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IntroductionIntroduction
(1)

i li
UuZzuzA ∈∈= ,

is a linear operator,
are Hilbert spaces (for simplicity).
UZA →:

UZ ,
The problem (1) is called well-posed on the class of 

its “admissible” data if for any pair              
f h f “ d i ibl ” d h l i f

{ }uA,
from the set of “admissible” data the solution of 
(1):

i

{ }

1) exists,
2) is unique,
3) continuously depends on errors in       and      (is 

stable).
A u
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S bili h if i d f i{ }Stability means that if instead of           we are given 
“admissible”           such that                ,               ,      
h i l i h

{ }uA,
{ }δuAh , hAAh ≤− δδ ≤−uu

the   approximate solution converges to the exact 
one as                 . The numbers     and     are error 

ti t f th i t d t f (1)
0, →δh h δ

{ }Aestimates for the approximate data             of (1) 
with the exact data            . Denote               .        
If t l t f th ti d i t i

( )δη ,h≡
{ }δuAh ,

{ }uA,
If at least one of the mentioned requirements is 
not met, then the problem (1) is called ill-posed.
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APPLICATIONS

A lot of inverse problems in astrophysics,A lot of inverse problems in astrophysics,
geophysics, nondestructive testing,geophysics, nondestructive testing,
computerized tomography etc etc arecomputerized tomography etc etc arecomputerized tomography, etc., etc, arecomputerized tomography, etc., etc, are
Ill posed. Simplest mathematical examples Ill posed. Simplest mathematical examples 

F dh l ti f th 1F dh l ti f th 1stst ki dki dare Fredholm equations of the 1are Fredholm equations of the 1stst kind, kind, 
SLAE with perturbed matrices, SLAE with perturbed matrices, 
numerical differentiation and very many others.numerical differentiation and very many others.
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As a generalized solution it is often taken the soAs a generalized solution, it is often taken the so-
called normal pseudosolution     . It exists and is 
unique for any exact data of the problem (1)

z~
unique for any exact data of the problem (1)         
if                      ,                                    ,              . 
Here and denote the ranges of the

),( UZLA ∈ )()( ARARu ⊥⊕∈ uAz +=~

)(AR )(AR⊥Here         and            denote the ranges of the 
operator      and its orthogonal complement in     , 
and stands for the operator pseudoinverse

)(AR )(AR
A U

+Aand       stands for the operator pseudoinverse      
to      . Below we find      as a normal 
pseudosolution i e

A
z

zz ~=
A

pseudosolution, i.e.,            .zz =

9



What is to solve an ill-posed problem?

Tikhonov answered: to solve an ill-posed problem 
t d ( l i i l ith )means to produce a map (regularizing algorithm)   

. such that ( )ηδ ,, uAR h

( )1) brings an element                             into 
correspondence with any data             ,               ,      

( )ηδη ,, uARz h=
{ }ηδ ,,uAh ),( UZLAh ∈

. of the problem (1);
2) has the convergence property                              

Uu ∈δ

uAzz +=→η

as            ,                             .
η

0→η )()( ARARu ⊥⊕∈

10



The mathematical problem is regularizable if there p g
exists a regularizing algorithm. For well-posed 
problems such algorithm exists evidently (for the p g y (
problem (1), R = A+). 

S ll th ti l bl b l ifi d iSo, all mathematical problems can be classified in 
the following way: 

1) well-posed problems; 

2) ill d (Tikh ) l i bl bl2) ill-posed (Tikhonov) regularizable problems;

3) ill-posed nonregularizable problems.) p g p

11



Tikhonov’s works in 1963 not only clearly 
define the meaning of solving ill-posed g g p
problem (1), but also give a particular RA 
R(h, δ, Ah, uδ) for solving (1). The algorithm ( , , h, δ) g ( ) g
is known as Tikhonov regularizing method 
and uses a parametrical family of elements p y
zα = zα(Ah, uδ)∈Z minimizing the Tikhonov 
functional Mα[z] = ||Ahz - uδ||2 + α||z||2 in Z. [ ] || h δ|| || ||
Here α > 0 is a regularization parameter. 
The regularizing procedure is actually g g p y
selecting a parameter α = α(h, δ, Ah, uδ) 
such that it ensures the convergence of the g
approximate solution to ze when h, δ → 0. 
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Is it possible to construct a regularizing 
algorithm that does not depend on   ,   ?
Theorem 1: Let be a map of the set

h δ
( )δuAR h , ( ) UUZL ⊗,Theorem 1: Let               be a map of the set          

into     . If                is a regularizing algorithm   
(not depending explicitly on    ), then the map          

( )δh ( ) UU ⊗,

Z
η

( )δuAR h ,

. is continuous on its domain                 .    

.
( ) uAuAP +=,
( ) ( ))()(, ARARUZL ⊥⊕⊗

Proof The second condition in the definition of RA 
implies in                                      valid for each       

d th
( ) ( )uAPuAuAR ,, == +

( ) ( ) ( )⊥. and the 
convergence                                                            
as valid for

( ) ( ) ( ))()(,, ARARUZLuA ⊥⊕⊗∈
( ) ( ) ( )uAPuAuARuAP hh ,,, =→= +

δδ

0δhas               valid for                                                   
. .              
The map is continuous on

0, →δh
( ) ( ) ( ) ( ))()(,,,, ARARUZLuAuA h

⊥⊕⊗∈δ

( )uAP ,

13

The map              is continuous on                                
. .

( )uAP ,
( ) ( ) UUZLARARUZL ⊗⊂⊕⊗ ⊥ ),()()(,



It is clear from Theorem 1 that a regularizing
algorithm not using  h and δ explicitly can only exist
for problems (1) well-posed on the set of the data.
The theorem generalized the assertion proved byg p y
Bakushinsky.
The necessity for the regularizing algorithm to bey g g g

dependable on the data errors was mentioned in the
latest works of Tikhonov related with solving

bl f li l b i iunstable systems of linear algebraic equations. 
Due to the trivial fact that any linear operator acting

in finite dimensional Euclidian spaces is boundedin finite-dimensional Euclidian spaces is bounded,
the knowledge of δ is useful but not necessary for
constructing regularizing algorithms for solving

14

constructing regularizing algorithms for solving
systems of linear algebraic equations. 



The main result is that it is impossible to 
construct stable methods for ill-posed p
systems of linear algebraic equations without 
knowledge of h!!!g

Very simple example is the following: 

let Z = U = R2 and we have the system of 
linear algebraic equations:

⎞
⎜
⎛ =+ 1yx .,

11
,

1 ⎞
⎜
⎛

=
⎞

⎜
⎛

=
⎞

⎜
⎛

=
x

zAu

g q

⎠
⎜
⎝ =+ 1yx

,
11

,
1 ⎠

⎜
⎝⎠

⎜
⎝⎠

⎜
⎝ y
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The normal solution of the system is (x, y) = 
(½, ½).  Let now instead of A we have an 
approximate matrix  For any ε ≠ 0 this system 
has the unique solution (xε, yε) = (0, 1) that 
doesn’t tends to (x, y) = (½, ½) when ε→ 0.

.0,
11
11

≠⎟
⎠

⎞
⎜
⎝

⎛ +
= ε

ε
ε

A
11 ⎠⎝

For any ε ≠ 0 this system has the unique solution y y q
(xε, yε) = (0, 1) that doesn’t tends to (x, y) = (½, ½) 
when ε→ 0.
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Let us consider now the second example:

⎟
⎠

⎞
⎜
⎝

⎛
=+

=+

2/1

2/3

yx

yx

⎠⎝ y

.,
11

,
2/3 ⎞

⎜
⎛⎞

⎜
⎛⎞

⎜
⎛

===
x

zAu .,
11

,
2/1 ⎠

⎜
⎝⎠

⎜
⎝⎠

⎜
⎝ y

zAu

h h l i i lThe system has no solutions, its normal 
pseudosolution is 

(x, y) = (½, ½).  

I i d d h h h d ifIt is very easy to understand what has happened if 
we have errors in the matrix A. These two 

l i l ill i f h bili
17

examples are simple illustrations of the unstability 
of the pseudoinversion procedure. 



It is very curious that the most popular error free y p p
methods cannot solve well-posed problems also! 
As the first example we consider so-called the “L-p
curve method” (P.C. Hansen). In this method the 
regularization parameter in Tikhonov functional αg p
is selected as a point maximum curvature of the L-
curve {(ln||Ahzα - uδ||, ln||zα||): α > 0}. {( || h δ||, || ||) }

But this method cannot be used for the solution of 
ill d bl b th L d ’till-posed problems because the L-curve doesn’t 
depend on h and δ (see the theorem).   Everybody 

il th t thi th d i i li bl tcan easily prove that this method is inapplicable to 
solving the simplest finite-dimensional well-posed 

bl ( ti 1)
18
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Another very popular “error free” method is GCV – the 
generalized cross-validation method (G. Wahba), where g ( ),
α(Ah, uδ) is found as the point of the global minimum 
of the function 

G(α) = ||(AhAh
* + αI)-1uδ|| [tr(AhAh

* + αI)-1]-1, α ≥ 0. 

This method is not applicable for the solution of ill-
posed problems including ill-posed systems of linear p p g p y
algebraic equations (see the theorem above). It is 
possible construct well-posed systems of linear p p y
algebraic equations the GCV method failed for their 
solution. Let Z = U = R2, 

⎠

⎞
⎜
⎝

⎛
=

⎠

⎞
⎜
⎝

⎛−
=

21
11

,
1
2

Au

19
⎠⎝⎠⎝− 211



Here h > 0. Very easy to calculate the GCV solution 
zgcv and prove that it converges to (-1/3, -1/3)* instead gcv p g ( , )
of ze = (-3, 1)* when h → 0. 

A lot of other examples could be found in a paper 
by 

V. Titarenko and A. Yagola (2000) Vestnik 
Moskovskogo Universiteta, ser. 3. Fizika. g ,
Astronomia  (4), 15 (in Russian).
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I it ibl t ti t fIs it possible to estimate an error of an 
approximate solution of an ill-posed problem?
The answer is negative. This main and very

important result was obtained by Bakushinsky. po a esu was ob a ed by a us s y.
Assume           . Let                be a RA. Denote by      
.

AAh = ( )δδ ,uR
( ) ( ){ }δδδ δδδ ≤−∈∀−=∆ uzAUuzuRzR ,:,sup,,

the error of a solution of (1) at the point     using the
algorithm If (1) is regularizable by a continuous

( ) ( ){ }δδδ δδδ ≤∈∀∆ uzAUuzuRzR ,:,sup,,

z
Ralgorithm    . If (1) is regularizable by a continuous

map     and there is an error estimate, which is
uniform on

R
R

Duniform on 

h h i i f i i

D
( ){ } ( ) 00:,,sup →→≤∈∆ δδεδ asDzzR

1

21

then the restriction of       to               is continuous on    
. .

1−A UAD⊂
AD



Consider the results obtained by Vinokurov. 
Let      be a linear continuous injective operator 

acting in Banach space      and the inverse operator 
A

Zg p p
. be unbounded on              . Suppose that         
. is an arbitrary positive function such that       

1−A ( )1−AD
( )δϕ y p

. as            , and      is an arbitrary method 
to solve the problem. 

( )ϕ
R( ) 0→δϕ 0→δ

p
The following equality holds for elements     except 

maybe for a first category set in :
z

Zmaybe for a first category set in     :Z
( )
( ) ∞=

⎭
⎬
⎫

⎩
⎨
⎧∆

δ
δ

δ

zR ,,suplim
0

A uniform error estimate can only exist on a first 
b i

( ) ⎭⎩→ δϕδ 0

22

category subset in     .Z



CONCLUSIONS

For illFor ill--posed problems we cannot estimate posed problems we cannot estimate 
an error of an approximate solution. We an error of an approximate solution. We 
cannot choose the “best” RA comparing cannot choose the “best” RA comparing p gp g
convergence rates. So we recommend at the convergence rates. So we recommend at the 
beginning to study all physical andbeginning to study all physical andbeginning to study all physical and beginning to study all physical and 
technical properties of an unknown technical properties of an unknown 
solutionssolutions to use all a priori informationto use all a priori informationsolutions solutions –– to use all a priori information.to use all a priori information.
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A compact set is a typical example of the first
category set in a Banach space     . For this set
special regularizing algorithms may be used and a

Z
p g g g y

uniform error estimation may be constructed. 
Clearly a uniform error estimate exists only forClearly, a uniform error estimate exists only for
well-posed problems.
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A t i i ti tiA posteriori error estimation

For some ill posed problems it is possible to find aFor some ill-posed problems it is possible to find a
so-called a posteriori error estimation. 

b i j i i h l dLet       be an exact injective operator with closed
graph and       be a     -compact space.

A
Z σ

( )Introduce a function                such that                       
. ,                   ,               ,               :

( )δκ δ ,u Zz∈∀
( ) 0>∃ zδ ( )],0( zδδ ∈∀ Uu ∈∀ δ

δδ ≤−uu

( ) ( )δκδ δδ ,, uuRz ≤−

The function                    is an a posteriori error
estimation for the problem (1), if as

( )δκ δ ,u
( ) 0, →δκ δu

25

estimation for the problem (1), if                          as        ( ) 0, →δδu
0→δ



Tikhonov variational approach

Let be Hilbert spaces, be a closed 
t f i i t i t h th t

UZ , ZD ⊂
D0convex set of a priori constraints such that , 

. , be linear operators. On a set                   
i t d th Tikh ' f ti l

D∈0
A hA { }ηδ ,,uAh

introduce the Tikhonov's functional:

h i l i i
[ ] 22 zuzAzM h αδ

α +−=
where is a regularization parameter.

(2)
0>α

[ ]{ }DzzM ∈:inf α

For any , and bounded linear operator
. the problem (2) is solvable and has a unique

Uu ∈δ0>α
hA p ( ) q

solution .
h

Dz ∈α
η

26



A priori choice of αA priori choice of     

A regularizing algorithm using the extreme

α

A regularizing algorithm using the extreme 
problem (2) for : to construct 
such that as

[ ]zM α ( )ηα
( ) zz →ηα 0such that as .( ) zz →η

η 0→η

If is an injective operator, and ,    
as then as

A Dz∈ ( ) 0→ηα
( ) 0

2

→
+δh 0→η ( ) zz →ηα 0→η. as , then as , 

i.e., there is the a priori choice of .
( ) 0→
ηα

0→η zz →η 0→η
α

27



A posteriori choice of     α

The incompatibility measure of (1) on    : D
( ) { }DzuzAAu ∈−= :infµ

Let it can be computed with an error          , i.e., 

( ) { }DzuzAAu hh ∈= :inf, δδηµ

0>κ
( )A ( )instead of                  there is                  such that ( )hAu ,δηµ ( )hAu ,δ

κ
ηµ

( ) ( ) ( ) κµµµ δηδ
κ
ηδη +≤≤ hhh AuAuAu ,,,

The generalized discrepancy:
ηηη

( ) ( ) ( )( )222
AuzhuzA καακ µδαρ −+−−=

The generalized discrepancy           is continuous and 
monotonicall non decreasing for

( ) ( ) ( )( ), hh AuzhuzA δηηδηη µδαρ −+−−=

( )αρκ
η

0monotonically non-decreasing for          .0>α

28



The generalized discrepancy principle to choose the g p y p p
regularization parameter:

1) If the condition is not just( )( )222 Auu κµδ +>1) If the condition                                      is not just, 
then             is an approximate solution of (1);

2) If the condition is just

( )( ), hAuu δηδ µδ +>
0=ηz

( )( )222 Auu κµδ +>2) If the condition                                      is just, 
then the generalized discrepancy has a positive 
zero and

( )( ), hAuu δηδ µδ +>

*α
*αzz =zero       and              . 

If     is an injective operator, then                . 
O h i h i h l

α ηη zz =
A zz =

→ ηη 0
lim

*li *Otherwise,                  , where       is the normal 
solution of (1), i.e., ..

η*

0
lim zz =
→ ηη

z
{ }uAzDzzz =∈= ,:inf*

29



If            are bounded linear operators,      is a closed hAA, Dp ,
convex set,           ,           , the generalized 
discrepancy principle are equivalent to the 

h,
D∈0 Dz∈

p y p p q
generalized discrepancy method:

find
i f ( ) ( )( ){ }222 h κδinf ( ) ( )( ){ }222 ,,: hh AuzhuzADzz δ

κ
ηδ µδ ++≤−∈

30



Inverse problem for the heat conduction Inverse problem for the heat conduction 
equation

( ) ( )⎧ ×∈×= 002 Tltxwaw ( ) ( )
( )
( )⎪

⎩

⎪
⎨

⎧

=
=

×∈×

0,
0,0

,0,0

tlw
tw

Tltxwaw xxt

There is a function                                , we want to 
find s ch that

⎩

( ) ( ) [ ]lLTwu ,0, 2∈≡ ξξδ

( ) ( ) [ ]lW 00 1 ( ) ( )→find                                     such that                     
as            .

i h

( ) ( ) [ ]lWxwxz ,00, 1
2∈≡ ( ) ( )xzxz →

0→η

We can write that
( ) ( ) ( ) ( ) ( )

∫ ∫ ⎟
⎞

⎜
⎜
⎛

∂
∂

+==
l l

dxxzxzxzduu
2

2222 ,ξξξ( ) ( ) ( ) ( )∫ ∫
⎠

⎜
⎝ ∂x0 0

,ξξξ

31



The problem may be written in the form of integral 
equation

( ) ( ) ( )∫=
l

dxxzTxGu
0

,,ξξ

where                 is the Green function:
0

( )txG ,,ξ

( )
∞+ ⎞

⎜
⎛ ⎞⎛⎞⎛⎞⎛

2nanxn ππξπ( ) ∑
=

⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎠
⎞

⎜
⎝
⎛−

⎠
⎞

⎜
⎝
⎛

⎠
⎞

⎜
⎝
⎛=

1

2 expsinsin,,
n

l t
l
na

l
nx

l
ntxG ππξπξ

The problem is solved for the parameters                   
. , the function            is taken 
such that                           .

0.1,1.0,0.1 === lTa ( )ξδu
( )ξδ u⋅= 05.0 ( )

32



z(x)z(x)

0 1 x

The exact solution           (         ) and the approximate 
solution ( )

)(xz
( )xz

33

solution            (         ).( )xzη



The Euler equation
The Tikhonov's functional           is a strongly convex 

functional in a Hilbert space
[ ]zM α

functional in a Hilbert space. 
The necessary and sufficient condition for       to be  

a minimum point of on a set of a priori

α
ηz

[ ]zM α Da minimum point of            on a set      of a priori
constraints is

[ ]zM D

[ ]( ) DM ∀≥⎞⎜
⎛ ′ 0ααα

If is an interior point of then or

[ ]( ) DzzzzM ∈∀≥
⎠
⎞

⎜
⎝
⎛ − 0, α

η
α
η

α

αz D [ ]( ) 0′ααMIf        is an interior point of     , then                    , orηz D [ ]( ) 0=α
η

α zM

δ
α
η

α
η α uAzzAA hhh

** =+

We obtain the Euler equation.

δηη α uAzzAA hhh +

34



Sourcewise represented setsSou cew se ep ese ed se s
(1)uzA =

is a linear injective operator.
Assume the next a priori information: is 

UZA →:
z

sourcewise represented with a linear compact 
operator :ZVB →:

(3)
Here is a reflexive Banach space

vBz =
VHere       is a reflexive Banach space.

Suppose    is injective,    is known exactly,              .  
V

B A δδ ≤−uu

35



Set           and define the set1=n
{ }

Minimize the discrepancy on

{ }nvVvBvzZzZn ≤∈=∈= ,,:

( ) uAzzF = ZMinimize the discrepancy                         on    .
If                                        , then the solution is 

fo nd Denote Other ise e change

( ) δuAzzF −=

{ } δδ ≤∈− nZzuAz :min
nZ

( ) nn =δfound. Denote               . Otherwise, we change     
to          and reiterate the process.

f i f d h d fi h i

n
1+n

( ) nn =δ

( )If       is found, then we define the approximate 
solution        of (1) as an arbitrary solution of the 
i li

( )δn

( )δnz
inequality

( )δδ δ nZzuAz ∈≤− ( )

36



Theorem 1: The process described above converges: 
( ). . There exists           (generally speaking, 

depending on    ) such that                 for               .  
A i t l ti t l t

( ) ∞<δn 00 >δ
z ( ) ( )0δδ nn = ( ]0,0 δδ ∈∀

Approximate solutions          strongly converge to  
. as          .

Proof The ball is a bo nded closed

( )δnz
z 0→δ

{ }VV ≤Proof The ball                            is a bounded closed 
set in     . The set       is a compact in      for any    , 
since is a compact operator Due to Weierstrass

{ }nvVvVn ≤∈= :
V nZ Z n
Bsince     is a compact operator. Due to Weierstrass 

theorem the continuous functional          attains its 
exact lower bound on     .

B
( )zF

nZ
Clearly,                      , where 

n

NZvBz ∈=
⎧ integerpositiveaisvv

is the integer part of a number
[ ]⎩
⎨
⎧

+
=

otherwise1
integerpositiveais

v
vv

N

[ ]
37

. is the integer part of a number. [ ]⋅



Therefore is a finite number and there is( )δn δTherefore        is a finite number and there is      
such that                      for any                 . The 
inequality for any is evident.

( )δn 0δ( ) ( )0δδ nn = ( ]0,0 δδ ∈
( ) Nn ≥δ 0>δinequality                for any            is evident. 

Thus, for all                  the approximate solutions 
. belong to the compact set            , and the 

( ) 0>δ
( ]0,0 δδ ∈

( )δnz ( )0δnZ
method coincides with the quasisolutions method 
for all sufficiently small positive    . The 

f ll f h l

( )δn ( )0δn

δ
convergence                 follows from the general 
theory of ill-posed problems.

( ) zzn →δ

Remark 1: The method is a variant of the method 
f t di tof extending compacts.
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Theorem 2: For the method described above thereTheorem 2: For the method described above there 
exists an a posteriori error estimate. It means that 
a functional exists such that( )δκ δ ,u ( ) 0, →δκ δua functional                exists such that                      
as            and                               at least for all 
sufficiently small positive     .

( )δκ δ ,u ( ),δ

0→δ ( ) ( )δκ δδ ,uzzn ≤−
δ

Remark 2: The existence of the a posteriori error 
estimation follows from the following. If by          
. we denote the space of sourcewise 
represented with the operator      solutions of (1), 
h Si i h

ZZ ∈
B

U
∞ Zthen                  . Since      is a compact set, then     

. is a    -compact space.
U

∞

=
=

1n nZZ nZ
Z σ

39



An a posteriori error estimate is not an error estimateAn a posteriori error estimate is not an error estimate 
in general meaning that is impossible in principle 
for ill-posed problems But it becomes an upperfor ill posed problems. But it becomes an upper 
error estimate of the approximate solution for 
“small” errors where depends on the0δδ < 0δsmall  errors          , where      depends on the 
exact solution     .

0δδ < 0δ
z

40



The operators     and      are known with errors. Let A B
there be linear operators      ,      such that               
. ,                 . Denote the vector of errors 

AhA
BhB

Ah hAA
A

≤− Bh hBB
B

≤−

by                   . For any integer      define a 
compact set                                                     .

( )BA hh ,,δη ≡ n
{ }nvVvvBzZzZ

BB hhn ≤∈=∈≡ ,,:,

Find a minimal positive integer number            such 
that the inequality

{ }
BB,

( )ηnn =

q y

has a nonempty set of solutions
( ) ( )ηδδ nhhAhBhuzA BAhBhAh ABA

⋅+++≤−

has a nonempty set of solutions. 
Then the a posteriori error estimation is
( )( ) ( ) ( ) ( )

( ) ( )}
,:max{,,, ,

ηδ

ηηκ

δ

ηηδ

nhhAhBhuzA

ZzzznhBAu

BAhBhAh

hnnBhh BBA

⋅+++≤−

∈−+≡
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( ) ( )}ηδδ nhhAhBhuzA BAhBhAh ABA
+++≤
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Inverse problem for the heat conduction 
iequation

For any moment of time there is0>tFor any moment of time              there is

h S
( ) ( ) ( ) ( ) dxxvtxGxBvz

l

∫==
0

,, εξξ
0>εt

( ) ( )0where                       . Suppose                         .( ) ( )0,xwxv = [ ]lLUZV ,02===

We solve the problem using the method of extending 
compacts.p

Let          ,          ,             ,           ,               .0.1=a 0.1=l 02.0=εt 1.0=T u⋅= 03.0δ

⎧ 503010
( )

⎪

⎪
⎨

⎧
<<−
<<

= 8.05.04
5.03.010

x
x

xv
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The approximate solution            and its a posteriori error ( )xzη

44

pp p
estimation. We obtain             .

η

( ) 5=δn



Compact sets

There is the additional a priori information:          
th t l ti f (1) b l t tthe exact solution of (1) belongs to a compact
set and is a linear continuous injective 

t

z
AM

operator.
As a set of approximate solutions of (1) it is possible 

to accept
{ }δδ

η +≤−∈≡ zhuzAMzZ hM :

Then as in for any .zz →η 0→η Z η
η MZz ∈

45



After finite dimensional approximation we obtainAfter finite dimensional approximation we obtain 
that                           , where        is a convex 
polyhedron for convex or monotonic functions and

ηη ZMZM
ˆˆˆ ∩≡ M̂

polyhedron for convex or monotonic functions and

i i d
( ){ }ηδ

η ∆≤−∈= uzAZzZ ˆˆˆ:ˆˆˆ

Â ˆ ˆ. is a matrix,     and     are vectors.
To find      it is possible to use the method of 
A z δû

ηẑ
conditional gradient or the method of projection 
conjugated gradients. 

η
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Error estimation
1) Find the minimum and the maximum values for 

each coordinate of . Denote them by , ,ηẐ l
iz u

izeach coordinate of       . Denote them by      ,    ,   
. .

2) Secondly, using the found we construct

MZ iz iz
ni ,1=

ul zz ˆˆ2) Secondly, using the found         we construct 
functions          and          close to       such that     
. for each            .

zz ,
( )xzl ( )xzu η

MZ
( ) ( ) ( )xzxzxzZz ul

M ≤≤∈∀ :η [ ]bax ,∈

Therefore, we should minimize a linear function on a 
convex set. We may approximate the set by a 

( ) ( ) ( )M

convex polyhedron and solve a linear 
programming problem. The simplex-method or 
th th d t t l h d bthe method to cut convex polyhedrons may be 
used.
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I bl f th h t d tiInverse problem for the heat conduction 
equation

Let      be a set of convex upward functions        such 
th t A th t

M ( )xz
( ) C≤≤0 01 01lthat                      . Assume that           ,          ,        

. ,           , the number of nodes 20.
( ) Cxz ≤≤0 0.1=a 0.1=l

0.1=T 2.1=C
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The exact solution           (        ), the functions          ,          .( )xz ( )xzl ( )xzu
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Examples and Applications
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ONE INVERSE PROBLEM OFONE INVERSE PROBLEM OF 
QUANTITATIVE ELECTRON PROBE 

MICROANALYSISMICROANALYSIS
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отIAφ= (1)от
δIAφ= ,                                                        (1)

 

where 
 

Aφ= ∫
ρr

zρdρφγρK
0

z)()z,( , 
0

 

δ>0 – error of assignment of the right part of the equation 
l I(1), i.е. δII relrel ≤−δ , relIφ=A , (0)I

II rel =  - relative 

intensity. 
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2[ ] 2

2
A LIφφF δ−= ,                                                                           (2) 

At that it is enough to find such an element  δφ , that δ
[ ] 2δφF δ ≤ . 

 

⎞
⎜
⎛N N 2

∑ ∑ −=
= = ⎟

⎟
⎠

⎞

⎜
⎜
⎜

⎝

⎛γ
γ

ρz от
jρziij

N

j

N

i
hIhφKφf

1 1
)(                                         (3) 

A fi i diff i i Z fAt finite-difference approximation set Z transforms 

into set 

⎫⎧ ≤+ Ni 1202

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−
=≥

−=≤+−
=

ρzi

ρziii
Niφ

Niφφφ
φẐ ,1,2,0,

1,2,0,2
: 11

K

K
,       (4) 
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Let )( jT , mj ,0,1,K= ( ρzNm= ) – apexes of a convex 

limited polyhedron Ẑ . 

 

Lemma. Let Ẑφ∈ . Then the unique representation is correct q p
 

∑=
m

j
j

jTaφ
1

)( , 
=j j1

 

at that mja 210 =≥at that  m,,,j,a j K210 =≥ .
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Let us examine operator T from mR  in mR , 

determined by the formuladetermined by the formula

∑ ∈=
=

m

j
mj

j Rξ,TξξT
1

)( . 

It is obvious, that  mm TT +
−

+ == RẐ and ẐR 1 ,  

Where m
+R  - set of vectors mm RR ⊂+ , that have all non-

negative coordinates mξ +∈R , if mj,ξ j ,1,2,0 K=≥ . 

Let us examine function )()( ξTfξY = , determined on 

set m
+R . 

We need to find such an element m
δξ +∈R , that δ +

2)( δξY δ ≤ . The approximate solution of the original 

problem is found then by the formula Tξφ =problem is found then by the formula δδ Tξφ = .
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INVERSE PROBLEM OF 
CATHODOLUMINESCENCE

MICROTOMOGRAPHYMICROTOMOGRAPHY
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The Scheme of InstallationThe Scheme of Installation

1. Focused electrical probe
2. Object under investigation2. Object under investigation
3. Region of generation of nonequilibrium carriers
4. Ellipsoidal mirror
5. Diaphragm with detector
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Problem

Develop method for determination of optoelectrical local properties eve op e od o de e o o op oe ec c oc p ope es
of cathodoluminescence objects with resolution of micrometer part, 
having at our disposal the set of measurements of intensity values.
Describe the scheme of experiment, mathematical statement and
the method of  solution of the problem, which is ill-posed.

The interaction of focused electrical probe with 
cathodoluminescence substance was modulated. An alternative 
method of microtomograph in cathodol menscence mode ismethod of microtomography in cathodolumenscence mode is 
presented. The solution is based on confocal ellipsoidal
mirror [Phang J.C.H, Chan D.C.H.].mirror [Phang J.C.H, Chan D.C.H.].
The photon rays transport in luminescence volume of specimen 
and ellipsoid are calculated.
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We have to solve the next inverse problem:
define the internal quantum yield of the material

from Fredholm integral equation of the first kind:
],0[),( 0Rss ∈η

from Fredholm integral equation of the first kind:
objecttheofdeflectionthexdsssxKxI

R

∫ −=
0

0
1 ,)(),()( η

]0[)( Rs ∈η][)( xxLxI ∈mirrorthetorespectin

where - intensity, measured in experiment, as function of deflection)( xI

],0[)( 0Rs ∈η],[)( maxmin2 xxLxI ∈

y p
of the object in vertical direction,

-the distance from the surface of the object,
i l d th f t ti f l t i t th bj t

s

-maximal depth of penetration of electrons into the object,
-some continuous function, which was calculated by numerical 

methods (the physical sense of is that is the contribution

0R
),(1 sxK

dssxK )(methods (the physical sense of  is that                          is the contribution 
into the total intensity the layer with center on the depth s and thickness     
ds).

dssxK ),(1
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A Priori Information
Let it is known that the solution of the problem is sourcewise
represented with help of completely continuous integral operator:represented with help of completely continuous integral operator:

∫ ∈=
0

0
002 ],0[,)(),()(

R

RsdsKs ξξηξη

⎩
⎨
⎧ ≤−∗−

=
otherwise

ss
sK

0
,2,2/2/1)cos((

),(2

ξπξ
ξ

where

⎩ otherwise,0

We shall consider that:
)( ]0[ RL ]0[)( RL∈)(0 sη ],0[ 02 RL ],0[)( 020 RLs ∈η

For solving the problem under such a priori information the 
method of extending compacts which was described above ismethod of extending compacts, which was described above, is 
used.
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Model Calculations ResultsModel Calculations Results
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An Inverse Problem of Nuclear PhysicsAn Inverse Problem of Nuclear Physics
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An inverse problem of nuclear physics
Experiment:Experiment:pp

γe−

γ D

1 2
FigFig.1:.1: 11 -- the target for producing bremsstrahlung beamthe target for producing bremsstrahlung beam, 2, 2 -- the sample the sample under consideration,under consideration, DD ––

detectordetector..

1 2

Passing through the first target the accelerated electrons produce the bremsstrahlung Passing through the first target the accelerated electrons produce the bremsstrahlung 
beam (beam (γγ--rays)rays). The bremsstrahlung spectrum is continuous. The sample 2 is bombarded . The bremsstrahlung spectrum is continuous. The sample 2 is bombarded 
b thb th γγ Th tt dTh tt d γγ d t t dd t t dby the by the γγ--rays.rays. The scattered The scattered γγ--rays are detected.rays are detected.

69



Experimental data processing

N lN l titi 63 62C C+ → +NuclearNuclear reaction:reaction:
Constraints:Constraints:

A priori :A priori :

63 62
29 29Cu Cu nγ + → +

0 ( ) 90, [10, 24.1]E Eσ≤ ≤ ∈A priori :A priori :
A posteriori:A posteriori:

is a monotone nondecreasing function is a monotone nondecreasing function 

0 ( ) 90, [10, 24.1]E Eγ γσ≤ ≤ ∈

( ), [10,16]E Eσ ∈
is a convex upwards functionis a convex upwards function
is a monotone nonincreasing function is a monotone nonincreasing function 

( ), [10,16]E Eγ γσ ∈

( ), [16,18]E Eγ γσ ∈

( ), [18,24.1]E Eγ γσ ∈

70



Fig 2: (• • •) the approximate cross sectionFig.2: (• • •) – the approximate cross section 
from the Center of Data of Photonuclear 
experiments (http://depni.sinp.msu.ru/cdfe/); 

(• • •) the approximate solution found by(• • •) – the approximate solution found by 
Tikhonov regularization; 

( – ) – the functions                           ( ), ( )low upperE Eγ γσ σ

71
bounded the set of approximate solutions 
from below and from above .

γ γ



Experimental data processing
NuclearNuclear reaction:reaction: 34 33

16 15S P pγ + → +NuclearNuclear reaction:reaction:
Constraints:Constraints:

A priori:A priori:

16 15S P pγ + → +

0 ( ) 45, [12.3,25.3]E Eγ γσ≤ ≤ ∈
A posteriori:A posteriori:

is a monotone nondecreasing functionis a monotone nondecreasing function
is a convex upwards functionis a convex upwards function

( ), [12.3,16]E Eγ γσ ∈

( ) [16 17]E Eσ ∈ pp
is a  monotone nonincreasing functionis a  monotone nonincreasing function
is a convex downwards functionis a convex downwards function
i t d i f tii t d i f ti

( ), [16,17]E Eγ γσ ∈

( ), [17,18.5]E Eγ γσ ∈

( ), [18.5,20]E Eγ γσ ∈

is a monotone nondecreasing functionis a monotone nondecreasing function
is a convex upwards functionis a convex upwards function
is a monotone nonincreasing functionis a monotone nonincreasing function

( ), [20, 22]E Eγ γσ ∈

( ), [22,23]E Eγ γσ ∈

( ), [23,25.3]E Eγ γσ ∈γ γ
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Fig.3: (• • •) – the approximate cross section 
from the Center of Data of Photonuclear 
experiments; 

(• • •) – the approximate cross section found 
by Tikhonov regularization; y g ;

( ─ ) – the functions                           ( ), ( )low upperE Eγ γσ σ

73

bounded the set of approximate solutions 
from below and from above .



Image reconstruction for gravitational lensg g

Th QSO 2237 0305 k hThe system QSO 2237+0305, known as the 
“Einstein Cross”: 4 quasar images against 
the background of the lensing galaxy. 

Several observation were carried out usingSeveral observation were carried out using 
the Huble Space Telescope and Nordic 
O ti l T lOptical Telescope.
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Model of Kernel

ResidualsStar Kernel

PSF (Kernel) profile( ) p

Approximation of the star from 
the frame with 2-dimensionalt e a e w t d e s o a
Gauss profile

FWHM ~ 5 pixelsFWHM  5 pixels



Tikhonov Regularizationg
• Ill-posed problem 

• Smoothing function:

)(*][ 2kM Ωα )(*][ 2 zzkzM Uu Ω⋅+= − αδ
α

• Solution :αz
}:][inf{][ ZzzMzM ∈= ααα

• Solution         : z

• Regularization parameter α from discrepancy principle:

}][{][

0,* >≅− αδδ
α

U
uzk

U



A priori information

T I G l Q CTrue Image  =  Galaxy  +  Quasar Components

K
∑
=

−−+=
K

k
kbykaxkIyxgyxz

1
),(),(),( δ

k 1
K=4 , number of quasar components
K=5 , number of quasar components + galaxy nuclear



A priori information

• Nonnegativity of the solution z ≥ 0• Nonnegativity of the solution, zij ≥ 0
• Galaxy: assumption about smoothness 

G l d l
;   2)( Ggg =Ω { }BVWLG ,21,2≡

• Galaxy model  
2

model)(
G

ggg −=Ω model G

generalized de Vaucouleurs profile (Sersic’s model)
( ) }exp{0

1

model
n

en r/r b)I((r)g −=
b =2n-0 324 for 1≤n≤4

g p f ( )

bn 2n 0.324 for 1≤n≤4



A priori information

Sourcewise representation:Sourcewise representation:

'*]'[ zrzRz ≡= ][
 PSF *  PSF PSF FinalSourceTotal =

rsk *= rsk =

)()()( b
K
∑ ),(),(),(

1
yxgcybxrayxz

k
kkk +−−= ∑

=



Results: L22

22

2
)(

Lsersicggg −=Ω

Ob d i R t t d iObserved image Reconstructed image



Results: L22

Galaxy Error distribution



Results: W2121

2

21
)(

Wsersicggg −=Ω

Observed image Deconvolved imageObserved image Deconvolved image



Results: W2121

Galaxy Error distribution



Results: MCS

rs *kernel =
2

2
)( Lgrgg ∗−=Ω

rskernel =

2

Observed image Deconvolved imageg Deconvolved image



Results: MCS

Quasar components Galaxy



Results: MCS

Quasar components Error distribution



Results: TV

1 1N N
∑
−

=
∑
−

=
++−+−++=Ω

11

1

12

1 ,1,,11,1)(
N

m

N

n nmgnmgnmgnmgg

Ob d i l d iObserved image Deconvolved image



Results: TV

Quasar components Galaxy



F ti l li ll l tFunctions convex along lines parallel to 
coordinate axes.

89



Consider an n-dimensional Euclidean space 
Rn, n < ∞.R , n  ∞.

A set Ω ⊂ Rn is convex along all lines parallel 
to coordinate axes if ∀i∈ [1 n] ∀x x ∈ Ωto coordinate axes if ∀i∈ [1,n] ∀x1,x2∈ Ω
such that 

( 1 i 1 i i+1 )x1=(a1,…, ai-1, x1
i, ai+1,…, an), 

x2=(a1,…, ai-1, x2
i, ai+1,…, an)2 ( , , , 2 , , , )

and ∀λ∈(0,1): x3=λ x1 +(1-λ) x2∈Ω.
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A cross is an example of a set convex along 
coordinate axes

91
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A function z(x) on Ω is convex downwardsA function z(x) on Ω is convex downwards 
along all lines parallel to an i-th coordinate 

i if ∀ Ω h th taxis if ∀x1,x2∈ Ω such that 
x1=(a1,…, ai-1, x1

i, ai+1,…, an), 1 ( , , , 1 , , , ),
x2=(a1,…, ai-1, x2

i, ai+1,…, an)
d ∀λ (0 1)and ∀λ∈(0,1): 

z(λ x1 +(1-λ) x2 )≤ λ z(x1) + (1-λ) z(x2)z( 1 ( ) 2 ) z( 1) ( ) z( 2)
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Let n* ∈ [0 n] Consider functions z(x) given on ΩLet n* ∈ [0,n]. Consider functions z(x) given on Ω. 
By Mn*

n (Ω ) define the set of functions z(x) that 
are convex downwards along all lines parallel toare convex downwards along all lines parallel to 
n* first coordinate axes and convex upwards along 
all lines parallel to (n n*) last coordinate axesall lines parallel to (n-n*) last coordinate axes. 

Assume there exist finite numbers CL and CU such 
th t ∀ Ω d ∀ ( ) M n(Ω ) CL≤ ( ) ≤ CUthat ∀x∈Ω and ∀z(x) ∈ Mn*

n(Ω ): CL ≤ z(x) ≤ CU.
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Theorem 1 : Let there be a sequence {z } and anTheorem 1.: Let there be a sequence {zm} and an 
element z such that ∀m∈1,…,+∞: zm ∈Mn

n* (Ω), z 
∈Lp(Ω), p≥1, ||zm-z||Lp(Ω)→ 0 as m → + ∞, where∈L (Ω), p≥1, ||zm z||Lp(Ω) → 0 as m →  , where 
Ω is an open bounded set. Then from the sequence 
{zm} a subsequence {zm

(k)} may be taken that m m
converges to a function ž∈Mn

n* (Ω) at any point of 
Ω and ž=z in Lp(Ω ).

Corollary 1.: Mn
n* (Ω ) is a compact set in Lp(Ω ).n

Corollary 2.:The sequence {zm(x)} considered inC y q {zm( )}
Theorem 2.1 converges to the function ž(x) at any 

point of Ω .
96
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Theorem 2.: Let ||zm - z||Lp(Ω)→ 0 as m→∞, 
where zm , z∈Mn

n* (Ω),  p ≥ 1 and Ω is an 
open bounded set. Then the sequence {zm }p q { m }
converges to z uniformly on any closed set 
υ ⊂ Ωυ ⊂ Ω.
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Let D=[a1,b1]× [a2,b2]× …× [an, bn]. On each 
segment [ai ,bi], we define a grid Xi={xi

j}j=1
ni such g i i g i { i }j 1

that ai = xi
1 < xi

2 <…< xi
ni = bi. Let X=X1× X2× …

× Xn. A vector of indices J=(j1, j2,…, jn) for a grid 
i i h di ( j1 j2 j ) Th hpoint with coordinates (x1

j1,x2
j2,…,xn

jn). Then the 
point is written as xJ.

F D h i B [ j1 j1+1]For any x∈D there is a set BJ=[x1
j1, x1

j1+1]×… ×
[xn

jn, xn
jn+1]: x ∈ BJ. As an approximation of a 

function z(x) we use a function z (x) that is linearfunction z(x) we use a function zN (x) that is linear 
on grid values of z(x) at vertices of BJ.
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After finite dimensional approximation we 
Žobtain a set ŽM which is a polytope.

If x1, x2, x3 are grid points that belong to a lineIf x1, x2, x3 are grid points that belong to a line 
parallel to an i-th coordinate axis and there 
is no another grid point between them thenis no another grid point between them, then 
for a uniform grid Xi: -z1+ 2z2 - z3≤ 0 (i≤n*) 

2 0 ( h i ) ( ( ))or z1 - 2z2 - z3 ≤ 0 (otherwise). (zk = z(xk))
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Error estimation
1) Find the minimum and the maximum values for

each coordinate of ŽM
η. Denote them by zl

i andeach coordinate of ŽM . Denote them by z i and
zu

i, 1 ≤ i≤ n. They form vectors žl, žu.
2) Secondly, using žl, žu we construct functions zl(x)2) Secondly, using ž , ž we construct functions z (x)

and zu(x) close to ZM
η such that ∀ z∈ZM

η: zl(x) ≤
z(x) ≤ zu(x).

Therefore, we should minimize a linear function on a
convex set. We may approximate the set by a
convex polyhedron and solve a linear
programming problem. The simplex-method or
h h d l h d b dthe method to cut convex polyhedra may be used.

We also may construct the sequence W0⊃ W1⊃
⊃ W of convex polyhedrons contained the

100

… ⊃ Wm of convex polyhedrons contained the
point of minimum.



Let D=[0 d1 ]× [0 d2 ] d1 d2<+∞ and forLet D [0,d1 ]× [0,d2 ], d1, d2<+∞, and for 
w(x,y,t) there are the heat conduction 
equation and zero boundary conditions:equation and zero boundary conditions:

22
2 ⎞
⎜⎜
⎛ ∂

+
∂∂ www

0)(0)0(

22
2

⎠
⎜⎜
⎝ ∂

+
∂

=
∂

d
yx

a
t

0),,(0),0,(
0),,(0),,0(

2

1

==
==

tdxwtxw
tydwtyw

Denote z(x,y)=w(x,y,0), u(x,y)=w(x,y,T), 

),,(),,( 2

0<T<+ ∞. Therefore 
u(x,y)=∫∫G(x, y,ξ,η, T) z(ξ,η) dξdη.
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u(x,y) ∫∫G(x, y,ξ,η, ) z(ξ,η) dξdη.



Assume the exact solution z∈M2
0 (D). We set n1 = n2 

= 11 d = d = 1 0 the grids are uniform a = 1 0= 11, d1 = d2 = 1.0, the grids are uniform, a = 1.0, 
T=0.001. As the exact solution the function z(x,y) 
= sin(π x) · sin(π y) is taken. The approximate (π ) (π y) pp
right-hand side we take as uδ = ū. The error of 
finite dimensional approximation ∆ = 0.01· ||ū|| ≈
0.005.

In the figure there is an upper function zU(x,y) that 
bounds all approximate solutions. To construct it 
we use additional grid values.

We find that ||zU-zL|| = 0.212 (≈ 0.424 · ||z||).
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