Some remarks on general similarity functionals in variational regularization

Jens Geissler

Chemnitz University of Technology, Germany

IP-TA 2010, Warsaw, 12 February 2010

Outline

- Introduction
- Example
- Existence, stabilty, convergence
- Convergence rates

Introduction

- (X, τ_X) and (Y, τ_Y) topological spaces, $F : D(F) \subseteq X \rightarrow Y$
- for $y^0 \in Y$ we want to solve the ill-posed equation

$$F(x) = y^0, \quad x \in D(F),$$

• don't know y^0 , but only in some sense noisy data $y^{\delta} \in Y$

Introduction

- (X, τ_X) and (Y, τ_Y) topological spaces, $F : D(F) \subseteq X \rightarrow Y$
- for $y^0 \in Y$ we want to solve the ill-posed equation

$$F(x) = y^0, \quad x \in D(F),$$

- don't know y^0 , but only in some sense noisy data $y^\delta \in Y$
- approximate solution: minimize

$$S(F(x), y^{\delta}) + \alpha \Omega(x)$$
 over $x \in D(F)$

- $S: Y \times Y \rightarrow [0, \infty]$ (non-metric) fitting functional
- $\Omega: X \to (-\infty, \infty]$ stabilizing functional

Introduction

- (X, τ_X) and (Y, τ_Y) topological spaces, $F : D(F) \subseteq X \rightarrow Y$
- for $y^0 \in Y$ we want to solve the ill-posed equation

$$F(x) = y^0, \quad x \in D(F),$$

- don't know y^0 , but only in some sense noisy data $y^{\delta} \in Y$
- approximate solution: minimize

 $S(F(x), y^{\delta}) + \alpha \Omega(x) \quad \text{over } x \in D(F)$

- $S: Y \times Y \rightarrow [0,\infty]$ (non-metric) fitting functional
- $\Omega: X \to (-\infty, \infty]$ stabilizing functional
- assumptions on F, S, Ω that guarantee existence, stability, and convergence?
- convergence rates?
- based on: PhD thesis C. Pöschl (Innsbruck, Austria), Diploma thesis J. Geissler

• main problem: $||F(x) - y^{\delta}||$ replaced by $S(F(x), y^{\delta})$ without modifying the proofs

- main problem: $||F(x) y^{\delta}||$ replaced by $S(F(x), y^{\delta})$ without modifying the proofs
- $S: Y \times Y \rightarrow [0, \infty]$ plays different roles:
 - fitting functional

 $\|F(x) - y^{\delta}\|^p \quad \rightsquigarrow \quad S(F(x), y^{\delta})^{(p)},$

bounding noisy data

$$\|y^0 - y^{\delta}\| \le \delta \quad \rightsquigarrow \quad S(y^0, y^{\delta}) \le \delta, \ S(y^{\delta}, y^0) \le \delta,$$

sufficient condition for convergence rates

 $||F(x) - y^0||^{\kappa} \quad \rightsquigarrow \quad S(F(x), y^0)^{\kappa}$

- main problem: $||F(x) y^{\delta}||$ replaced by $S(F(x), y^{\delta})$ without modifying the proofs
- $S: Y \times Y \rightarrow [0, \infty]$ plays different roles:
 - fitting functional

 $\|F(x) - y^{\delta}\|^p \quad \rightsquigarrow \quad S(F(x), y^{\delta})^{(p)},$

bounding noisy data

 $\|y^0 - y^{\delta}\| \le \delta \quad \rightsquigarrow \quad S(y^0, y^{\delta}) \le \delta, \ S(y^{\delta}, y^0) \le \delta,$

sufficient condition for convergence rates

 $||F(x) - y^0||^{\kappa} \quad \rightsquigarrow \quad S(F(x), y^0)^{\kappa}$

· proofs based on norms need triangle inequality

 $\begin{array}{l} S(y_1, y_2) \leq s \big(S(y_1, y_3) + S(y_3, y_2) \big) & \text{or} \\ S(y_1, y_2) \leq s \big(S(y_1, y_3) + S(y_2, y_3) \big) & (s \geq 1) \\ \text{(usually not satisfied by non-metric } S \end{array}$

- main problem: $||F(x) y^{\delta}||$ replaced by $S(F(x), y^{\delta})$ without modifying the proofs
- $S: Y \times Y \rightarrow [0, \infty]$ plays different roles:
 - fitting functional

 $\|F(x) - y^{\delta}\|^p \quad \rightsquigarrow \quad S(F(x), y^{\delta})^{(p)},$

bounding noisy data

 $\|y^0 - y^{\delta}\| \le \delta \quad \rightsquigarrow \quad S(y^0, y^{\delta}) \le \delta, \ S(y^{\delta}, y^0) \le \delta,$

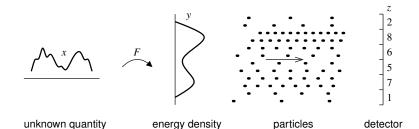
sufficient condition for convergence rates

 $||F(x) - y^0||^{\kappa} \quad \rightsquigarrow \quad S(F(x), y^0)^{\kappa}$

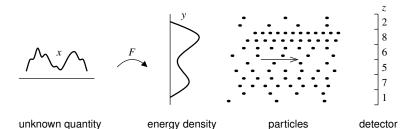
• proofs based on norms need triangle inequality

 $\begin{array}{l} S(y_1, y_2) \leq s \big(S(y_1, y_3) + S(y_3, y_2) \big) & \text{or} \\ S(y_1, y_2) \leq s \big(S(y_1, y_3) + S(y_2, y_3) \big) & (s \geq 1) \\ \text{(usually not satisfied by non-metric } S \end{array}$

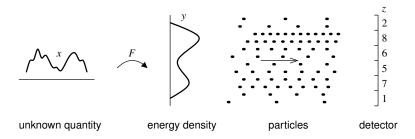
• $y^{\delta} \in Y$ in practice? (often discrete data)



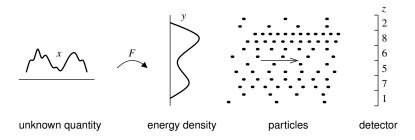
5



•
$$Y := \{ y \in L^1(T, \mu) : y \ge 0 \text{ a.e.} \}, \ \mu(T) < \infty, \ Z = \mathbb{R}^n_+$$



- $Y := \{ y \in L^1(T, \mu) : y \ge 0 \text{ a.e.} \}, \ \mu(T) < \infty, \ Z = \mathbb{R}^n_+$
- $T_1, \ldots, T_n \subseteq T$ pairwise disjoint: detector cells (pixels)



•
$$Y := \{ y \in L^1(T, \mu) : y \ge 0 \text{ a.e.} \}, \ \mu(T) < \infty, \ Z = \mathbb{R}^n_+$$

- $T_1, \ldots, T_n \subseteq T$ pairwise disjoint: detector cells (pixels)
- MAP estimation: z Poisson distribution (n-dimensional)
- leads to

$$\sum_{i=1}^{n} \left(z_i \ln \frac{z_i}{\int_{T_i} F(x) \, \mathrm{d}\mu} + \int_{T_i} F(x) \, \mathrm{d}\mu - z_i \right) + \alpha \Omega(x) \to \min_{x \in D(F)}$$

Example: definition of the fitting functional

• auxiliary function $g:[0,\infty)\times [0,\infty) \to (-\infty,\infty]$,

$$g(u,v) := \begin{cases} v \ln \frac{v}{u} + u - v, & u, v \in (0,\infty), \\ u, & u \in (0,\infty), v = 0, \\ \infty, & u = 0, v \in (0,\infty), \\ 0, & u = v = 0 \end{cases}$$

Example: definition of the fitting functional

• auxiliary function $g:[0,\infty)\times [0,\infty) \to (-\infty,\infty]$,

$$g(u,v) := \begin{cases} v \ln \frac{v}{u} + u - v, & u, v \in (0,\infty), \\ u, & u \in (0,\infty), v = 0, \\ \infty, & u = 0, v \in (0,\infty), \\ 0, & u = v = 0 \end{cases}$$

• $Y^b_a := \{ y \in L^1(T, \mu) : a \le y \le b \text{ a.e.} \} \subseteq Y, \ 0 \le a < b < \infty$

Example: definition of the fitting functional

• auxiliary function $g:[0,\infty)\times [0,\infty) \to (-\infty,\infty]$,

$$g(u,v) := \begin{cases} v \ln \frac{v}{u} + u - v, & u, v \in (0,\infty), \\ u, & u \in (0,\infty), v = 0, \\ \infty, & u = 0, v \in (0,\infty), \\ 0, & u = v = 0 \end{cases}$$

- $Y_a^b := \{ y \in L^1(T, \mu) : a \le y \le b \text{ a.e.} \} \subseteq Y, \ 0 \le a < b < \infty$
- fitting functional $S: Y \times Z \rightarrow [0, \infty]$,

$$S(y,z) := \begin{cases} \sum_{i=1}^{n} g(\int_{T_i} y \, \mathrm{d}\mu, z_i), & y \in Y_a^b, \\ \infty, & \text{else} \end{cases}$$

$$T^{z}_{\alpha}(x) := S(F(x), z) + \alpha \Omega(x) \to \min_{x \in D(F)}$$

$$T^{z}_{\alpha}(x) := S(F(x), z) + \alpha \Omega(x) \to \min_{x \in D(F)}$$

- assumptions on $F : D(F) \subseteq X \to Y$:
 - *F* sequentially continuous w.r.t. τ_X and τ_Y
 - D(F) sequentially closed w.r.t. τ_X

$$T^{z}_{\alpha}(x) := S(F(x), z) + \alpha \Omega(x) \to \min_{x \in D(F)}$$

- assumptions on $F : D(F) \subseteq X \to Y$:
 - *F* sequentially continuous w.r.t. τ_X and τ_Y
 - D(F) sequentially closed w.r.t. τ_X
- assumptions on $\Omega: X \to (-\infty, \infty]$:
 - Ω sequentially lower semi-continuous w.r.t. τ_X
 - $\{x \in X : \Omega(x) \le c\}$ sequentially pre-compact w.r.t. τ_X

$$T^{z}_{\alpha}(x) := S(F(x), z) + \alpha \Omega(x) \to \min_{x \in D(F)}$$

- assumptions on $F : D(F) \subseteq X \to Y$:
 - *F* sequentially continuous w.r.t. τ_X and τ_Y
 - D(F) sequentially closed w.r.t. τ_X
- assumptions on $\Omega: X \to (-\infty, \infty]$:
 - Ω sequentially lower semi-continuous w.r.t. τ_X
 - $\{x \in X : \Omega(x) \le c\}$ sequentially pre-compact w.r.t. τ_X
- assumptions on $S: Y \times Z \rightarrow [0, \infty]$:
 - S sequentially lower semi-continuous w.r.t. $\tau_Y \times \tau_Z$
 - if $S(y, z_k) \rightarrow 0$, then there is some $z \in Z$ with $z_k \rightarrow z$
 - if $z_k \rightharpoonup z$ and $S(y, z) < \infty$, then $S(y, z_k) \rightarrow S(y, z)$

- in case Y = Z: $S(y_1, y_2) = 0 \Leftrightarrow y_1 = y_2$
- now $Y \neq Z$:

- in case Y = Z: $S(y_1, y_2) = 0 \Leftrightarrow y_1 = y_2$
- now $Y \neq Z$:

 $y_1 \in Y$ and $y_2 \in Y$ are called *S*-equivalent, if there is some $z \in Z$ with $S(y_1, z) = 0 = S(y_2, z)$.

• Ω ist bounded below.

- in case Y = Z: $S(y_1, y_2) = 0 \Leftrightarrow y_1 = y_2$
- now $Y \neq Z$:

- Ω ist bounded below.
- If for $y \in Y$ there is some $\bar{x} \in D(F)$ with $F(\bar{x}) = y$ and $\Omega(\bar{x}) < \infty$, then there is an Ω -minimizing solution of F(x) = y.

- in case Y = Z: $S(y_1, y_2) = 0 \Leftrightarrow y_1 = y_2$
- now $Y \neq Z$:

- Ω ist bounded below.
- If for $y \in Y$ there is some $\bar{x} \in D(F)$ with $F(\bar{x}) = y$ and $\Omega(\bar{x}) < \infty$, then there is an Ω -minimizing solution of F(x) = y.
- X, Y Banach spaces with weak topologies, Z := Y,
 S(y₁, y₂) = ||y₁ − y₂||^p, τ_Z induced by S (i.e. norm topology):
 ⇒ all assumptions on S are satified

- in case Y = Z: $S(y_1, y_2) = 0 \Leftrightarrow y_1 = y_2$
- now $Y \neq Z$:

- Ω ist bounded below.
- If for $y \in Y$ there is some $\bar{x} \in D(F)$ with $F(\bar{x}) = y$ and $\Omega(\bar{x}) < \infty$, then there is an Ω -minimizing solution of F(x) = y.
- X, Y Banach spaces with weak topologies, Z := Y,
 S(y₁, y₂) = ||y₁ − y₂||^p, τ_Z induced by S (i.e. norm topology):
 ⇒ all assumptions on S are satified
- *S* from example with *a* > 0 satifies all assumptions

Existence and stability

• For all $z \in Z$ and all $\alpha > 0$ the minimization problem

$$T^z_{\alpha}(x) = S(F(x), z) + \alpha \Omega(x) \to \min_{x \in D(F)}$$

has a solution.

Existence and stability

• For all $z \in Z$ and all $\alpha > 0$ the minimization problem

$$T^{z}_{\alpha}(x) = S(F(x), z) + \alpha \Omega(x) \to \min_{x \in D(F)}$$

has a solution.

 Let z ∈ Z and α > 0 be fixed and let (z_k)_{k∈ℕ} be a sequence in Z satisfying z_k → z. Further, assume that there is some x̄ ∈ D(F) with S(F(x̄), z) < ∞ and Ω(x̄) < ∞.

Then each sequence $(x_k)_{k \in \mathbb{N}}$ with $x_k \in \operatorname{argmin}_{x \in D(F)} T_{\alpha}^{z_k}(x)$ has a τ_X -convergent subsequence and each limit \tilde{x} of such a subsequence minimizes T_{α}^{z} .

• Let $y \in Y$, let $(z_k)_{k \in \mathbb{N}}$ be a sequence in Z satifying $S(y, z_k) \to 0$, let $(\alpha_k)_{k \in \mathbb{N}}$ be a sequence in $(0, \infty)$ with $\alpha_k \to 0$ and $\frac{S(y, z_k)}{\alpha_k} \leq c$ for some c > 0 and sufficiently large k, and assume that there exists some $\bar{x} \in D(F)$ with $F(\bar{x}) = y$ and $\Omega(\bar{x}) < \infty$.

- Let $y \in Y$, let $(z_k)_{k \in \mathbb{N}}$ be a sequence in Z satifying $S(y, z_k) \to 0$, let $(\alpha_k)_{k \in \mathbb{N}}$ be a sequence in $(0, \infty)$ with $\alpha_k \to 0$ and $\frac{S(y, z_k)}{\alpha_k} \leq c$ for some c > 0 and sufficiently large k, and assume that there exists some $\bar{x} \in D(F)$ with $F(\bar{x}) = y$ and $\Omega(\bar{x}) < \infty$.
- Then each sequence (x_k)_{k∈ℕ} with x_k ∈ argmin_{x∈D(F)} T^{z_k}_{α_k}(x) has a τ_X-convergent subsequence and each limit x̃ of such a convergent subsequence (x_{kl})_{l∈ℕ} is S-equivalent to a solution of F(x) = y (i.e. F(x̃) is S-equivalent to y).

- Let $y \in Y$, let $(z_k)_{k \in \mathbb{N}}$ be a sequence in Z satifying $S(y, z_k) \to 0$, let $(\alpha_k)_{k \in \mathbb{N}}$ be a sequence in $(0, \infty)$ with $\alpha_k \to 0$ and $\frac{S(y, z_k)}{\alpha_k} \leq c$ for some c > 0 and sufficiently large k, and assume that there exists some $\bar{x} \in D(F)$ with $F(\bar{x}) = y$ and $\Omega(\bar{x}) < \infty$.
- Then each sequence (x_k)_{k∈ℕ} with x_k ∈ argmin_{x∈D(F)} T^{z_k}_{α_k}(x) has a τ_x-convergent subsequence and each limit x̃ of such a convergent subsequence (x_{kl})_{l∈ℕ} is *S*-equivalent to a solution of F(x) = y (i.e. F(x̃) is *S*-equivalent to y).
- If we have ^{S(y,z_k)}/_{α_k} → 0, then Ω(x̃) ≤ Ω(x*) for each limit x̃ and all solutions x* of F(x) = y.

- Let $y \in Y$, let $(z_k)_{k \in \mathbb{N}}$ be a sequence in Z satifying $S(y, z_k) \to 0$, let $(\alpha_k)_{k \in \mathbb{N}}$ be a sequence in $(0, \infty)$ with $\alpha_k \to 0$ and $\frac{S(y, z_k)}{\alpha_k} \leq c$ for some c > 0 and sufficiently large k, and assume that there exists some $\bar{x} \in D(F)$ with $F(\bar{x}) = y$ and $\Omega(\bar{x}) < \infty$.
- Then each sequence (x_k)_{k∈ℕ} with x_k ∈ argmin_{x∈D(F)} T^{z_k}_{α_k}(x) has a τ_x-convergent subsequence and each limit x̃ of such a convergent subsequence (x_{kl})_{l∈ℕ} is *S*-equivalent to a solution of F(x) = y (i.e. F(x̃) is *S*-equivalent to y).
- If we have ^{S(y,z_k)}/_{α_k} → 0, then Ω(x̃) ≤ Ω(x*) for each limit x̃ and all solutions x* of F(x) = y.
- If *x̃* is a solution of *F*(*x*) = *y*, then *x̃* is an Ω-minimizing solution and Ω(*x_{kl}*) → Ω(*x̃*).

- consider $F(x) = y^0$ and let $x^{\dagger} \in D(F)$ be a fixed Ω -minimizing solution
- dependence between solution error and data error?

- consider $F(x) = y^0$ and let $x^{\dagger} \in D(F)$ be a fixed Ω -minimizing solution
- dependence between solution error and data error?
- measuring the data error:
 - $\bullet \; D_{y^0}: Z \to [0,\infty]$
 - noisy data $z^{\delta} \in Z$ with $D_{y^0}(z^{\delta}) \leq \delta$
 - requirement: $S(y^0, z) \le \psi(D_{y^0}(z))$ for all $z \in Z$;

 $\psi:[0,\infty)\to [0,\infty)$ monotonically increasing, $\psi(0)=0$

- leads to $\mathit{S}(\mathit{y}^0, z^\delta) \leq \psi(\mathit{D}_{\mathit{y}^0}(z^\delta)) \leq \psi(\delta)$
- example: $S = \| \bullet \bullet \|^p$, $D_{y^0} = \| y^0 \bullet \|$, $\psi(t) = t^p$

- consider $F(x) = y^0$ and let $x^{\dagger} \in D(F)$ be a fixed Ω -minimizing solution
- dependence between solution error and data error?
- measuring the data error:
 - $D_{y^0}: Z \to [0,\infty]$
 - noisy data $z^{\delta} \in Z$ with $D_{y^0}(z^{\delta}) \leq \delta$
 - requirement: $S(y^0, z) \le \psi(D_{y^0}(z))$ for all $z \in Z$;

 $\psi:[0,\infty)\to [0,\infty)$ monotonically increasing, $\psi(0)=0$

- leads to $\mathit{S}(\mathit{y}^0, \mathit{z}^\delta) \leq \psi(D_{\mathit{y}^0}(\mathit{z}^\delta)) \leq \psi(\delta)$
- example: $S = \| \bullet \bullet \|^p$, $D_{y^0} = \| y^0 \bullet \|$, $\psi(t) = t^p$
- measuring the solution error:
 - $E_{x^\dagger}: X \to [0,\infty]$
 - examples: Bregman distance, norm

• variational inequality: combines assumptions on solution smoothness and on the (nonlinear) structure of the mapping *F*

- variational inequality: combines assumptions on solution smoothness and on the (nonlinear) structure of the mapping F
- we need a distance in Y: $S_{y^0}: Y \to [0, \infty]$, assume $S_{y^0}(y) \le S(y, z) + S(y^0, z)$ for all $z \in Z$ and $y \in Y$

- variational inequality: combines assumptions on solution smoothness and on the (nonlinear) structure of the mapping *F*
- we need a distance in Y: $S_{y^0}: Y \to [0, \infty]$, assume $S_{y^0}(y) \le S(y, z) + S(y^0, z)$ for all $z \in Z$ and $y \in Y$
- There exists some β > 0, a (sufficiently large) set
 M ⊆ D(F) and a function φ : [0,∞) → [0,∞), such that

$$E_{x^{\dagger}}(x) \leq \beta(\Omega(x) - \Omega(x^{\dagger})) + \varphi(S_{y^{0}}(F(x)))$$

holds for all $x \in M$, where $\varphi \approx$ concave, twice differentiable

- variational inequality: combines assumptions on solution smoothness and on the (nonlinear) structure of the mapping *F*
- we need a distance in Y: $S_{y^0}: Y \to [0, \infty]$, assume $S_{y^0}(y) \le S(y, z) + S(y^0, z)$ for all $z \in Z$ and $y \in Y$
- There exists some β > 0, a (sufficiently large) set
 M ⊆ D(F) and a function φ : [0,∞) → [0,∞), such that

$$E_{x^{\dagger}}(x) \leq \beta(\Omega(x) - \Omega(x^{\dagger})) + \varphi(S_{y^{0}}(F(x)))$$

holds for all $x \in M$, where $\varphi \approx$ concave, twice differentiable

• this form of a variational inequality is equivalent to the form known from the Banach space setting with $E_{x^{\dagger}}$ = Bregman

• based on a result by R. I. Boţ and B. Hofmann (Chemnitz)

- based on a result by R. I. Boţ and B. Hofmann (Chemnitz)
- Let x^{\dagger} satify a variational inequality and let $\delta\mapsto\alpha(\delta)$ satisfy

$$\frac{c\beta}{\varphi'(\psi(\delta))} \le \alpha(\delta) \le \frac{\beta}{\varphi'(\psi(\delta))}$$

for some $c \in (0, 1]$.

- based on a result by R. I. Boţ and B. Hofmann (Chemnitz)
- Let x^{\dagger} satify a variational inequality and let $\delta \mapsto \alpha(\delta)$ satisfy

$$\frac{c\beta}{\varphi'(\psi(\delta))} \le \alpha(\delta) \le \frac{\beta}{\varphi'(\psi(\delta))}$$

for some $c \in (0, 1]$.

For arbitrary minimizers $x_{\alpha(\delta)}^{z^{\delta}}$ of $T_{\alpha(\delta)}^{z^{\delta}}$ we then have

$$E_{x^\dagger}ig(x^{z^\delta}_{lpha(\delta)}ig) = \mathcal{O}ig(arphi(\psi(\delta))ig) \quad ext{as } \delta o 0.$$

- based on a result by R. I. Boţ and B. Hofmann (Chemnitz)
- Let x^{\dagger} satify a variational inequality and let $\delta \mapsto \alpha(\delta)$ satisfy

$$\frac{c\beta}{\varphi'(\psi(\delta))} \le \alpha(\delta) \le \frac{\beta}{\varphi'(\psi(\delta))}$$

for some $c \in (0, 1]$.

For arbitrary minimizers $x_{\alpha(\delta)}^{z^{\delta}}$ of $T_{\alpha(\delta)}^{z^{\delta}}$ we then have

$$E_{x^{\dagger}}ig(x^{z^{\delta}}_{lpha(\delta)}ig) = \mathcal{O}ig(arphi(\delta))ig) \quad ext{as } \delta o 0.$$

• applies to the *S*-example with $E_{x^{\dagger}}$ = Bregman and $S_{y^0} = ||y^0 - \bullet||^2_{L^1(T,\mu)}$ for the distance in *Y*

What did we achieve?

- complete removal of the odds and ends of the norm case
- generalization of the model for variational regularization, especially concerning the handling of noisy data
- practically relevant example for non-metric similarity measures, which fits completely into the theoretic results

What did we achieve?

- complete removal of the odds and ends of the norm case
- generalization of the model for variational regularization, especially concerning the handling of noisy data
- practically relevant example for non-metric similarity measures, which fits completely into the theoretic results

Thank you!