ⊆ X → Y:
• F sequentially continuous w.r.t. τX and τY

• D(F) sequentially closed w.r.t. τX

• assumptions on Ω : X → (−∞,∞]:
• Ω sequentially lower semi-continuous w.r.t. τX

• {x ∈ X : Ω(x) ≤ c} sequentially pre-compact w.r.t. τX

• assumptions on S : Y × Z → [0,∞]:
• S sequentially lower semi-continuous w.r.t. τY × τZ

• if S(y, zk)→ 0, then there is some z ∈ Z with zk ⇀ z
• if zk ⇀ z and S(y, z) <∞, then S(y, zk)→ S(y, z)
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Remarks, definitions, propositions

• in case Y = Z: S(y1, y2) = 0 ⇔ y1 = y2

• now Y 6= Z:
y1 ∈ Y and y2 ∈ Y are called S-equivalent, if there is
some z ∈ Z with S(y1, z) = 0 = S(y2, z).

• Ω ist bounded below.
• If for y ∈ Y there is some x̄ ∈ D(F) with F(x̄) = y and

Ω(x̄) <∞, then there is an Ω-minimizing solution of
F(x) = y.

• X, Y Banach spaces with weak topologies, Z := Y,
S(y1, y2) = ‖y1 − y2‖p, τZ induced by S (i.e. norm topology):
⇒ all assumptions on S are satified

• S from example with a > 0 satifies all assumptions
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Existence and stability

• For all z ∈ Z and all α > 0 the minimization problem

Tz
α(x) = S(F(x), z) + αΩ(x)→ min

x∈D(F)

has a solution.

• Let z ∈ Z and α > 0 be fixed and let (zk)k∈N be a sequence
in Z satisfying zk ⇀ z. Further, assume that there is some
x̄ ∈ D(F) with S(F(x̄), z) <∞ and Ω(x̄) <∞.

Then each sequence (xk)k∈N with xk ∈ argminx∈D(F)T
zk
α (x)

has a τX-convergent subsequence and each limit x̃ of such
a subsequence minimizes Tz

α.

9
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Convergence

• Let y ∈ Y, let (zk)k∈N be a sequence in Z satifying
S(y, zk)→ 0, let (αk)k∈N be a sequence in (0,∞) with
αk → 0 and S(y,zk)

αk
≤ c for some c > 0 and sufficiently large

k, and assume that there exists some x̄ ∈ D(F) with
F(x̄) = y and Ω(x̄) <∞.

• Then each sequence (xk)k∈N with xk ∈ argminx∈D(F)T
zk
αk

(x)
has a τX-convergent subsequence and each limit x̃ of such
a convergent subsequence (xkl)l∈N is S-equivalent to a
solution of F(x) = y (i.e. F(x̃) is S-equivalent to y).

• If we have S(y,zk)
αk
→ 0, then Ω(x̃) ≤ Ω(x∗) for each limit x̃

and all solutions x∗ of F(x) = y.
• If x̃ is a solution of F(x) = y, then x̃ is an Ω-minimizing

solution and Ω(xkl)→ Ω(x̃).
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Some notes on convergence rates (1)

• consider F(x) = y0 and let x† ∈ D(F) be a fixed
Ω-minimizing solution

• dependence between solution error and data error?
• measuring the data error:

• Dy0 : Z → [0,∞]
• noisy data zδ ∈ Z with Dy0(zδ) ≤ δ
• requirement: S(y0, z) ≤ ψ(Dy0(z)) for all z ∈ Z;
ψ : [0,∞)→ [0,∞) monotonically increasing, ψ(0) = 0

• leads to S(y0, zδ) ≤ ψ(Dy0(zδ)) ≤ ψ(δ)
• example: S = ‖• − •‖p, Dy0 = ‖y0 − •‖, ψ(t) = tp

• measuring the solution error:
• Ex† : X → [0,∞]
• examples: Bregman distance, norm
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• measuring the solution error:
• Ex† : X → [0,∞]
• examples: Bregman distance, norm
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Some notes on convergence rates (2)

• variational inequality: combines assumptions on solution
smoothness and on the (nonlinear) structure of the
mapping F

• we need a distance in Y: Sy0 : Y → [0,∞],
assume Sy0(y) ≤ S(y, z) + S(y0, z) for all z ∈ Z and y ∈ Y

• There exists some β > 0, a (sufficiently large) set
M ⊆ D(F) and a function ϕ : [0,∞)→ [0,∞), such that

Ex†(x) ≤ β(Ω(x)− Ω(x†)) + ϕ
(
Sy0(F(x))

)
holds for all x ∈ M, where ϕ ≈ concave, twice differentiable

• this form of a variational inequality is equivalent to the form
known from the Banach space setting with Ex† = Bregman
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Convergence rates theorem

• based on a result by R. I. Boţ and B. Hofmann (Chemnitz)
• Let x† satify a variational inequality and let δ 7→ α(δ) satisfy

cβ
ϕ′(ψ(δ))

≤ α(δ) ≤ β

ϕ′(ψ(δ))

for some c ∈ (0, 1].

For arbitrary minimizers xzδ

α(δ) of Tzδ

α(δ) we then have

Ex†
(
xzδ

α(δ)

)
= O

(
ϕ(ψ(δ))

)
as δ → 0.

• applies to the S-example with Ex† = Bregman and
Sy0 = ‖y0 − •‖2

L1(T,µ)
for the distance in Y
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What did we achieve?

• complete removal of the odds and ends of the norm case
• generalization of the model for variational regularization,

especially concerning the handling of noisy data
• practically relevant example for non-metric similarity

measures, which fits completely into the theoretic results

Thank you!
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