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Introduction

Nonlinear inverse problems

Let U,V be infinite dimensional Banach spaces with
strong convergence→ in norms ‖ · ‖U , ‖ · ‖V , and well-defined
weak convergences ⇀ based on weak topologies.

F : D(F ) ⊆ U −→ V forward operator with domain D(F ).

We consider the ill-posed nonlinear operator equation

F (u) = v (u ∈ D(F ) ⊆ U, v ∈ V ) (∗)

with solution u∗ ∈ D(F ) and exact right-hand side v∗ = F (u∗).
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For the stable approximate solution of (∗) we consider with

stabilizing functional Ω : D(Ω) ⊆ U :→ R

and for noisy data vδ assuming a deterministic noise model

‖v∗ − vδ‖V ≤ δ

variational regularization (Tikhonov type regularization)

T δ
α(u) := ψ(‖F (u)− vδ‖V ) + αΩ(u)→ min,

subject to u ∈ D := D(F ) ∩ D(Ω), with α > 0, minimizers uδα,

and an index function ψ defined on [0,∞)

(continuous, strictly increasing, ψ(0) = 0).
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Standing assumptions

Assumption 1
U,V are reflexive Banach spaces.
F is weakly-weakly continuous and D(F ) is weakly closed,
hence F is weakly closed.
Ω is convex and weakly lower semi-continuous.
D = D(F ) ∩ D(Ω) 6= ∅.
For every α > 0 and c ≥ 0 the sets

Mα(c) :=
{

u ∈ D : T 0
α(u) ≤ c

}
,

are weakly sequentially pre-compact in the sense that
every sequence {uk} inMα(c) has a subsequence, which
is weakly convergent in U to some element from U.
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We exploit for Ω with subdifferential ∂Ω the Bregman distance
Dξ(·,u) of Ω at u ∈ U and ξ ∈ ∂Ω(u) ⊆ U∗ defined as

Dξ(ũ,u) := Ω(ũ)−Ω(u)−〈ξ, ũ − u〉U∗,U (u, ũ ∈ D(Ω) ⊆ U) .

The set
DB(Ω) := {u ∈ D(Ω) : ∂Ω(u) 6= ∅}

is called Bregman domain. An element u∗ ∈ D is called an
Ω-minimizing solution if

Ω(u∗) = min {Ω(u) : F (u) = v∗, u ∈ D} <∞ .

Such Ω-minimizing solutions exist under Assumption 1 if (∗)
has a solution u ∈ D.
For results on existence, stability and convergence see
B H./KALTENBACHER/P./SCHERZER 2007, B PÖSCHL 2008.
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Example: Standard situation in Hilbert spaces

U,V Hilbert spaces, ψ(t) = t2 ,

Ω(u) := ‖u − ū‖2U , u∗ is called ū-minimum norm solution

T δ
α(u) := ‖F (u)− vδ‖2V + α ‖u − ū‖2U

D(Ω) = DB(Ω) = U, since ∂Ω(u) is singleton

ξ := Ω′(u∗) = 2(u∗ − ū)

Dξ(ũ,u) = ‖ũ − u‖2U
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Example: Regularization with differential operators

U,V Hilbert spaces, ψ(t) = t2 ,

Ω(u) := ‖Bu‖2U with unbounded s.a. operator B : D(B) ⊂ U → U

T δ
α(u) := ‖F (u)− vδ‖2V + α ‖Bu‖2U

D(Ω) = Ũ Hilbert space with stronger norm ‖u‖eU := ‖Bu‖U

ξ := Ω′(u∗) = 2B2u∗

Dξ(ũ,u) = ‖B(ũ − u)‖2U with DB(Ω) = D(B2)
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Example: Power type penalties in Banach spaces

U,V Banach spaces, ψ(t) = t p (p > 1), Ω(u) :=
‖u‖qU

q
(q > 1),

T δ
α(u) := ‖F (u)− vδ‖pV + α

(
1
q
‖u‖qU

)
(p,q > 1)

D(Ω) = DB(Ω) = U, since Ω(u) is differentiable with

ξ := Ω′(u∗) = Jq(u∗) with Jq : U → U∗ duality mapping

Dξ(ũ,u) =
1
q
‖ũ‖qU −

1
q
‖u‖qU − 〈Jq(u), ũ − u〉U∗,U
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Assumption 2
Let F , Ω, U, V and D satisfy Assumption 1.

There exists an Ω-minimizing solution u∗ which is an
element of the Bregman domain DB(Ω).
D is starlike with respect to u∗, that is, for every u ∈ D
there exists t0 such that

u∗ + t (u − u∗) ∈ D (0 ≤ t ≤ t0).

There is a bounded linear operator F ′(u∗) : U → V such
that we have for the one-sided directional derivative at u∗

and for every u ∈ D the equality

lim
t→0+

1
t

(F (u∗ + t(u − u∗))− F (u∗)) = F ′(u∗)(u − u∗) .

The operator F ′(u∗) has Gâteaux derivative like properties,
and there is an adjoint operator F ′(u∗)∗ : V ∗ → U∗
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Variational inequalities and convergence rates

Proposition 1 – weak convergence
Consider an a priori choice α = α(δ) ≤ ᾱ with

α(δ)→ 0 and
ψ(δ)

α(δ)
→ 0 as δ → 0.

Then every sequence {un}∞n=1 := {uδn
α(δn)}

∞
n=1 of regularized

solutions corresponding to a data sequence {vδn}∞n=1 of data
with lim

n→∞
δn = 0 has a subsequence {unk}∞k=1 which is weakly

convergent in U to some u∗. This limit element is always an
Ω-minimizing solution of (∗) with Ω(u∗) = lim

k→∞
Ω(unk ).
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Proposition 2 – regularized solutions stay inside level sets
Let α = α(δ) be a parameter choice from Proposition 1,
For given ᾱ > 0 and Ω-minimizing solution u∗ set:

ρ := ᾱ (1 + Ω(u∗)) .

Then u∗ ∈Mᾱ(ρ) and there exists some δ̄ > 0 such that

uδα(δ) ∈Mᾱ(ρ) for all 0 ≤ δ ≤ δ̄ .
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In recent publications the distinguished role of
variational inequalities

〈ξ,u∗ − u〉U∗,U ≤ β1Dξ(u,u∗) + β2‖F (u)− F (u∗)‖κV (∗∗)

for all u ∈Mᾱ(ρ) with some ξ ∈ ∂Ω(u∗) ,
two multipliers 0 ≤ β1 < 1, β2 ≥ 0 ,
and an exponent κ > 0 was elaborated.

This talk outlines the chances of such variational inequalities
and their extensions for ensuring convergence rates in
Tikhonov type regularization.
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Classical theory of convergence rates in Tikhonov
regularization for nonlinear ill-posed equations in Hilbert
spaces due to
B ENGL/KUNISCH/NEUBAUER Inverse Problems 1989
for the standard minimization problem

T δ
α(u) := ‖F (u)− v δ‖2V + α ‖u − ū‖2U → min

separates the following both components
1. Smoothing properties and nonlinearity of the forward
operator

‖F (u)− F (u∗)− F ′(u∗)(u − u∗)‖V ≤
L
2
‖u − u∗‖2U .

2. Solution smoothness

u∗ − ū = F ′(u∗)∗w , L‖w‖V < 1 .

Both ingredients are united in variational inequalities.
This allows handling of non-smooth situations for u∗ and F !
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Theorem 1 – convergence rates & variational inequalities
Under the standing assumptions and assuming the existence of
an Ω-minimizing solution from the Bregman domain u∗ ∈ DB(Ω)
let there exist an element ξ ∈ ∂Ω(u∗) and constants
0 ≤ β1 < 1, β2 ≥ 0, and 0 < κ ≤ 1 such that the variational
inequality (∗∗) holds for all u ∈Mᾱ(ρ) .

Then for ψ(t) = tp (p > 1) we have the convergence rate

Dξ(uδα(δ),u
∗) = O (δκ) as δ → 0

for an a priori parameter choice α(δ) � δp−κ.
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Sketch of a proof:
As typical for low rate world using T δ

α(uδα) ≤ T δ
α(u∗) we obtain∥∥∥F (uδα)− vδ

∥∥∥p

V
+αDξ(uδα,u

∗) ≤ δp+α
(

Ω(u∗)− Ω(uδα) + Dξ(uδα,u
∗)
)
.

Moreover, by exploiting the inequality
(a + b)κ ≤ aκ + bκ (a,b > 0, 0 < κ ≤ 1) from (∗∗) it follows

Ω(u∗)− Ω(uδα) + Dξ(uδα,u
∗) = −

〈
ξ,uδα − u∗

〉
U∗,U

≤ β1 Dξ(uδα,u
∗) + β2

∥∥∥F (uδα)− F (u∗)
∥∥∥κ

V

≤ β1 Dξ(uδα,u
∗) + β2

(∥∥∥F (uδα)− vδ
∥∥∥κ

V
+ δκ

)
and hence ∥∥∥F (uδα)− vδ

∥∥∥p

V
+ αDξ(uδα,u

∗)

≤ δp + α
(
β1Dξ(uδα,u

∗) + β2

(∥∥∥F (uδα)− vδ
∥∥∥κ

V
+ δκ

))
.
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Using the variant

a b ≤ εap1 +
bp2

(εp1)p2/p1p2
(a,b ≥ 0, ε > 0)

of Young’s inequality twice with p1,p2 > 1, 1
p1

+ 1
p2

= 1 we get

αDξ(uδα,u
∗) ≤ 2δp +αβ1Dξ(uδα,u

∗)+
2(p − κ)

(p/κ)κ/(p−κ) p
(αβ2)p/(p−κ).

Because of 0 ≤ β1 < 1 this yields

Dξ(uδα,u
∗) ≤

2δp + 2(p−κ)

(p/κ)κ/(p−κ) p (αβ2)p/(p−κ)

α (1− β1)

and
Dξ(uδα(δ),u

∗) = O (δκ) as δ → 0

for an a priori parameter choice α(δ) � δp−κ.
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Comparison of Hölder convergence rates

Dξ(uδα(δ),u
∗) = O (δν) for variational regularization with ψ(t) = tp :

Low rate world 0 < ν ≤ 1: Proof ansatz T δ
α(uδα) ≤ T δ

α(u∗)
under low order source conditions
0 < ν = κ ≤ 1 obtained for arbitrary reflexive Banach spaces
U and V , p > 1, and diversified properties expressed by κ
with a priori choice α(δ) � δp−ν

Enhanced rate world ν > 1: Proof ansatz T δ
α(uδα) ≤ T δ

α(u∗− z)
under high order source conditions
1 < ν ≤ 2s

s+1 obtained for s-smooth Banach space V (s > 1)

and a priori choice α(δ) � δ(p−1) s
s+1

Upper rate limit: ν = 4
3 in Hilbert space V (s = 2)

Optimal rate independent of p ≥ 1!
( B sc Neubauer/Hein/H./Kindermann/Tautenhahn 2009/10)
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A case distinction and the structure of nonlinearity

Assumption 3
In addition to the standing assumptions we suppose here:

Let u∗ ∈ D be an Ω-minimizing solution of (∗).
The operator F is Gâteaux differentiable in u∗ with
Gâteaux derivative F ′(u∗).
The functional Ω is Gâteaux differentiable in u∗ with
Gâteaux derivative ξ = Ω′(u∗), i.e., the subdifferential
∂Ω(u∗) = {ξ} is a singleton.

The Gâteaux differentiability of F and Ω in u∗ implies that there
is some t0 > 0 for every direction û ∈ U such that u∗ + t û ∈ D
for all 0 ≤ t ≤ t0.
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Structural conditions of F locally in u∗ can be expressed by:

Definition (degree of nonlinearity)
Let 0 ≤ c1, c2 ≤ 1 and c1 + c2 > 0. We define F to be
nonlinear of degree (c1, c2) for the Bregman distance Dξ of Ω
at u∗ and at ξ ∈ ∂Ω(u∗) if there is a constant K > 0 such that

‖F (u)−F (u∗)−F ′(u∗)(u−u∗)‖V ≤K ‖F (u)−F (u∗)‖ c1
V Dξ(u,u∗) c2

for all u ∈Mᾱ(ρ).
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Case κ > 1:

The following proposition shows that exponents κ > 1 in the
variational inequality for differentiable F and Ω in principle
cannot occur (B sc H./Yamamoto 2009):

Proposition 3 – exponent limitation
Under the Assumption 3 the variational inequality

〈ξ,u∗−u〉U∗,U ≤ β1Dξ(u,u∗) +β2‖F (u)−F (u∗)‖κV (∗∗)

cannot hold with ξ = Ω′(u∗) 6= 0 and multipliers β1, β2 ≥ 0
whenever κ > 1.
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Case κ = 1: ( B Monograph by SCHERZER ET AL. 2009)

As the next proposition shows the variational inequality (∗∗) is
closely connected with the source condition ξ ∈ R(F ′(u∗)∗).

Proposition 4 – source condition equivalence
Under Assumption 3 a variational inequality (∗∗) for κ = 1 with
ξ = Ω′(u∗) and β1, β2 ≥ 0 implies the benchmark source
condition

ξ = F ′(u∗)∗w , w ∈ V ∗ . (+)

Let F be nonlinear of degree (0,1) in u∗, i.e., we have

‖F (u)− F (u∗ − F ′(u∗)(u − u∗)‖V ≤ K Dξ(u,u∗)

for a constant K > 0 and all u ∈Mᾱ(ρ). Then conversely the
source condition (+) together with the smallness condition
K ‖w‖V∗ < 1 imply (∗∗) with ξ = Ω′(u∗) and multipliers
0 ≤ β1 = K‖w‖V∗ < 1, β2 = ‖w‖V∗ ≥ 0.

B. Hofmann On the impact of smoothness in regularization – selected aspects 30



Case 0 < κ ≤ 1:

The theorem below extends the second result of Proposition 4
to a wider class of degrees of nonlinearity. The particular case
κ = 1 occurs only for the complementary situation c1 > 0.

Theorem 2 – utility of c1 > 0
Under Assumption 3 let F be nonlinear in u∗ of degree

(c1, c2) with 0 < c1 ≤ 1, 0 ≤ c2 < 1, c1 + c2 ≤ 1.

Then without requiring any additional condition the benchmark
source condition (+) implies a variational inequality (∗∗) with

κ =
c1

1− c2
,

ξ = Ω′(u∗) and 0 ≤ β1 < 1, β2 ≥ 0.
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Extended results for a Hilbert space situation

Assumption 4
U and V are Hilbert spaces
ψ(t) = t2

Ω(u) := ‖u − ū‖2U with reference element ū ∈ U

Definition (degree of nonlinearity in Hilbert space)
Let c1, c2 ≥ 0 and c1 + c2 > 0. We define F to be nonlinear in
u∗ of degree (c1, c2) if there is a constant K > 0 such that

‖F (u)−F (u∗)−F ′(u∗)(u−u∗)‖V ≤K ‖F (u)−F (u∗)‖ c1
V ‖u−u∗‖ 2c2

U

for all u ∈Mᾱ(ρ).
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Proposition 5 – general source conditions
Let the operator F mapping between the Hilbert spaces U and
V be nonlinear of degree (c1, c2) in u∗ with c1 > 0 and let
ξ = 2(u∗ − u∗) satisfy the general source condition

ξ = (F ′(u∗)∗F ′(u∗))η/2w , 0 < η < 1, w ∈ U. (++)

Then we have the variational inequality (∗∗) with exponent

κ = min
{

2ηc1

1 + η(1− 2c2)
,

2η
1 + η

}
for all u ∈Mᾱ(ρ) and multipliers 0 ≤ β1 < 1, β2 ≥ 0.
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An exponent κ = 2η
1+η in Proposition 5 indicates order optimal

convergence rates with respect to the general source condition
(++). This is the case if the condition

1 + η(1− 2c2 − c1) ≤ c1

is satisfied. It can hold for 0 < η < 1 only if either c1 = 1 or for
0 < c1 < 1 if c1 + c2 > 1 and η is large enough.

Converse assertions concluding from (∗∗) with exponents
0 < κ < 1 to Hölder source conditions of type (++) are of
interest. We have some result for F := A ∈ L(U,V ) linear
using B NEUBAUER 1987:
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Proposition 6 – converse result
Let F := A ∈ L(U,V ) be a bounded linear operator with
non-closed range mapping between the Hilbert spaces U,V
and let ξ = 2(u∗ − ū) satisfy a variational inequality

〈ξ,u∗ − u〉U ≤ β1‖u − u∗‖2U + β2‖A(u − u∗)‖κV

with some
0 < κ < 1

for all u ∈Mᾱ(ρ) and multipliers 0 ≤ β1 < 1, β2 ≥ 0,
then a Hölder source condition

ξ = (A∗A)η/2w , w ∈ U,

is valid for all
0 < η <

κ

2− κ
< 1.
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Extensions in nonlinearity and variational inequalities

Now we return to the Banach space setting!

If there is no c1 > 0 such that F is nonlinear of degree (c1, c2)
for the Bregman distance Dξ of Ω at u∗ and at ξ ∈ ∂Ω(u∗), we
can moderate as follows:

Boundary layer condition for the nonlinearity of F at u∗

∥∥F ′(u∗)(u − u∗)
∥∥

V ≤ K σ(‖F (u)− F (u∗)‖V ) (BLC)

for some concave index function σ, K > 0, and all u ∈Mᾱ(ρ).

σ(t) = tc1 (0<c1≤1): (BLC) implies degree of nonlinearity (c1,0).

Interesting (BLC) case: t ν = o(σ(t)) as t → 0 for all ν > 0.
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An adaption of (∗∗) with respect to (BLC) is the

extended variational inequality

〈ξ,u∗ − u〉U∗,U ≤ β1Dξ(u,u∗) + β2ϕ(‖F (u)− F (u∗)‖V ) . (∗ ∗ ∗)

with 0 ≤ β1 < 1, β2 ≥ 0, and some concave index function ϕ.
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Assumption 5

There exist ā, b̄ > 0 such that

ψ(z1 + z2) ≤ āψ(z1) + b̄ψ(z2) (z1, z2 ∈ [0,∞)).

There is an index function f such that

ψ(s) =

ϕ(s)∫
0

f (t)dt (s ≥ 0).

The existence of an index function f can be ensured for
strictly convex ψ with lim

s→0
ψ′(s) = 0 and concave ϕ whenever

both functions are twice differentiable for positive arguments:

f (0) = 0, f (s) =

[
ψ′

ϕ′
◦ ϕ−1

]
(s) =

[
ψ ◦ ϕ−1

]′
(s) (s > 0).
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Theorem 3 – rates for extended variational inequalities
Under Assumption 5 assume that an extended variational
inequality (∗ ∗ ∗) is valid with 0 ≤ β1 < 1, β2 ≥ 0, and concave
index function ϕ for all u ∈Mᾱ(ρ).

Then we have the convergence rate

Dξ(uδα(δ),u
∗) = O (ϕ(δ)) as δ → 0

for an a priori parameter choice α(δ) = 1
āβ2

f (ϕ(δ)).

The proof is essentially based on Young’s inequality in the form

a b ≤
a∫

0

f (t)dt +

b∫
0

f−1(τ)dτ (a,b ≥ 0) .

B BOŢ/H. JIEA 2010

B. Hofmann On the impact of smoothness in regularization – selected aspects 40



Outline

1 Introduction

2 Variational inequalities and convergence rates

3 A case distinction for κ and the structure of nonlinearity

4 Extensions in nonlinearity and variational inequalities

5 Extended variational inequalities based on the benchmark
source condition and on approximate source conditions

B. Hofmann On the impact of smoothness in regularization – selected aspects 41



Extended variational inequalities based on the
benchmark source condition and on approximate
source conditions

Here we are going to formulate sufficient conditions for
extended variational inequalities:

Theorem 4 – benchmark source condition case
Let for u∗ and ξ = Ω′(u∗) the benchmark source condition

ξ = F ′(u∗)∗w , w ∈ V ∗ (+)

and the nonlinearity condition (BLC) with some index function σ
be satisfied. Then an extended variational inequality (∗ ∗ ∗)
holds with two multipliers 0 ≤ β1 < 1, β2 > 0 and with the index
function ϕ = σ.

B. Hofmann On the impact of smoothness in regularization – selected aspects 42



Applying the method of approximate source conditions

The distance function

d(R) := min
w∈V∗: ‖w‖V∗≤R

‖ξ − F ′(u∗)∗w‖U∗

measures the degree of violation of ξ with respect to the
benchmark source condition ξ = F ′(u∗)∗w , w ∈ V ∗.

Proposition 9 – decay of distance function
Let ξ satisfy the requirements

ξ /∈ R(F ′(u∗)∗)

and

ξ ∈ R(F ′(u∗)∗)
‖·‖U∗

.

Then d(R) (0 ≤ R <∞) is a non-increasing positive function
tending to zero as R →∞.
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Theorem 5 – approximate source condition case
Let u∗ and ξ = Ω′(u∗) satisfy the nonlinearity condition (BLC)
with some index function σ , but fail to satisfy the benchmark
source condition (+), i.e., d(R) is a positive function for all
R ≥ 0. If F ′(u∗) is injective and the Bregman distance is
q-coercive with 2 ≤ q <∞ and some constant cq > 0 such that

Dξ(u,u∗) ≥ cq ‖u − u∗‖qU ,

then an extended variational inequality (∗ ∗ ∗) holds with two
multipliers 0 ≤ β1 < 1, β2 > 0 and with the index function

ϕ(0) = 0, ϕ(t) =
[
d
(

Ψ−1(σ(t))
)]q∗

(t > 0) ,

where 1
q + 1

q∗ = 1 and Ψ(R) := d(R)q∗

R .
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Example: Get logarithmic rates over two different ways

Consider in extended variational inequality (∗ ∗ ∗)

ϕ(t) =

{
0 (t = 0)

C [log(1/t)]−µ (0 < t ≤ e−µ−1)

By Theorem 3 we obtain a convergence rate

Dξ(uδα(δ),u
∗) = O

(
[log(1/δ)]−µ

)
as δ → 0 .
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(I) Case σ = ϕ characterizes a very weak logarithmic
structural condition (BLC).
It gives by Theorem 4 such ϕ in (∗ ∗ ∗) whenever the
benchmark source condition (+) is satisfied.

(II) Case σ(t) = t characterizes c1 = 1 and hence a strong
nonlinearity condition. The logarithmic function ϕ is
obtained by Theorem 5 if with

d(R) = (log R)−ν (ν > 0)

the distance function decay to zero as R →∞ is very slow.
However, since we have for large R and for ε > 0 a
constant K > 0 with

Ψ(R) =
1

R(log R)νq∗ ≥
K

R1+ε
,

this implies Ψ−1(t) ≥ K̂ t−1/(1+ε) for sufficiently small t > 0.
Hence we have that ϕ with µ = νq∗.
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Some conjecture:

We conjecture that no convergence rates can be proven
when the structure of nonlinearity at u∗ is too rough
and (+) is violated, i.e., d(R) > 0 (R ≥ 0).

What does roughness mean here?
(BLC) cannot be satisfied for any index function σ ?
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