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The talk is based on the work in progress

Discretization of convex regularization,

developed jointly with

• Christiane Pöschl (University of Innsbruck, Austria)

• Otmar Scherzer (University of Vienna and Radon Institute,
Austria)
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Ill-posed operator equations

Various inverse problems reduce to solving an equation

Fu = y ,

where

• F : X → Y is a nonlinear compact operator;

• X is a Banach space and Y is a Hilbert space.

Such a problem is often ill-posed:

Small perturbations in the data y induce high oscillations in the
solution x .

Remedy:

One should apply some method of regularization.
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Discretization issue

In order to solve the equation numerically, the space X has to be
approximated by a sequence of finite dimensional subspaces Xn.

Proposition
A Banach space X is separable if and only if there exists a nested sequence of finite
dimensional subspaces {Xn} such that

∪n∈NXn = X ,

where the closure is considered with respect to the norm topology of X .
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Approximation of non-separable Banach spaces

A significant complication: non-separable Banach spaces cannot be
approximated by nested sequences of finite dimensional subspaces,
with respect to the norm topology.

Examples: BV (Ω), BD(Ω), L∞(Ω)

“The norm topology [of BV] is too strong for many applications.”

Ambrosio, Fusco, Pallara ’00
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Theoretical framework

• X is a not necessarily separable Banach space.

• Z is a separable Banach space such that X ⊂ Z .

• R : X → [0,+∞] is a convex function.

Define a metric on the space X by

d(u, v) = ‖u − v‖Z + |R(u)−R(v)|.

Elena Resmerita Finite dimensional approximation of convex regularization Warsaw 2010 8



Introduction Discretization of convex regularization Space discretization - Examples Conclusions

Theoretical framework
Denote by D(F ) and D(R) the domains of the operator F and of
the function R, respectively.

• ū ∈ D(F ) ∩ D(R) is called an R-minimizing solution of the
equation if it solves

minR(u) subject to F (u) = y .

• Noisy data y δ are given such that∥∥∥y δ − y
∥∥∥

Y
≤ δ.

• Approximation operators Fm of F are given:
• They have the same domain, D(F ).
• They satisfy

‖F (u)− Fm(u)‖Y ≤ ρm for all u ∈ D(F ) ∩ D(R) ,

with limm→∞ ρm = 0.
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Assumptions I

1. The Banach space X is provided with a topology τ such that
• The three topologies satisfy

τ ≺ τd ≺ τ‖·‖.

2. The domain D(F ) is τ -closed and convex.

3. The operator F : D(F ) ⊆ X → Y is continuous from (X , τ)
to Y endowed with the weak topology.

Elena Resmerita Finite dimensional approximation of convex regularization Warsaw 2010 10



Introduction Discretization of convex regularization Space discretization - Examples Conclusions

Assumptions II

4. For every m ∈ N, the operator Fm is continuous from (X , τ)
to Y endowed with the weak topology.

5. The function R is bounded from below and sequentially τ -
lower semi-continuous.

6. For every M > 0, α > 0 and every m, n ∈ N, the sets

{u ∈ Xn : ‖F (u)‖2
Y + αR(u) ≤ M}

are τ -sequentially relatively compact.

7. For every u ∈ X , there exists some vn ∈ Xn, n ∈ N, such that
d(vn, u)→ 0 as n→∞.
Here (Xn) is a nested sequence of finite dimensional subspaces
of X .
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Variational regularization

Let
Dn := D(F ) ∩ Xn ∩ D(R) 6= ∅, n ∈ N,

We are interested in approximating R-minimizing solutions of
equation F (u) = y by solutions uα,δm,n ∈ Dn of the problem

min

{∥∥∥Fm(u)− y δ
∥∥∥2

Y
+ αR(u)

}
subject to u ∈ Dn.
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Stability

Proposition

Let m, n ∈ N and α, δ > 0 be fixed and let the assumptions be
satisfied.
Then, for every y δ ∈ Y , there exists at least one minimizer u of
the regularization problem.
Moreover, the minimizers are stable with respect to the data y δ in
the following sense:
If limk→∞ yk = y δ, then every sequence {uk}k∈N of minimizers of
the regularization problem with yk instead of y δ has a subsequence
{ul}l∈N which converges to a minimizer ũ corresponding to y δ, as
follows:

ul
τ→ ũ and R(ul)→ R(ũ), as l →∞.
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Convergence analysis

Theorem
Let the assumptions on X ,Y ,Z ,F ,Fm,R be satisfied. Moreover,
(i) An R-minimizing solution ū is in int (D(R) ∩ D(F ));
(ii) vn ∈ D(F ) for n sufficiently large, where vn ∈ Xn and
limn→∞ d(vn, ū) = 0;

(iii) The parameter α = α(m, n, δ) is such that α→ 0, δ2

α → 0,
ρm

2

α → 0 and

‖F (vn)− y‖√
α

→ 0, as δ → 0, m, n→∞.

Then every sequence of minimizers {uk}, with uk := uαk ,δk
mk ,nk and

αk := α(mk , nk , δk) where δk → 0, mk , nk →∞, as k →∞, has a
subsequence {ul} which converges to an R-minimizing solution ũ,

ul
τ→ ũ and R(ul)→ R(ũ), as l →∞.
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Remark

In our setting:

d(uk , u) = ‖uk − u‖Z + |R(uk)−R(u)| → 0

⇓(
uk

τ→ u and R(uk)→ R(u)
)
.

Metric convergence is stronger than ’Kadec-Klee’ (’Radon-Nikodym’) convergence.
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Assumptions towards convergence rates I

F is Fréchet differentiable around ū ∈ int (D(R) ∩ D(F )).

Source condition
There exists ω ∈ Y such that

(SC ) ξ = F ′(ū)∗ω ∈ ∂R(ū).

Nonlinearity condition

There exist ε, c > 0 such that∥∥F (u)− F (ū)− F ′(ū)(u − ū)
∥∥

Y
≤ cDR(u, ū),

for all u ∈ D(F ) ∩ Uε(ū) with c‖ω‖Y < 1 and

DR(u, ū) = R(u)−R(ū)− 〈F ′(ū)∗ω, u − ū〉.
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Convergence rates
Let vn ∈ Xn and vn ∈ D(F ) for n sufficiently large, with

lim
n→∞

d(vn, ū) = 0.

Denote

γn := ‖F ′(ū)(vn − ū)‖Y , λn := DR(vn, ū).

Observe that
lim

n→∞
γn = 0 and lim

n→∞
λn = 0.

Theorem
Let the assumptions on X ,Y ,Z ,F ,Fm,R hold. Moreover, assume
that ρm = O(δ + λn + γn).
If α ∼ max{δ, λn, γn}, then

DR(uα,δm,n, ū) = O(δ + λn + γn).
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Previous results

X and Y are Hilbert spaces and R = ‖ · ‖2

• Linear equations (a priori strategy)
Neubauer ’89

• Nonlinear equations
Neubauer, Scherzer ’90 (a priori)

Qi-nian ’99 (a posteriori)
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The space of bounded variation functions

Let Ω ⊂ R N be a bounded Lipschitz domain, N ∈ N .

BV (Ω) = {w ∈ L1(Ω) :

∫
Ω
|Dw |p <∞},

where∫
Ω
|Dw |p = sup

{∫
Ω

w(x) divψ(x)dx : ψ ∈ C∞0 (Ω)N , |ψ(x)|p′ ≤ 1, x ∈ Ω

}
.

Here, |·|p′ denotes the lp′ vector norm, and p′ = p/(p − 1).

In particular we are interested in the cases p = 1, 2.
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The space of bounded variation functions

Several properties of BV (Ω)

• It is the dual of a separable Banach space when provided with
the norm

‖u‖BV = ‖u‖L1 +

∫
Ω
|Du|p .

It has a weak∗ topology; bounded sets in BV (Ω) are sequentially relatively

compact.

•

uk
w∗→ u ⇔ (‖uk − u‖L1 → 0 and {‖uk‖BV )} bounded) .
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The space of bounded variation functions

• Consider X = BV (Ω), Z = L1(Ω) with τ = w∗,
R(u) =

∫
Ω |Du|p and

d(u, v) = ‖u − v‖L1(Ω) +

∣∣∣∣∫
Ω
|Du|p −

∫
Ω
|Dv |p

∣∣∣∣ .
The metric d gives the so-called strict convergence.
Ambrosio, Fusco, Pallara ’00

•

d(uk , u)→ 0 ⇔
(

uk
w∗→ u and

∫
Ω
|Duk |p →

∫
Ω
|Du|p

)
.
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Approximation by piecewise constant functions

Theorem
Let {Ωj} be a decomposition of Ω into parallelepipeds with hn → 0
as n→∞, where hn is the maximal length of a parallelepiped .
Consider Xn the space of piecewise constant functions on {Ωj}.
Then for every u ∈ BV (Ω), there exist functions un ∈ Xn, where ,
such that

‖un − u‖L1 +

∣∣∣∣∫
Ω
|Dun|1 −

∫
Ω
|Du|1

∣∣∣∣→ 0 as n→ 0 .

Casas, Kunisch, Pola ’99
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Further approximations of the BV space

A similar result holds in the cases:

• R(u) =
∫

Ω |Du|1 and Xn consisting of piecewise polynomial
functions which are continuous on Ω̄.
Casas, Kunisch, Pola ’99

• R(u) =
∫

Ω |Du|2, Ω a polygonal domain and {Ωj} a
triangulation of Ω.

Belik, Luskin ’03
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The regularization result in the BV space

Let X = BV (Ω), Z = L1(Ω) and

d(u, v) = ‖u − v‖L1(Ω) +

∣∣∣∣∫
Ω
|Du|p −

∫
Ω
|Dv |p

∣∣∣∣ .
Then for every u ∈ BV (Ω) there exists an approximating sequence
of piecewise constant functions. Consequently, minimization of the
discretized regularized problem is well–posed, stable, and
convergent.
The piecewise constant regularizers approximate the R-minimizing
solution ū on subsequences in the sense of the metric d .
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Previous work on discretization of BV regularization

Consider

un = argmin
{
‖Au − y‖2

Y + αR(u)
}

subject to u ∈ Xn.

For fixed α, it is shown strong convergence in L1 (weak
convergence in Lp, p ∈ (1,∞)) of subsequences of {un}, as
n→∞ to

v = argmin
{
‖Au − y‖2

Y + αR(u)
}

subject to u ∈ X .

Fitzpatrick, Keeling ’97

Casas, Kunisch, Pola ’99

Belik, Luskin ’03

Neubauer ’07
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The space of bounded deformation functions

Let Ω = (0, 1)N and denote

BD(Ω) :=
{
u ∈ L1(Ω; R N),Eij(u) ∈ M1(Ω), i , j = 1, . . . ,N

}
,

with u = (u1, . . . , uN), where

Eiju :=
1

2
(Diu

j + Dju
i )

is a (matrix-valued) measure with finite total variation in Ω.

Here M1(Ω) denotes the space of bounded measures.

This space is useful in the mathematical theory of plasticity.
Temam, Strang ’80
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The space of bounded deformation functions

Several properties of BD(Ω)

• It is the dual of a separable Banach space when provided with
the norm

‖u‖BD = ‖u‖L1(Ω; R N) +
N∑
i ,j

∫
Ω
|Eij(u)|︸ ︷︷ ︸

=:
∫

Ω|Eu|

.

• BD(Ω) is strictly larger than BV (Ω; R N).
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The space of bounded deformation functions

• Consider the setting X = BD(Ω), τ the weak∗ topology on
BD(Ω) and Z = L1(Ω; R N).

• Let

d(u, v) = ‖u− v‖L1(Ω; R N) +

∣∣∣∣∫
Ω
|Eu| −

∫
Ω
|Ev|

∣∣∣∣ ,
One cannot consider approximations by piecewise constant
functions in the metric d .
Counterexample:

u(x , y) = (−2y , x), Ω = (0, 1)× (0, 1).

Then ∫
Ω
|Eu| 6= lim

∫
Ω
|Eun| .

• One should try another type of approximation!

Elena Resmerita Finite dimensional approximation of convex regularization Warsaw 2010 30



Introduction Discretization of convex regularization Space discretization - Examples Conclusions

The space of essentially bounded functions

Assume that {Ωj} is a decomposition of Ω in parallelepipeds.
Consider

Xn =

un =
n∑

j=1

ujχΩj
: uj ∈ R , 1 ≤ j ≤ n

 .

Theorem
Assume that hn → 0 when n→∞. Then for every u ∈ L∞(Ω) one
can find un ∈ Xn such that

lim
n→∞

(‖un − u‖Lp + |‖un‖∞ − ‖u‖∞|) = 0, p ∈ [1,+∞).
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The regularization result in the L∞ space

Let X = L∞(Ω), Z = Lp(Ω), p ∈ (1,+∞) and

d(u, v) = ‖u − v‖Lp(Ω) + |‖u‖∞ − ‖v‖∞| .

Then, for every u ∈ L∞(Ω) there exists an approximating sequence
of piecewise constant functions. Consequently, minimization of the
discretized regularized problem is well–posed, stable, and
convergent.
The piecewise constant regularizers approximate the R-minimizing
solution ū on subsequences in the sense

ul
w∗→ ū, and ‖ul‖∞ → ‖ū‖∞, as l →∞.
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Convergence in τd is stronger than in (τ and R)

Proposition

If {uk} ⊂ L∞(Ω) is such that

d(uk , u) = ‖uk − u‖Lp + |‖uk‖∞ − ‖u‖∞| → 0

then uk
w∗→ u and R(uk)→ R(u).

Remark
The converse implication is not true.
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Counterexample in L∞

Consider the Rademacher functions fn : [0, 1]→ {−1, 1},

fn(t) = (−1)i+1 if x ∈
[
i − 1

2n
,

i

2n

)
, 1 ≤ i ≤ 2n.

fn
w∗→ 0 in L∞([0, 1]), but fn

L1

9 0.
Consider gn : [0, 2]→ R,

gn(t) = fn(t), if t ∈ [0, 1]

and gn(t) = 1 for t ∈ [1, 2].

Then gn
w∗→ χ[1,2] in L∞([0, 2]) and ‖gn‖∞ = ‖χ[1,2]‖∞ = 1.

However,

limn→∞

(∥∥gn − χ[1,2]

∥∥
L1 + |‖gn‖∞ − ‖χ[1,2]‖∞|

)
6= 0.

Cooper ’09
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Conclusions

• We investigate discretization of convex variational
regularization in Banach spaces.

• Non-separable Banach spaces are of special interest:
BV (Ω), BD(Ω), L∞(Ω), W 1,∞.

• It is useful to consider a metric topology when approximating
the non-separable Banach space by finite dimensional
subspaces, rather than the norm topology.
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