Finite dimensional approximation of convex regularization in nonseparable Banach spaces

Elena Resmerita

Institute of Industrial Mathematics Johannes Kepler University Linz, Austria

Inverse Problems: Theory and Applications February 9-12, 2009

Elena Resmerita

Finite dimensional approximation of convex regularization

Warsaw 2010 1

(日) (周) (三) (三)

The talk is based on the work in progress

Discretization of convex regularization,

developed jointly with

- Christiane Pöschl (University of Innsbruck, Austria)
- Otmar Scherzer (University of Vienna and Radon Institute, Austria)

Elena Resmerita

(日) (周) (三) (三)

Introduction

Discretization of convex regularization

Space discretization - Examples

Conclusions

Elena Resmerita

Finite dimensional approximation of convex regularization

Warsaw 2010 3

Introduction

Discretization of convex regularization

Space discretization - Examples

Conclusions

Elena Resmerita

Finite dimensional approximation of convex regularization

Warsaw 2010 4

Ill-posed operator equations

Various inverse problems reduce to solving an equation

$$Fu = y$$
,

where

- $F: X \rightarrow Y$ is a nonlinear compact operator;
- X is a Banach space and Y is a Hilbert space.

Such a problem is often ill-posed:

Small perturbations in the data y induce high oscillations in the solution x.

소리가 소문가 소문가 소문가 ...

Ill-posed operator equations

Various inverse problems reduce to solving an equation

$$Fu = y$$
,

where

- $F: X \rightarrow Y$ is a nonlinear compact operator;
- X is a Banach space and Y is a Hilbert space.

Such a problem is often ill-posed:

Small perturbations in the data y induce high oscillations in the solution x.

Remedy:

One should apply some method of regularization.

Elena Resmerita

Discretization issue

In order to solve the equation numerically, the space X has to be approximated by a sequence of finite dimensional subspaces X_n .

Proposition

A Banach space X is separable if and only if there exists a nested sequence of finite dimensional subspaces $\{X_n\}$ such that

$$\overline{\cup_{n\in\mathbb{N}}X_n}=X,$$

where the closure is considered with respect to the norm topology of X.

Elena Resmerita

Approximation of non-separable Banach spaces

A significant complication: non-separable Banach spaces cannot be approximated by nested sequences of finite dimensional subspaces, with respect to the norm topology.

Examples: $BV(\Omega)$, $BD(\Omega)$, $L^{\infty}(\Omega)$

"The norm topology [of BV] is too strong for many applications."

Ambrosio, Fusco, Pallara '00

Elena Resmerita

イロト 不得 トイヨト イヨト

Theoretical framework

- X is a not necessarily separable Banach space.
- Z is a separable Banach space such that $X \subset Z$.
- $\mathcal{R}: X \to [0, +\infty]$ is a convex function.

Define a metric on the space X by

$$d(u,v) = ||u-v||_Z + |\mathcal{R}(u) - \mathcal{R}(v)|.$$

Elena Resmerita

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theoretical framework

Denote by $\mathcal{D}(F)$ and $\mathcal{D}(\mathcal{R})$ the domains of the operator F and of the function \mathcal{R} , respectively.

u
 ∈ D(F) ∩ D(R) is called an R-minimizing solution of the equation if it solves

min $\mathcal{R}(u)$ subject to F(u) = y.

• Noisy data y^{δ} are given such that

$$\left\| y^{\delta} - y \right\|_{Y} \leq \delta.$$

- Approximation operators F_m of F are given:
 - They have the same domain, $\mathcal{D}(F)$.
 - They satisfy

$$\|F(u) - F_m(u)\|_Y \le \rho_m \text{ for all } u \in \mathcal{D}(F) \cap \mathcal{D}(\mathcal{R}) ,$$

with $\lim_{m\to\infty} \rho_m = 0$.

Assumptions I

- 1. The Banach space X is provided with a topology au such that
 - The three topologies satisfy

$$\tau \prec \tau_d \prec \tau_{\|\cdot\|}.$$

- 2. The domain $\mathcal{D}(F)$ is τ -closed and convex.
- 3. The operator $F : \mathcal{D}(F) \subseteq X \to Y$ is continuous from (X, τ) to Y endowed with the weak topology.

Elena Resmerita

Assumptions II

- 4. For every $m \in \mathbb{N}$, the operator F_m is continuous from (X, τ) to Y endowed with the weak topology.
- 5. The function $\mathcal R$ is bounded from below and sequentially τ -lower semi-continuous.
- 6. For every M > 0, $\alpha > 0$ and every $m, n \in \mathbb{N}$, the sets

$$\{u \in X_n : \|F(u)\|_Y^2 + \alpha \mathcal{R}(u) \le M\}$$

are τ -sequentially relatively compact.

For every u ∈ X, there exists some v_n ∈ X_n, n ∈ N, such that d(v_n, u) → 0 as n → ∞.
 Here (X_n) is a nested sequence of finite dimensional subspaces of X.

Elena Resmerita

イロト 不得下 イヨト イヨト 二日

Introduction

Discretization of convex regularization

Space discretization - Examples

Conclusions

Elena Resmerita

Finite dimensional approximation of convex regularization

Warsaw 2010 12

Variational regularization

Let

$$D_n := \mathcal{D}(F) \cap X_n \cap \mathcal{D}(\mathcal{R}) \neq \emptyset, n \in \mathbb{N},$$

We are interested in approximating \mathcal{R} -minimizing solutions of equation F(u) = y by solutions $u_{m,n}^{\alpha,\delta} \in D_n$ of the problem

$$\min\left\{\left\|F_m(u)-y^{\delta}\right\|_Y^2+\alpha \mathcal{R}(u)\right\} \text{ subject to } u\in D_n.$$

Elena Resmerita

Finite dimensional approximation of convex regularization

Warsaw 2010 13

Stability

Proposition

Let $m, n \in \mathbb{N}$ and $\alpha, \delta > 0$ be fixed and let the assumptions be satisfied.

Then, for every $y^{\delta} \in Y$, there exists at least one minimizer u of the regularization problem.

Moreover, the minimizers are stable with respect to the data y^{δ} in the following sense:

If $\lim_{k\to\infty} y_k = y^{\delta}$, then every sequence $\{u_k\}_{k\in\mathbb{N}}$ of minimizers of the regularization problem with y_k instead of y^{δ} has a subsequence $\{u_l\}_{l\in\mathbb{N}}$ which converges to a minimizer \tilde{u} corresponding to y^{δ} , as follows:

$$u_I \stackrel{\tau}{
ightarrow} \widetilde{u}$$
 and $\mathcal{R}(u_I)
ightarrow \mathcal{R}(\widetilde{u}),$ as $I
ightarrow \infty.$

Elena Resmerita

Convergence analysis

Theorem

Let the assumptions on $X, Y, Z, F, F_m, \mathcal{R}$ be satisfied. Moreover, (*i*) An \mathcal{R} -minimizing solution \bar{u} is in $int (\mathcal{D}(\mathcal{R}) \cap \mathcal{D}(F))$; (*ii*) $v_n \in \mathcal{D}(F)$ for n sufficiently large, where $v_n \in X_n$ and $\lim_{n\to\infty} d(v_n, \bar{u}) = 0$; (*iii*) The parameter $\alpha = \alpha(m, n, \delta)$ is such that $\alpha \to 0$, $\frac{\delta^2}{\alpha} \to 0$, $\frac{\rho_m^2}{\alpha} \to 0$ and

$$\frac{\|F(v_n) - y\|}{\sqrt{\alpha}} \to 0, \text{ as } \delta \to 0, m, n \to \infty.$$

Then every sequence of minimizers $\{u_k\}$, with $u_k := u_{m_k,n_k}^{\alpha_k,\delta_k}$ and $\alpha_k := \alpha(m_k, n_k, \delta_k)$ where $\delta_k \to 0$, $m_k, n_k \to \infty$, as $k \to \infty$, has a subsequence $\{u_l\}$ which converges to an \mathcal{R} -minimizing solution \tilde{u} ,

$$u_I \xrightarrow{\tau} \tilde{u}$$
 and $\mathcal{R}(u_I) \to \mathcal{R}(\tilde{u})$, as $I \to \infty$.

Elena Resmerita

Finite dimensional approximation of convex regularization

Remark

In our setting:

Metric convergence is stronger than 'Kadec-Klee' ('Radon-Nikodym') convergence.

Elena Resmerita

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Assumptions towards convergence rates I

F is Fréchet differentiable around $\bar{u} \in int (\mathcal{D}(\mathcal{R}) \cap \mathcal{D}(F))$.

Source condition There exists $\omega \in Y$ such that

$$(SC) \quad \xi = F'(\bar{u})^* \omega \in \partial \mathcal{R}(\bar{u}).$$

Nonlinearity condition

There exist $\varepsilon, c > 0$ such that

$$\left\|F(u)-F(ar{u})-F'(ar{u})(u-ar{u})
ight\|_{Y}\leq cD_{\mathcal{R}}(u,ar{u}),$$

for all $u \in \mathcal{D}(F) \cap U_{\varepsilon}(\bar{u})$ with $c \|\omega\|_{Y} < 1$ and

$$D_{\mathcal{R}}(u, \bar{u}) = \mathcal{R}(u) - \mathcal{R}(\bar{u}) - \langle F'(\bar{u})^* \omega, u - \bar{u} \rangle.$$

Elena Resmerita

Convergence rates Let $v_n \in X_n$ and $v_n \in \mathcal{D}(F)$ for *n* sufficiently large, with

$$\lim_{n\to\infty}d(v_n,\bar{u})=0.$$

Denote

$$\gamma_n := \|F'(\bar{u})(v_n - \bar{u})\|_Y, \quad \lambda_n := D_{\mathcal{R}}(v_n, \bar{u}).$$

Observe that

$$\lim_{n\to\infty}\gamma_n=0 \text{ and } \lim_{n\to\infty}\lambda_n=0.$$

Theorem

Let the assumptions on $X, Y, Z, F, F_m, \mathcal{R}$ hold. Moreover, assume that $\rho_m = O(\delta + \lambda_n + \gamma_n)$. If $\alpha \sim \max{\{\delta, \lambda_n, \gamma_n\}}$, then

$$D_{\mathcal{R}}(u_{m,n}^{\alpha,\delta},\bar{u})=O(\delta+\lambda_n+\gamma_n).$$

Elena Resmerita

Finite dimensional approximation of convex regularization

Warsaw 2010 18

소리가 소문가 소문가 소문가 ...

Previous results

X and Y are Hilbert spaces and $\mathcal{R} = \|\cdot\|^2$

- Linear equations (a priori strategy) Neubauer '89
- Nonlinear equations Neubauer, Scherzer '90 (a priori)

Qi-nian '99 (a posteriori)

Elena Resmerita

Finite dimensional approximation of convex regularization

● ■ ● ■ 一 ○ へ ○
Warsaw 2010 19

Introduction

Discretization of convex regularization

Space discretization - Examples

Conclusions

Elena Resmerita

Finite dimensional approximation of convex regularization

Warsaw 2010 20

<ロ> (日) (日) (日) (日) (日)

The space of bounded variation functions

Let $\Omega \subset \mathbb{R}^{N}$ be a bounded Lipschitz domain, $N \in \mathbb{N}$.

$$BV(\Omega) = \{ w \in L^1(\Omega) : \int_{\Omega} |Dw|_p < \infty \},$$

where

$$\int_{\Omega} |Dw|_{p} = \sup\left\{\int_{\Omega} w(x) \operatorname{div} \psi(x) \operatorname{dx} : \psi \in \mathcal{C}_{0}^{\infty}(\Omega)^{N}, |\psi(x)|_{p'} \leq 1, x \in \Omega\right\}$$

Here, $|\cdot|_{p'}$ denotes the $I_{p'}$ vector norm, and p' = p/(p-1). In particular we are interested in the cases p = 1, 2.

Elena Resmerita

The space of bounded variation functions

Several properties of $BV(\Omega)$

• It is the dual of a separable Banach space when provided with the norm

$$||u||_{BV} = ||u||_{L^1} + \int_{\Omega} |Du|_p.$$

It has a weak* topology; bounded sets in $BV(\Omega)$ are sequentially relatively compact.

 $u_k \stackrel{w^*}{\rightarrow} u \iff (\|u_k - u\|_{L^1} \to 0 \text{ and } \{\|u_k\|_{BV})\} \text{ bounded}).$

Elena Resmerita

Finite dimensional approximation of convex regularization

Warsaw 2010 22

The space of bounded variation functions

• Consider $X = BV(\Omega)$, $Z = L^{1}(\Omega)$ with $\tau = w^{*}$, $\mathcal{R}(u) = \int_{\Omega} |Du|_{\rho}$ and

$$d(u,v) = \|u-v\|_{L^1(\Omega)} + \left|\int_{\Omega} |Du|_{\rho} - \int_{\Omega} |Dv|_{
ho}\right|.$$

The metric d gives the so-called *strict convergence*. Ambrosio, Fusco, Pallara '00

 $d(u_k, u) \to 0 \iff \left(u_k \stackrel{w^*}{\to} u \text{ and } \int_{\Omega} |Du_k|_p \to \int_{\Omega} |Du|_p
ight).$

Elena Resmerita

Finite dimensional approximation of convex regularization

イロト 不得下 イヨト イヨト 二日

Approximation by piecewise constant functions

Theorem

Let $\{\Omega_j\}$ be a decomposition of Ω into parallelepipeds with $h_n \to 0$ as $n \to \infty$, where h_n is the maximal length of a parallelepiped . Consider X_n the space of piecewise constant functions on $\{\Omega_j\}$. Then for every $u \in BV(\Omega)$, there exist functions $u_n \in X_n$, where , such that

$$\|u_n-u\|_{L^1}+\left|\int_\Omega |Du_n|_1-\int_\Omega |Du|_1\right| o 0$$
 as $n o 0$.

Casas, Kunisch, Pola '99

Elena Resmerita

Finite dimensional approximation of convex regularization

< ロ > < 同 > < 回 > < 回 > < 回 > <

Further approximations of the BV space

A similar result holds in the cases:

• $\mathcal{R}(u) = \int_{\Omega} |Du|_1$ and X_n consisting of piecewise polynomial functions which are continuous on $\overline{\Omega}$.

Casas, Kunisch, Pola '99

• $\mathcal{R}(u) = \int_{\Omega} |Du|_2$, Ω a polygonal domain and $\{\Omega_j\}$ a triangulation of Ω .

Belik, Luskin '03

イロト 不得下 イヨト イヨト 二日

The regularization result in the BV space

Let $X = BV(\Omega)$, $Z = L^1(\Omega)$ and

$$d(u,v) = \|u-v\|_{L^1(\Omega)} + \left|\int_{\Omega} |Du|_p - \int_{\Omega} |Dv|_p\right|$$

Then for every $u \in BV(\Omega)$ there exists an approximating sequence of piecewise constant functions. Consequently, minimization of the discretized regularized problem is well-posed, stable, and convergent.

The piecewise constant regularizers approximate the \mathcal{R} -minimizing solution \bar{u} on subsequences in the sense of the metric d.

Elena Resmerita

Warsaw 2010 26

소리가 소문가 소문가 소문가 ...

Previous work on discretization of BV regularization

Consider

$$u_n = \operatorname{argmin} \left\{ \|Au - y\|_Y^2 + lpha \mathcal{R}(u)
ight\}$$
 subject to $u \in X_n$.

For fixed α , it is shown strong convergence in L^1 (weak convergence in L^p , $p \in (1, \infty)$) of subsequences of $\{u_n\}$, as $n \to \infty$ to

$$v = \operatorname{argmin} \left\{ \|Au - y\|_Y^2 + lpha \mathcal{R}(u) \right\}$$
 subject to $u \in X$.

Fitzpatrick, Keeling '97 Casas, Kunisch, Pola '99 Belik, Luskin '03 Neubauer '07

Elena Resmerita

Finite dimensional approximation of convex regularization

The space of bounded deformation functions

Let $\Omega = (0,1)^{\textit{N}}$ and denote

$$BD(\Omega) := \left\{ \mathbf{u} \in L^1(\Omega; \mathbb{R}^N), E_{ij}(\mathbf{u}) \in M_1(\Omega), i, j = 1, \dots, N \right\},$$

with $\mathbf{u} = (u^1, \dots, u^N)$, where

$$E_{ij}\mathbf{u} := \frac{1}{2}(D_i u^j + D_j u^i)$$

is a (matrix-valued) measure with finite total variation in Ω . Here $M_1(\Omega)$ denotes the space of bounded measures.

This space is useful in the mathematical theory of plasticity. Temam, Strang '80

Elena Resmerita

(日) (同) (日) (日) (日)

The space of bounded deformation functions

Several properties of $BD(\Omega)$

• It is the dual of a separable Banach space when provided with the norm

$$\|\mathbf{u}\|_{BD} = \|\mathbf{u}\|_{L^1(\Omega; \mathbb{R}^N)} + \underbrace{\sum_{i,j}^N \int_{\Omega} |E_{ij}(\mathbf{u})|}_{=:\int_{\Omega} |E\mathbf{u}|} .$$

• $BD(\Omega)$ is strictly larger than $BV(\Omega; \mathbb{R}^N)$.

Elena Resmerita

The space of bounded deformation functions

 Consider the setting X = BD(Ω), τ the weak* topology on BD(Ω) and Z = L¹(Ω; ℝ^N).

Let

$$d(\mathbf{u},\mathbf{v}) = \|\mathbf{u}-\mathbf{v}\|_{L^1(\Omega;\mathbb{R}^N)} + \left|\int_{\Omega} |E\mathbf{u}| - \int_{\Omega} |E\mathbf{v}|\right|,$$

One cannot consider approximations by piecewise constant functions in the metric d.

Counterexample:

$$\mathbf{u}(x,y) = (-2y,x), \ \Omega = (0,1) \times (0,1).$$

Then

$$\int_{\Omega} |E\mathbf{u}| \neq \lim \int_{\Omega} |E\mathbf{u}_n| \, .$$

One should try another type of approximation!

Elena Resmerita

Finite dimensional approximation of convex regularization

The space of essentially bounded functions

Assume that $\{\Omega_j\}$ is a decomposition of Ω in parallelepipeds. Consider

$$X_n = \left\{ u_n = \sum_{j=1}^n u^j \chi_{\Omega_j} : u^j \in \mathbb{R}, 1 \le j \le n \right\}$$

Theorem

Assume that $h_n \to 0$ when $n \to \infty$. Then for every $u \in L^{\infty}(\Omega)$ one can find $u_n \in X_n$ such that

$$\lim_{n\to\infty} (\|u_n - u\|_{L^p} + |\|u_n\|_{\infty} - \|u\|_{\infty}|) = 0, \quad p \in [1, +\infty).$$

Elena Resmerita

Finite dimensional approximation of convex regularization

< ロ > < 同 > < 回 > < 回 > < 回 > <

The regularization result in the L^{∞} space

Let
$$X = L^{\infty}(\Omega)$$
, $Z = L^{p}(\Omega)$, $p \in (1, +\infty)$ and

$$d(u, v) = \|u - v\|_{L^{p}(\Omega)} + |\|u\|_{\infty} - \|v\|_{\infty}|.$$

Then, for every $u \in L^{\infty}(\Omega)$ there exists an approximating sequence of piecewise constant functions. Consequently, minimization of the discretized regularized problem is well–posed, stable, and convergent.

The piecewise constant regularizers approximate the \mathcal{R} -minimizing solution \bar{u} on subsequences in the sense

$$u_I \xrightarrow{w^*} \bar{u}$$
, and $\|u_I\|_{\infty} \to \|\bar{u}\|_{\infty}$, as $I \to \infty$.

Elena Resmerita

Convergence in τ_d is stronger than in (τ and \mathcal{R})

Proposition If $\{u_k\} \subset L^{\infty}(\Omega)$ is such that $d(u_k, u) = ||u_k - u||_{L^p} + |||u_k||_{\infty} - ||u||_{\infty}| \to 0$ then $u_k \xrightarrow{w^*} u$ and $\mathcal{R}(u_k) \to \mathcal{R}(u)$. Remark

The converse implication is not true.

Elena Resmerita

イロト 不得下 イヨト イヨト 二日

Counterexample in L^{∞}

Consider the Rademacher functions $f_n: [0,1] \rightarrow \{-1,1\}$,

$$f_n(t) = (-1)^{i+1}$$
 if $x \in \left[\frac{i-1}{2^n}, \frac{i}{2^n}\right), \ 1 \le i \le 2^n.$

$$f_n \xrightarrow{w^*} 0$$
 in $L^{\infty}([0,1])$, but $f_n \xrightarrow{L^1} 0$.
Consider $g_n : [0,2] \to \mathbb{R}$,

$$g_n(t) = f_n(t), \text{ if } t \in [0,1]$$

and
$$g_n(t) = 1$$
 for $t \in [1, 2]$.
Then $g_n \xrightarrow{w^*} \chi_{[1,2]}$ in $L^{\infty}([0,2])$ and $||g_n||_{\infty} = ||\chi_{[1,2]}||_{\infty} = 1$.
However,
 $\lim_{n\to\infty} \left(||g_n - \chi_{[1,2]}||_{L^1} + ||g_n||_{\infty} - ||\chi_{[1,2]}||_{\infty}| \right) \neq 0$.
Cooper '09

Elena Resmerita

イロト 不得 トイヨト イヨト

Introduction

Discretization of convex regularization

Space discretization - Examples

Conclusions

Elena Resmerita

Finite dimensional approximation of convex regularization

Warsaw 2010 35

<ロ> (日) (日) (日) (日) (日)

- We investigate discretization of convex variational regularization in Banach spaces.
- Non-separable Banach spaces are of special interest: BV(Ω), BD(Ω), L[∞](Ω), W^{1,∞}.
- It is useful to consider a metric topology when approximating the non-separable Banach space by finite dimensional subspaces, rather than the norm topology.

(日) (周) (三) (三)