1. DEFINITIONS AND MAIN RESULTS

We will study extremal mappings in the sense of Lempert function and in the sense of Kobayashi-Royden pseudometric, so let us recall the objects we will deal with in this paper. Let \mathbb{D} denotes the unit disk in \mathbb{C} . Let $D \subset \mathbb{C}^n$ be a domain and let $z, w \in D$, and $v \in \mathbb{C}^n$. In this paper we consider two objects:

(1)
$$k_D(z,w) := \inf\{ \text{hyp dist}(\zeta,\xi) : \exists f \in \mathcal{O}(\mathbb{D},D) \text{ such that } f(\zeta) = z, f(\xi) = w \},$$

and

(2)
$$\kappa_D(z,v) := \sup\{\lambda > 0 : \exists f \in \mathcal{O}(\mathbb{D},D) : f(0) = z, f'(0) = \lambda v\}.$$

Using appropriate automorphisms of the unit disk, we can always assume that in (1) $\zeta = 0$. First one we call Lempert function and second - Kobayashi - Royden pseudeometric. We call $f : \mathbb{D} \to D$ a k_D -extremal (resp. κ_D -extremal) if for f in (1) (resp. (2)) the 'inf' is attained for some $z, w \in D, z \neq w$ (resp. the 'sup' is attained for some $z \in D, X \in \mathbb{C}^n \setminus \{0\}$). In general k is not a pseudodistance - consider a domain $D_{\alpha} := \{(z, w) \in \mathbb{C}^2 : |z| < 1, |w| < 1, |zw| < \alpha\}$, then for all $\alpha \in (0, 1)$ the triangle inequality does not hold for $k_{D_{\alpha}}$. More examples the reader may find in [4].

To overcome the difficulty connected with the triangle inequality we modify the function k_D in such a way that the new function becomes a pseudodistance. For $z, w \in D$ we put

$$k'_D(z,w) := \inf\{\sum_{j=1}^N k_D(z_{j-1}, z_j) : N \in \mathbb{N}, z_0 = z, z_1, ..., z_N \in D, z_N = w\}.$$

The function k'_D is called the *Kobayashi pseudodistance* for *D*.

However, if D is strictly linearly convex, k_D will be a distance. This is because of

Theorem 1.1. Let $D \subset \mathbb{C}^n$ be a strictly linearly convex domain with \mathcal{C}^k boundary $(k = \infty \text{ or } k = \omega)$. Then $k_D = k'_D = c_D$, where for $z, w \in D$ we define

(3)
$$c_D(z,w) = \sup\{ \text{hyp dist} (F(z), F(w)) : F \in \mathcal{O}(D, \mathbb{D}) \}.$$

Function (3) is called a *Carathéodory distance*.

Our main goal is to describe extremals in the sense of Lempert function and in the sense of Kobayashi-Royden pseudometric, in the case when D is strictly linearly convex domain with \mathcal{C}^k boundary (in this paper we always assume that $k = \infty$ or $k = \omega$). We say that

Definition 1.2 (See [1]). Let $D \subset \mathbb{C}^n$ be a bounded domain. D is called linearly convex if trough any boundary point $z \in \partial D$ there goes an (n-1)-dimensional complex hyperplane that is disjoint from D. D is called strictly linearly convex if

(1) D has C^2 -smooth boundary,

(2) the defining function r of D satisfies the inequality

$$\sum_{j,k} r_{z_j \overline{z}_k}(a) w_j \overline{w}_k > \left| \sum_{j,k} r_{z_j z_k}(a) w_k w_k \right|,$$

where $a \in \partial D$, $w = (w_1, ..., w_n) \in (\mathbb{C}^n)_*$ with $\sum_j r_{z_j}(a) w_j = 0.$

We remark here that in the following sections D will always denote a strictly linearly convex domain which is, for the sake of simplicity, bounded by a real analytic hypersurface. **Remark 1.3.** If D is strictly linearly convex domain, then each complex tangent plane intersect the boundary ∂D in precisely one point.

In addition, we shall use the following notations: $\mathcal{C}^k(K)$, where K is compact subset of \mathbb{C}^n , denotes the spaces of all mappings that are [k]-times differentiable in the interior of K, and in the case when k is an integer the derivatives up to order k extend continuously to K, in other case, i.e. k - [k] := c > 0, the derivatives up to order [k] are c-Hölder continuous; $\mathcal{C}^{\omega}(K)$ denotes the set of functions that extend analytically to a neighborhood of K. Generally, if A is an arbitrary set in \mathbb{C}^n , then $\mathcal{C}^k(A) = \bigcap \{\mathcal{C}^k(K) : K \text{ compact and } K \subset A\}$. $|\cdot|$ denotes the euclidean norm in \mathbb{C}^n . For $(z_1, ..., z_n) \in \mathbb{C}^n$ we define $\hat{z} := (z_2, ..., z_n)$, and similarly, if $f = (f_1, ..., f_n)$ is a mapping into \mathbb{C}^n , then by \hat{f} we define a mapping $(f_2, ..., f_n)$ into \mathbb{C}^{n-1} . Finally: for $z = (z_1, ..., z_n)$, $w = (w_1, ..., w_n) \in \mathbb{C}^n z \cdot w := \sum_j z_j w_j$. Before we formulate the main result of this paper we need another definition.

Definition 1.4. Let $D \in \mathbb{C}^n$ be a domain. We call a holomorphic mapping $f : \mathbb{D} \to D$ an *E*-mapping, if

- (1) f extends to a \mathcal{C}^k function on $\overline{\mathbb{D}}$ (to be denoted by the same letter f);
- (2) $f(\partial \mathbb{D}) \subset \partial D;$
- (3) there exist a positive \mathcal{C}^k function $\rho : \partial \mathbb{D} \to \mathbb{R}$ such that the mapping $\partial \mathbb{D} \ni \zeta \mapsto \zeta \rho(\zeta) \overline{\nu(f(\zeta))} \in \mathbb{C}^n$ extends to a \mathcal{C}^k mapping $\widetilde{f} : \overline{\mathbb{D}} \to \mathbb{C}^n$, holomorphic in \mathbb{D} (here $\nu(z)$ denotes the outward unit normal vector to ∂D in z);
- (4) the winding number of the function $\varphi(\zeta) := \overline{\nu(f(\zeta))} \cdot (z f(\zeta))$ on $\partial \mathbb{D}$ is zero for all $z \in \mathbb{D}$.

Furthermore, we shall call a holomorphic mapping $f : \mathbb{D} \to D$ weakly-*E*-mapping if it possesses the above properties (1)-(4) with k = 1/2.

Soon we shall see that there is no difference between E-mappings and weakly-E-mappings. $f(\mathbb{D})$ will be called a (weak) E-disk, if f will be a (weak) E-mapping.

From definition we have to compare f with all other $g \in \mathcal{O}(\mathbb{D}, D)$ to check that f is extremal. Next theorem shows how to describe extremal mappings, by checking certain properties of f alone.

Theorem 1.5. Let D be a strictly linearly convex domain with a C^k boundary $(k = \infty$ or $k = \omega$). Then a holomorphic mapping $f : \mathbb{D} \to D$ is extremal in the sense of Lempert function (resp. in the sense of Kobayashi-Royden pseudometric) with respect to the points $(f(0), f(\xi))$ (resp. with respect to (f(0), f'(0))), if and only if f is an E-mapping.

Theorem above is the main result of this paper. The idea of its proof is the following: for any $z, w \in D$ (resp. any $z \in D$ and $v \in \mathbb{C}^n$) we prove that there is unique (weak) E-mapping, which is extremal for (z, w) (resp. (z, v)). Using standard tool, i.e. explicit function theorem, Arzela-Ascoli theorem we shall prove that trough any given pair of points there goes a E-disk. This will then establish Theorem 1.5.

2. Extremal mappings and E-mappings

Proposition 2.1. Let $f : \mathbb{D} \to D$ be an *E*-mapping. Then there exists a continuous mapping $F : \overline{D} \setminus f(\partial \mathbb{D}) \to \mathbb{D}$, holomorphic on *D* and such that $F \circ f = id_{\mathbb{D}}$.

Proof. Set $A := \overline{D} \setminus f(\partial \mathbb{D})$ and let φ_z denote the function from the condition (4) from the definition of E-mapping. Since D is strictly linearly convex, φ_z does not vanish in $\partial \mathbb{D}$ for any $z \in A$, so by the continuity argument the condition (4) holds for every z in some open neighbourhood W of the set A. Consider the function $G: W \times \overline{\mathbb{D}} \to \mathbb{C}$ given by

$$G(z,\zeta) := \widetilde{f}(\zeta) \cdot (z - f(\zeta)).$$

We claim that for given $z \in W$ the equation $G(z, \zeta) = 0$ has exactly one solution $\zeta \in \mathbb{D}$. Fix $z \in W$ and let ρ be as in the condition (3). We have

$$G(z,\zeta) = \zeta \rho(\zeta) \varphi_z(\zeta)$$

for $\zeta \in \partial \mathbb{D}$, so the winding number of the function $G(z, \cdot)$ on $\partial \mathbb{D}$ is equal to 1. Since this function is holomorphic on \mathbb{D} , it has exactly one simple root $F(z) \in \mathbb{D}$. Therefore G(z, F(z)) = 0 and $\frac{\partial G}{\partial \zeta}(z, F(z)) \neq 0$. In virtue of the implicit mapping theorem, the function F is holomorphic on W.

Let us note that for given E-mapping f the mapping F satisfies the equation

(4)
$$\widehat{f}(F(z)) \cdot (z - f(F(z))) = 0$$

at every point $z \in \overline{D} \setminus f(\partial \mathbb{D})$.

Proposition 2.2. An *E*-mapping $f : \mathbb{D} \to D$ is the unique extremal mapping with respect to the point z = f(0) and direction v = f'(0), and also with respect to the couple of points $z = f(0), w = f(\xi)$, with $\xi \in (0, 1)$ being arbitrary.

Proof. We carry the proof in both cases simultaneously. Let F be as in the Proposition 2.1. Suppose $g: \mathbb{D} \to D$ is a holomorphic mapping such that g(0) = z and:

- $g'(0) = \lambda v$ for some $\lambda \ge 0$, in the first case,
- $g(\eta) = w$ for some $\eta \in (0, 1)$, in the second case.

The function $F \circ g$ maps the unit disc to itself and satisfy F(g(0)) = F(f(0)) = 0. Therefore by the Schwarz' lemma we get:

- $1 \ge |(F \circ g)'(0)| = \lambda |(F \circ f)'(0)| = \lambda$, so $|f'(0)| \ge |g'(0)|$, in the first case,
- $\eta \ge |(F \circ g)(\eta)| = |F(w)| = |(F \circ f)(\xi)| = \xi$, in the second case.

Therefore f is an extremal mapping.

We show that f is the unique extremal mapping. Suppose g is extremal. Then $\lambda = 1$ (in the first case) or $\eta = \xi$ (in the second case), so there holds the equality in the above application of the Schwarz' lemma. This implies $F \circ g = id_{\mathbb{D}}$.

We claim that $\lim_{\mathbb{D}\ni\zeta\to\zeta_0} g(\zeta) = f(\zeta_0)$ for each $\zeta_0 \in \partial \mathbb{D}$. Suppose not. Then for some $\zeta_0 \in \partial \mathbb{D}$ there is a sequence $(\zeta_m)_m \subset \mathbb{D}$ convergent to ζ_0 and such that the limit $Z := \lim_{m\to\infty} g(\zeta_m) \in \overline{D}$ exists and is not equal to $f(\zeta_0)$. Putting $z = g(\zeta_m)$ in the equation (4) we get

$$0 = \widetilde{f}(F(g(\zeta_m))) \cdot (g(\zeta_m) - f(F(g(\zeta_m)))) = \widetilde{f}(\zeta_m) \cdot (g(\zeta_m) - f(\zeta_m)).$$

Passing $m \to \infty$ gives

$$0 = \tilde{f}(\zeta_0) \cdot (Z - f(\zeta_0)) = \zeta_0 p(\zeta_0) \,\overline{\nu(f(\zeta_0))} \cdot (Z - f(\zeta_0))$$

so the vector $Z - f(\zeta_0)$ belongs to the complex tangent space of ∂D at $f(\zeta_0)$. Hence $Z = f(\zeta_0)$, because $Z \in \overline{D}$ and D is strictly linearly convex. This is a contradiction. \Box

Proposition 2.3. If $f : \mathbb{D} \to D$ is an *E*-mapping and *a* is an automorphism of \mathbb{D} , then $f \circ a$ is an *E*-mapping.

Proof. Set $g := f \circ a$. The conditions (1) and (2) are clear. To prove the condition (4), fix a point $z \in D$ and let φ_f, φ_g be as in the condition (4). Then $\varphi_g = \varphi_f \circ a$. The winding number of $a|_{\partial \mathbb{D}}$ is 1, so the winding numbers of the mappings φ_f and φ_g are equal.

We prove the condition (3). The winding number of the function $\zeta \mapsto \frac{\zeta}{a(\zeta)}$ on $\partial \mathbb{D}$ is 0, so there exists a real-valued $\mathcal{C}^{\omega}(\partial \mathbb{D})$ function v such that $\frac{\zeta}{a(\zeta)} = e^{iv(\zeta)}$ on $\partial \mathbb{D}$. Hence there exists a real-valued $\mathcal{C}^{\omega}(\partial \mathbb{D})$ function u such that the function $\partial \mathbb{D} \ni \zeta \mapsto \frac{\zeta}{a(\zeta)}e^{u(\zeta)} \in \mathbb{C}$ extends to a nowhere-vanishing function $h: \overline{\mathbb{D}} \to \mathbb{C}$ holomorphic on \mathbb{D} . Moreover, u and v are of class \mathcal{C}^{ω} on $\partial \mathbb{D}$, so h can be extended to a mapping of class \mathcal{C}^{ω} on $\overline{\mathbb{D}}$. Let ρ be as in the condition (3) for f. For $\zeta \in \partial \mathbb{D}$ put $r(\zeta) := \rho(a(\zeta))e^{u(\zeta)}$. We get

$$\zeta r(\zeta)\overline{\nu(g(\zeta))} = \zeta e^{u(\zeta)}\rho(a(\zeta))\overline{\nu(f(a(\zeta)))} = a(\zeta)h(\zeta)\rho(a(\zeta))\overline{\nu(f(a(\zeta)))} = h(\zeta)\widetilde{f}(a(\zeta)),$$

and this mapping extends to a $\mathcal{C}^{\omega}(\overline{\mathbb{D}})$ mapping, holomorphic on \mathbb{D} .

Corollary 2.4. An *E*-disc $f(\mathbb{D})$ is the unique extremal disc with respect to any couple of different points $z, w \in f(\mathbb{D})$, and also with respect to any point $z = f(\zeta)$ and direction $v = f'(\zeta)$.

Proposition 2.5. Let f be an E-mapping. Then the function $f' \cdot \tilde{f}$ is a positive constant.

Proof. Since the curve $t \mapsto f(e^{it})$ is contained in ∂D , its tangent vector $ie^{it}f'(e^{it})$ belongs to the tangent space $T_{f(e^{it})}\partial D$, so is orthogonal to $\nu(f(e^{it}))$ with respect to the real scalar product. Hence for $\zeta \in \partial \mathbb{D}$ we have

Im
$$f'(\zeta) \cdot \widetilde{f}(\zeta) = \rho(\zeta) \operatorname{Re}\left(i\zeta f'(\zeta) \cdot \overline{\nu(f(\zeta))}\right) = 0,$$

so the holomorphic function $f' \cdot \tilde{f}$ is a real constant C.

The curve $[0,1) \ni t \mapsto f(t)$ lies in D and $f(1) \in \partial D$, so the tangent vector f'(1) outwards from D. Hence

$$0 \le \operatorname{Re}\left(f'(1) \cdot \overline{\nu(f(1))}\right) = \frac{1}{\rho(1)} \operatorname{Re}\left(f'(1) \cdot \widetilde{f}(1)\right) = \frac{C}{\rho(1)}.$$

This implies $C \geq 0$. For each $\zeta \in \partial \mathbb{D}$ we have

$$\frac{f(\zeta) - f(0)}{\zeta} \cdot \widetilde{f}(\zeta) = \rho(\zeta) \,\overline{\nu(f(\zeta))} \cdot (f(\zeta) - f(0)).$$

By the condition (4), the last function has the winding number equal to 0. Therefore the holomorphic function $h(\zeta) := \frac{f(\zeta) - f(0)}{\zeta} \cdot \tilde{f}(\zeta)$ does not vanish in \mathbb{D} . In particular, $C = h(0) \neq 0$.

Proposition 2.6. Let f be an E-mapping and let $z = f(\zeta), w = f(\omega)$, where $\zeta, \omega \in \mathbb{D}$. Then

$$c_D(z, w) = k_D(z, w) = k_D(z, w) = \text{hyp dist}(\zeta, \omega)$$

Proof. Let F be as in the Proposition 2.1. Using the equality $F \circ f = id_{\mathbb{D}}$ we get

$$c_D(z,w) \ge \text{hyp dist}(F(z),F(w)) = \text{hyp dist}(\zeta,\omega) \ge k_D(z,w) \ge k_D(z,w) \ge c_D(z,w)$$

and we are done.

and we are done.

Corollary 2.7. An *E*-mapping gives an embedding of \mathbb{D} endowed with the hyperbolic distance into *D* endowed with the Kobayashi or the Carathéodory distance.

3. Regularity

Let $M \subset \mathbb{C}^m$ be a totally real local \mathcal{C}^{ω} submanifold having the real dimension m. Take an arbitrary point $z \in M$. There are open subsets U, V of \mathbb{C}^m and a \mathcal{C}^{ω} -diffeomorphism $\widetilde{\Phi} : U \to V$ such that V is a neighbourhood of z, $\widetilde{\Phi}^{-1}(z) = 0$ and $V \cap M = \widetilde{\Phi}(U \cap \mathbb{R}^m)$. The mapping $\widetilde{\Phi}|_{U \cap \mathbb{R}^m}$ can be extended to a mapping Φ analytic on an open neighbourhood of the point 0. We have

$$\frac{\partial \Phi_j}{\partial z_k}(0) = \frac{\partial \Phi_j}{\partial x_k}(0) = \frac{\partial \Phi_j}{\partial x_k}(0),$$

so the complex derivative $\Phi'(0)$ in an isomorphism. Therefore Φ restricted to a small neighbourhood of 0 is a biholomorphism of two open subsets of \mathbb{C}^m which carries an open neighbourhood of 0 in \mathbb{R}^m in an open neighbourhood of z in M.

Lemma 3.1 (Reflection principle). Let $M \subset \mathbb{C}^m$ be a totally real local \mathcal{C}^{ω} submanifold, having the real dimension m. Let $V \subset \mathbb{C}$ be an open neighbourhood of a point $\zeta_0 \in \partial \mathbb{D}$ and let $g: V \cap \overline{\mathbb{D}} \to \mathbb{C}^m$ be a continuous mapping. Suppose g is holomorphic on $V \cap \mathbb{D}$ and $g(V \cap \partial \mathbb{D}) \subset M$. Then g can be continued holomorphically past $V \cap \partial \mathbb{D}$.

Proof. In virtue of the identity principle it is sufficient to continue g locally past an arbitrary point $\zeta_0 \in V \cap \partial \mathbb{D}$. Fix ζ_0 and take Φ is as above, for the point $g(\zeta_0) \in M$. Let $V_1 \subset V$ be an neighbourhood of ζ_0 such that $g(V_1 \cap \overline{\mathbb{D}})$ is contained in the image of Φ . The mapping $\Phi^{-1} \circ g$ is holomorphic on $V_1 \cap \mathbb{D}$ and has real values on $V_1 \cap \partial \mathbb{D}$. Hence by the ordinary reflection principle we can extend this mapping holomorphically past $V_1 \cap \partial \mathbb{D}$. Denote that extension by h. Then $\Phi \circ h$ is an extension of g in a neighbourhood of ζ_0 . \Box

Proposition 3.2. Every weak E-mapping is also an E-mapping.

Proof. Let f be a weak E-mapping. Our goal is to prove that the mappings f and \tilde{f} are of the class \mathcal{C}^{ω} . Write $f = (f_1, \ldots, f_n), \tilde{f} = (\tilde{f}_1, \ldots, \tilde{f}_n)$. Choose a point $\zeta_0 \in \partial \mathbb{D}$. Since $\tilde{f}(\zeta_0) \neq 0$, we can suppose $\tilde{f}_1(\zeta) \neq 0$ in $U \cap \overline{\mathbb{D}}$, where U is a neighbourhood of ζ_0 . This implies $\nu_1(f(\zeta_0)) \neq 0$, so $\nu_1(z)$ does not vanish on some set V open in ∂D and containing the point $f(\zeta_0)$.

Define the mapping $\psi: V \to \mathbb{C}^{2n-1}$ by

$$\psi(z) = \left(z_1, \ldots, z_n, \overline{\nu_2(z)} / \overline{\nu_1(z)}, \ldots, \overline{\nu_n(z)} / \overline{\nu_1(z)}\right).$$

The set $M := \psi(V)$ is the graph of a \mathcal{C}^{ω} function defined on the local \mathcal{C}^{ω} submanifold V, so obviously is a local \mathcal{C}^{ω} submanifold of \mathbb{C}^{2n-1} , having the real dimension 2n - 1. Assume for the moment that M is totally real.

Consider the mapping

$$g(\zeta) := \left(f_1(\zeta), \ldots, f_n(\zeta), \widetilde{f_2}(\zeta) / \widetilde{f_1}(\zeta), \ldots, \widetilde{f_n}(\zeta) / \widetilde{f_1}(\zeta)\right),$$

defined for $\zeta \in U \cap \overline{\mathbb{D}}$. If $\zeta \in U \cap \partial \mathbb{D}$, then $\tilde{f}_j(\zeta) / \tilde{f}_1(\zeta) = \overline{\nu_j(f(\zeta))} / \overline{\nu_1(f(\zeta))}$, so $g(\zeta) = \psi(f(\zeta))$. Therefore $g(U \cap \partial \mathbb{D}) \subset M$. The reflection principle implies that g extends analytically past $U \cap \partial \mathbb{D}$, so f is of class \mathcal{C}^{ω} near ζ_0 . Since ζ_0 is arbitrary, f is of class \mathcal{C}^{ω} on $\partial \mathbb{D}$.

The mapping $\overline{\nu \circ f}|_{\partial \mathbb{D}}$ if of class \mathcal{C}^{ω} , so it clearly extends to some mapping h holomorphic on the neighbourhood of $\partial \mathbb{D}$. For $\zeta \in U \cap \partial \mathbb{D}$ we have

$$\frac{\zeta h_1(\zeta)}{\widetilde{f}_1(\zeta)} = \frac{1}{p(\zeta)}.$$

The function on the left side is holomorphic on $U \cap \overline{\mathbb{D}}$ and continuous on $U \cap \overline{\mathbb{D}}$. Since it has real values on $U \cap \partial \mathbb{D}$, the reflection principle implies that it is of class \mathcal{C}^{ω} . Hence p, and then \tilde{f} , is of class \mathcal{C}^{ω} near an arbitrarily chosen point ζ_0 .

It remains to prove that M is totally real. Let r denote a defining function for ∂D . For every point $z \in \partial D$ the vectors $\nu(z)$ and $\operatorname{grad} r(z) = (r_{\overline{z_1}}(z), \ldots, r_{\overline{z_n}}(z))$ are parallel over \mathbb{R} , so

$$\frac{\nu(z)}{\nu_1(z)} = \frac{1}{r_{\overline{z_1}}(z)} \operatorname{grad} r(z).$$

Consider the mapping $S = (S_1, \ldots, S_n) : V \times \mathbb{C}^{n-1} \to \mathbb{R} \times \mathbb{C}^{n-1}$ given by

$$S(z,w) := (r(z), r_{z_2}(z) - w_1 r_{z_1}(z), \dots, r_{z_n}(z) - w_{n-1} r_{z_1}(z)).$$

Clearly $M = S^{-1}(\{0\})$. This implies $T_{(z,w)}M \subset \ker S'(z,w)$ for any $(z,w) \in M$.

Fix a point $(z, w) \in M$. Our goal is to prove that $T_{(z,w)}^{\mathbb{C}}M = \{0\}$. Take an arbitrary vector $(X, Y) = (X_1, \ldots, X_n, Y_1, \ldots, Y_{n-1}) \in T_{(z,w)}^{\mathbb{C}}M$. Then $\sum_k r_{z_k}(z)X_k = 0$, because $X \in T_z^{\mathbb{C}}\partial D$. For each $k = 2, \ldots, n$ we have $w_{k-1} = \frac{r_{z_k}(z)}{r_{z_1}(z)}$ and

$$0 = \overline{\partial}_{(X,Y)} S_k(z,w) = \sum_j r_{z_k \overline{z_j}}(z) \overline{X_j} - w_{k-1} \sum_j r_{z_1 \overline{z_j}}(z) \overline{X_j},$$

 \mathbf{SO}

$$r_{z_1}(z)\sum_j r_{z_k\overline{z_j}}(z)\overline{X_j} = r_{z_k}(z)\sum_j r_{z_1\overline{z_j}}(z)\overline{X_j}$$

Note that the last equality holds also for k = 1. Hence

$$r_{z_1}(z)\sum_{j,k} r_{z_k\overline{z_j}}(z)\overline{X_j}X_k = \sum_k r_{z_k}(z)\sum_j r_{z_1\overline{z_j}}(z)\overline{X_j}X_k = \\ = \left(\sum_k r_{z_k}(z)X_k\right)\left(\sum_j r_{z_1\overline{z_j}}(z)\overline{X_j}\right) = 0$$

Therefore by (2) from Definition 1.2 we get X = 0, and this directly implies Y = 0. \Box

4. Hölder estimates

We will prove some uniform 1/2-Hölder estimates for *E*-mappings $f : \mathbb{D} \longrightarrow D$ such that f(0) = z. These maps we will denote as a function between marked domains $f : (\mathbb{D}, 0) \longrightarrow (D, z)$. We need the following

Definition 4.1. For given c > 0 let the family $\mathcal{D}(c)$ consists of all marked domains (D, z) satisfying

- (1) dist $(z, \partial D) > \frac{1}{c};$
- (2) the diameter of D and the modulus of the normal curvature of ∂D are smaller than c;
- (3) for any $x, y \in D$ there exist $m < c^2$ and balls $B_0, \ldots, B_m \subset D$ of radius $\frac{1}{2c}$ such that $x \in B_0, y \in B_m$ and the distance between the centers of the balls B_j, B_{j+1} is smaller than $\frac{1}{4c}$ for $j = 0, \ldots, m-1$;
- (4) for every ball $B \subset \mathbb{C}^n$ of radius not greater than $\frac{1}{c}$ there exists a holomorphic map $\Phi: \overline{D} \longrightarrow \mathbb{C}^n$ such that
 - (a) for any $w \in \Phi(B \cap \partial D)$ there is a ball of radius smaller than c containing $\Phi(D)$ and tangent to $\partial \Phi(D)$ at w;
 - (b) Φ is biholomorphic on $B \cap \overline{D}$;

(c) the partial derivatives of the first order of Φ and Φ⁻¹ (on Φ(B ∩ D)) are bounded by c;
(d) dist(Φ(z), ∂Φ(D)) > 1/2.

For strictly pseudoconvex domain D and point $z \in D$ there exists c such that conditions (1)-(4) are satisfied. The construction of mapping Φ amounts to the construction of peak functions (see [2]). In the case of D strictly convex and the normal curvatures of ∂D greater than $\frac{1}{c}$, one can take $\Phi = \text{id}$.

Fix c > 1. Let us prove

Proposition 4.2. Let $f : (\mathbb{D}, 0) \longrightarrow (D, z)$ be an *E*-mapping. Then

$$d_D(f(\zeta)) \le C(1 - |\zeta|), \, \zeta \in \mathbb{D}$$

with constant C > 0 uniform if $(D, z) \in \mathcal{D}(c)$.

Proof. Thanks to the condition (3) there exists C_1 such that $k_D(z, w) < C_1$ if $\operatorname{dist}(w, \partial D) \geq \frac{1}{c}$. Fix $\zeta \in \mathbb{D}$ with $\operatorname{dist}(f(\zeta), \partial D) \geq \frac{1}{c}$. Then

$$k_D(f(0), f(\zeta)) \le C_2 - \frac{1}{2} \log(\operatorname{dist}(f(\zeta), \partial D)).$$

In the opposite case i.e. $\operatorname{dist}(f(\zeta), \partial D) < \frac{1}{c} \operatorname{let} \eta$ be the nearest point to $f(\zeta)$ on ∂D . Set $w \in D$ as the center of the ball B of radius $\frac{1}{c}$ tangent to ∂D at η . By condition (2) $B \subset D$. Hence

$$k_D(f(0), f(\zeta)) \le k_D(f(0), w) + k_D(w, f(\zeta)) \le \\ \le C_1 + k_B(w, f(\zeta)) \le C_3 - \frac{1}{2} \log(\operatorname{dist}(f(\zeta), \partial D)) = C_3 - \frac{1}{2} \log(\operatorname{dist}(f(\zeta), \partial D)).$$

On the other side, Proposition 2.6 used to extremal disc $f(\mathbb{D})$ through f(0) and $f(\zeta)$ gives

$$k_D(f(0), f(\zeta)) = \text{hyp dist}(0, \zeta) \ge -\frac{1}{2}\log(1 - |\zeta|).$$

Now we are going to obtain the same Hölder estimates for an *E*-mapping f and associated mappings \tilde{f} , ρ . Thanks to Proposition 2.5 the function $f'\tilde{f}$ is constant, so ρ is defined up to a constant factor. We may choose ρ such that $f'\tilde{f} \equiv 1$ i.e.

$$\rho(\zeta)^{-1} = \zeta f'(\zeta) \overline{\nu(f(\zeta))}, \, \zeta \in \overline{\mathbb{D}}.$$

In that way \tilde{f} and ρ are uniquely determined by f.

Proposition 4.3. Let $f : (\mathbb{D}, 0) \longrightarrow (D, z)$ be an *E*-mapping. Then

$$C_1 < \rho(\zeta)^{-1} < C_2, \, \zeta \in \partial \mathbb{D}$$

with constants $C_1, C_2 > 0$ uniform if $(D, z) \in \mathcal{D}(c)$.

Proof. For the upper estimate choose $\zeta \in \partial \mathbb{D}$ and define $\zeta_{\varepsilon} := (1 - \varepsilon)\zeta$ for small $\varepsilon > 0$. Set $B := B\left(f(\zeta), \frac{1}{c}\right)$ and let $\Phi : \overline{D} \longrightarrow \mathbb{C}^n$ be chosen to the ball B as described in the condition (4). One can assume that $\Phi(f(\zeta)) = 0$ and the normal vector to $\partial \Phi(D)$ at 0 is $N := (1, 0, \dots, 0)$. Then $\Phi(D)$ is contained in the half space $\{w \in \mathbb{C}^n : \operatorname{Re} w_1 < 0\}$. Putting $h := \Phi \circ f$ we have

$$h_1(\mathbb{D}) \subset \{w_1 \in \mathbb{C} : \operatorname{Re} w_1 < 0\}.$$

In virtue of the Schwarz lemma in the half plane

$$|h_1'(\zeta_{\varepsilon})| \le \frac{2\operatorname{Re} h_1(\zeta_{\varepsilon})}{1 - |\zeta_{\varepsilon}|^2} \approx \frac{\operatorname{dist}(h(\zeta_{\varepsilon}), \partial \Phi(D)))}{1 - |\zeta_{\varepsilon}|} \quad \text{as} \quad \varepsilon \to 0,$$

since the transversality of $t \mapsto \Phi(f(t\zeta))$ to $\partial \Phi(D)$ is equivalent to the transversality of $t \mapsto f(t\zeta)$ to ∂D and the second transversality follows from

$$\operatorname{Re}\left(\left.\frac{d}{dt}f(t\zeta)\right|_{t=1}\overline{\nu(f(\zeta))}\right) = \operatorname{Re}\left(f'(\zeta)\overline{\zeta}\overline{\nu(f(\zeta))}\right) = \rho(\zeta)^{-1}.$$

Clearly

$$\frac{\operatorname{dist}(\Phi(f(\zeta_{\varepsilon})), \partial \Phi(D))}{1 - |\zeta_{\varepsilon}|} \approx \frac{\operatorname{dist}(f(\zeta_{\varepsilon}), \partial D)}{1 - |\zeta_{\varepsilon}|}$$

which, by Proposition 4.2, does not exceed some constant. Now the upper estimate follows from the observation

$$|f'(\zeta)\overline{\nu(f(\zeta))}| \le C_3|h'(\zeta)\overline{\nu(h(\zeta))}| = C_3|h'_1(\zeta)|.$$

Indeed, if ρ is a defining function for D in the neighbourhood of $f(\zeta)$ then

$$|f'(\zeta)\overline{\nu(f(\zeta))}| = \frac{|(\varrho \circ f)'(\zeta)|}{|\nabla \varrho(f(\zeta))|}$$

and analogously

$$\begin{split} |h'(\zeta)\overline{\nu(h(\zeta))}| &= \frac{|(\varrho \circ \Phi^{-1} \circ h)'(\zeta)|}{|\nabla(\varrho \circ \Phi^{-1})(h(\zeta))|} = \\ &= \frac{|(\varrho \circ f)'(\zeta)|}{|\nabla \varrho(f(\zeta))\overline{(\Phi^{-1})'}(\Phi(f(\zeta)))|} \geq \frac{|(\varrho \circ f)'(\zeta)|}{|\nabla \varrho(f(\zeta))|} \frac{1}{c\sqrt{n}} \end{split}$$

The lower estimate is related to a lemma of E. Hopf. Note that for small $\varepsilon>0$ the function

$$\varrho(w) := -\log(\varepsilon + \operatorname{dist}(w, \partial D)) + \log \varepsilon, \ w \in D_{\varepsilon},$$

where D_{ε} is an ε -envelope of D i.e. the set $\{w \in \mathbb{C}^n : \operatorname{dist}(w, D) < \varepsilon\}$, is plurisubharmonic and defining for D. Indeed, we have

$$-\log(\varepsilon + \operatorname{dist}(w, \partial D)) = -\log(\operatorname{dist}(w, \partial D_{\varepsilon})), \ w \in D_{\varepsilon}$$

and for sufficiently small ε the domain D_{ε} is pseudoconvex.

Let us define a non-positive subharmonic function $v := \rho \circ f : \overline{\mathbb{D}} \longrightarrow \mathbb{R}$. Since $|f(\lambda) - z| < c$ for $\lambda \in \mathbb{D}$, we have

$$|f(\lambda) - z| < \frac{1}{2c}$$
 if $|\lambda| \le \frac{1}{2c^2}$

Therefore, for fixed $\zeta \in \partial \mathbb{D}$

$$M_{\zeta}(x) := \max_{t \in [0,2\pi]} v(\zeta e^{x+it}) \le -\log\left(1 + \frac{1}{2c\varepsilon}\right) =: -C_4 \text{ if } x \le -\log(2c^2).$$

Since M_{ζ} is convex for $x \leq 0$ and $M_{\zeta}(0) = 0$ we get

$$M_{\zeta}(x) \le \frac{C_4 x}{\log(2c^2)}$$
 for $-\log(2c^2) \le x \le 0.$

Hence

$$\frac{C_4}{\log(2c^2)} \le \left. \frac{d}{dx} v(\zeta e^x) \right|_{x=0} = \zeta f'(\zeta) \overline{\nu(f(\zeta))} |\nabla \varrho(f(\zeta))|.$$

Easy calculations give

$$\frac{\partial \varrho}{\partial \nu}(f(\zeta)) = \frac{1}{\varepsilon}$$

thus

$$|\nabla \varrho(f(\zeta))| = \nabla \varrho(f(\zeta)) \frac{\nabla \varrho(f(\zeta))}{|\nabla \varrho(f(\zeta))|} = \nabla \varrho(f(\zeta))\nu(f(\zeta)) = \frac{1}{\varepsilon}.$$

Proposition 4.4. Let $f: \overline{\mathbb{D}} \to \overline{D}$ be an *E*-mapping. Then

$$f(\zeta_1) - f(\zeta_2)| \le C(|\zeta_1 - \zeta_2|)^{1/2}, \ \zeta_1, \zeta_2 \in \mathbb{D},$$

where C is uniform if $(D, z) \in \mathcal{D}(c)$.

Lemma 4.5. Let $g : \mathbb{D} \to \mathbb{B}(z_0, R)$ be a holomorphic mapping such that $|g(0) - z_0| = r$. Then

$$|g'(0)| \le (R^2 - r^2)^{1/2}.$$

Proof. Assume that $z_0 = 0$ and R = 1. When r = 0 proof is similar to a proof of classical Schwarz Lemma. Assume $r \neq 0$ and choose an automorphism φ of \mathbb{B}_n such that $\varphi(g(0)) = 0$. From the explicite formula for $\varphi'(g(0))$ we get that $|\varphi'(g(0))| \leq \frac{1+\sqrt{1-r^2}}{1-r^2}$ (i.e. see [5] Theorem 2.2.2 p. 26). From thesis for r = 0 we get that $|(\varphi(g(0)))'| \leq 1$, so $|g'(0)| \leq \sqrt{1-r^2}$.

Proof of general case, when $\mathbb{B}(z_0, R)$ is a ball with center at z_0 and radius R, is similar.

Theorem 4.6 (Littlewood, see [3] Theorem 3 p. 397). Let $f : \overline{\mathbb{D}} \to D$ be regular on \mathbb{D} and continuous on $\overline{\mathbb{D}}$. Then for $0 < \alpha \leq 1$ following properties are equivalent:

(5)
$$|f(e^{i\theta}) - f(e^{i\theta'})| \le K|\theta - \theta'|^{\alpha}$$

(6) $|f'(\zeta)| \le M(1-|\zeta|)^{\alpha-1}, \ \zeta \in \mathbb{D}$

Theorem 4.7 (Hardy, Littlewood, see [3] Theorem 4 p. 399). Let $f : \overline{\mathbb{D}} \to D$ be regular on \mathbb{D} and continuous on $\overline{\mathbb{D}}$ such that $|f(e^{i\theta}) - f(e^{i\theta'})| \le K |\theta - \theta'|^{\alpha}, \ 0 < \alpha \le 1$. Then $|f(\zeta) - f(\zeta')| \le K |\zeta - \zeta'|^{\alpha}, \ \zeta \in \mathbb{D}.$

Proof of Proposition 4.4. Fix $\zeta_0 \in \mathbb{D}$. Let Z denote point in ∂D such that $\operatorname{dist}(f(\zeta_0), \partial D) = |f(z_0) - Z|$ and let $\mathbb{B}(Z_0, R)$ denote a smallest ball tangent to ∂D at Z containing D. Define

$$h(\zeta) = f\left(\frac{\zeta_0 - \zeta}{1 - \overline{\zeta_0}\zeta}\right)$$

Then h is holomorphic, $h(\mathbb{D}) \subset \mathbb{B}(Z_0, R)$ and $h(0) = f(\zeta_0)$. Using Lemma 4.5 we get

$$|h'(0)| \le \sqrt{|Z_0 - Z|^2 - |f(\zeta_0) - Z_0|^2} \le C_1 \sqrt{|f(\zeta_0) - Z|}$$

where C_1 depends only on diameter of D.

From the formula for $h'(\zeta)$ we get $h'(0) = f'(\zeta_0)(\zeta_0\overline{\zeta_0} - 1)$ and

$$|f'(\zeta_0)| = \frac{1}{1 - |\zeta_0|^2} |h'(0)| \le C_1 \frac{\sqrt{\operatorname{dist}(f(\zeta_0), \partial D)}}{1 - |\zeta_0|^2}$$

From Proposition 4.2

$$|f'(\zeta_0)| \le C_2 \frac{\sqrt{1-|\zeta_0|}}{1-|\zeta_0|^2} \le C_3 \frac{1}{\sqrt{1-|\zeta_0|}}.$$

Since this inequality is true for every $\zeta \in \mathbb{D}$ we get the thesis using Theorems 4.6 and 4.7 with $\alpha = 1/2$.

Proposition 4.8. Let $f: \overline{\mathbb{D}} \to \overline{D}$ be an *E*-mapping. Then

$$|p(\zeta_1) - p(\zeta_2)| \le C(|\zeta_1 - \zeta_2|)^{1/2}, \ \zeta_1, \zeta_2 \in \partial \mathbb{D},$$

where C is uniform if $(D, z) \in \mathcal{D}(c)$.

Proof. Assume that there exists $C_1 > 0$ such that proposition is true for $\zeta_1, \ \zeta_2 \in \partial \mathbb{D}$ such that $|\zeta_1 - \zeta_2| \leq C_1$. The general case follows immediately: there exists a finite N depending only on C_1 , such that for every $\zeta_1, \ \zeta_2 \in \partial \mathbb{D}, \ |\zeta_1 - \zeta_2| > C_1$ there exists $\{\eta_j\}_{j=1}^N \subset \partial \mathbb{D}, \ \eta_1 = \zeta_1, \ \eta_N = \zeta_2, \ |\eta_j - \eta_k| \leq C_1 \text{ for } j, \ k \in \{1, \ldots, N\}.$ Then

$$|p(\zeta_1) - p(\zeta_2)| \le |p(\eta_1) - p(\eta_2)| + \ldots + |p(\eta_{N-1}) - p(\eta_N)|$$

$$\le C(\sqrt{|\eta_1 - \eta_2|} + \ldots + \sqrt{|\eta_{N-1} - \eta_N|}) \le CN\sqrt{C_1} < CN(|\zeta_1 - \zeta_2|)^{1/2}$$

So it is sufficient to prove, that such C_1 really exists.

Fix $\zeta_1 \in \partial \mathbb{D}$. Without loss of generality we may assume that $\nu_1(f(\zeta_1)) = 1$. Choose C_1 such that $|\nu_1(f(\zeta)) - 1| < 1/2$ for $|\zeta - \zeta_1| \le 2C_1$. Such C_1 exists because of continuity of function $\nu \circ f$.

Construct new function $\varphi : \partial \mathbb{D} \to \mathbb{C}$ such that:

- $\varphi(\zeta) = \nu_1(f(\zeta))$ for $|\zeta \zeta_1| \le 2C_1$,
- $|\varphi(\zeta) 1| < 1/2$ for all $\zeta \in \partial \mathbb{D}$,
- $\varphi \in \mathcal{C}^{1/2}(\partial \mathbb{D})$ and $\|\nu \circ f\|_{\mathcal{C}^{1/2}(\partial \mathbb{D})} = \|\varphi\|_{\mathcal{C}^{1/2}(\partial \mathbb{D})}$

Let $r: \partial \mathbb{D} \to \mathbb{R}$ be such that $r+i \text{Im} \log \varphi$ extends to function holomorphic on \mathbb{D} . Because φ is 1/2-Hölder continuous, $\log \varphi$ has the same property and using Privaloff's theorem we can show, that r is also 1/2-Hölder continuous and it's norm is uniformly bounded. Define $q := r - \text{Re} \log \varphi$, which from the definition is 1/2-Hölder continuous with constant C_2 , depending on C_1 . Function $q + \log \varphi = r + i \text{Im} \varphi$ extends to $h: \overline{\mathbb{D}} \to \mathbb{C}$, holomorphic in \mathbb{D} , continuous at $\overline{\mathbb{D}}$. Because on the boundary h = q, which is 1/2-Hölder continuous, from Theorem 4.7 we get 1/2-Hölder continuity of h in \mathbb{D} .

Define functions $g(\zeta) := \widetilde{f}_1(\zeta)e^{-h(\zeta)}$ and $G(\zeta) = g(\zeta)/\zeta$. Then g is defined on $\overline{\mathbb{D}}$, holomorphic in \mathbb{D} , G is defined on $\overline{\mathbb{D}} \setminus \{0\}$, holomorphic in $\mathbb{D} \setminus \{0\}$. For $\zeta \in \partial \mathbb{D}$ we have that

$$g(\zeta) = \zeta p(\zeta) \overline{\nu_1(f(\zeta))} e^{-r(\zeta)} e^{i \operatorname{Im} \log \varphi(\zeta)}$$

which, combined with unform boundness of r and equality $\|\nu \circ f\|_{\mathcal{C}^{1/2}(\partial \mathbb{D})} = \|\varphi\|_{\mathcal{C}^{1/2}(\partial \mathbb{D})}$, gives uniform boundness of g. Define

$$U_1 := \{ \zeta \in \mathbb{C} : |\zeta - \zeta_1| < 2C_1 \}.$$

Then G is uniformly bounded on $\overline{\mathbb{D}} \cap U_1$. Moreover, for $\zeta \in \partial \mathbb{D} \cap U_1$ we have

$$G(\zeta) = \frac{g(\zeta)}{\zeta} = p(\zeta)\overline{\nu_1(f(\zeta))}e^{-q(\zeta)}e^{-\log\varphi(\zeta)} = p(\zeta)e^{-r(\zeta)}e^{\operatorname{Re}\log\varphi(\zeta)} \in \mathbb{R}.$$

Because we can extend G holomorphically through $\partial \mathbb{D} \cap U_1$ to a function bounded on U_1 , G is 1/2-Hölder continuous on connected components of $U_1 \cap \overline{\mathbb{D}}$, in particular for every $|\zeta_1 - \zeta_2| < C_1$

$$|G(\zeta_1) - G(\zeta_2)| \le |\zeta_1 - \zeta_2|.$$

Now, since $p(\zeta) = (G(\zeta)e^h)/(\overline{\nu_1(f(\zeta))})$ and for $|\zeta_1 - \zeta_2| < C_1$ all functions G, h and $\nu_1 \circ f$ are 1/2-Hölder continuous, we get the thesis.

Proposition 4.9. Let $f: \overline{\mathbb{D}} \to \overline{D}$ be an *E*-mapping. Then

$$|\widetilde{f}(\zeta_1) - \widetilde{f}(\zeta_2)| \le C(|\zeta_1 - \zeta_2|)^{1/2}, \ \zeta_1, \zeta_2 \in \overline{\mathbb{D}},$$

where C is uniform if $(D, z) \in \mathcal{D}(c)$.

Proof. Using Propositions 4.4 and 4.8 we have desired inequality for ζ_1 , $\zeta_2 \in \partial \mathbb{D}$. Application of Theorem 4.7 with $\alpha = 1/2$ finishes the proof.

5. Perturbation of the domain

We will describe what happens to E-mapping if the domain D is perturbed a little.

Proposition 5.1. Let $f : \mathbb{D} \longrightarrow D$ be an *E*-mapping. Then there is a biholomorphism $\Phi : \overline{D} \longrightarrow \overline{G}$ such that

- (1) $g(\zeta) := \Phi(f(\zeta)) = (\zeta, 0, \dots, 0), \, \zeta \in \mathbb{D};$
- (2) $\nu(g(\zeta)) = (\zeta, 0, \dots, 0), \, \zeta \in \partial \mathbb{D};$
- (3) for any $\zeta \in \partial \mathbb{D}$ the point $g(\zeta)$ is a point of strict linear convexity of ∂G , i.e. for $w \in T^{\mathbb{C}}(g(\zeta))$ near $g(\zeta)$ and positive constant c the inequality

$$\operatorname{dist}(w,G) \ge c|w - g(\zeta)|^2$$

holds.

Proof. After performing, if necessary, a linear change of coordinates one can assume that \tilde{f}_1, \tilde{f}_2 do not have common zeroes in $\overline{\mathbb{D}}$. Then there are holomorphic maps $h_1, h_2 : \overline{\mathbb{D}} \longrightarrow \mathbb{C}$ such that $h_1 \tilde{f}_1 + h_2 \tilde{f}_2 \equiv 1$. Indeed, let $\tilde{f}_j = F_j P_j, j = 1, 2$, where F_j are holomorphic and non-zero in $\overline{\mathbb{D}}$ and P_j are polynomials with all zeroes in $\overline{\mathbb{D}}$ (recall that \tilde{f}_j extend analytically through $\partial \mathbb{D}$). Then P_j are relatively prime, so there are polynomials Q_j , j = 1, 2 such that

$$Q_1P_1 + Q_2P_2 \equiv 1.$$

Hence

$$\frac{Q_1}{F_1}\widetilde{f}_1 + \frac{Q_2}{F_2}\widetilde{f}_2 \equiv 1$$

and $h_j := Q_j/F_j$, j = 1, 2 extend analytically through $\partial \mathbb{D}$.

Consider the mapping $\Psi : \mathbb{D} \times \mathbb{C}^{n-1} \longrightarrow \mathbb{C}^n$ defined as

(7)
$$\Psi_1(Z) := f_1(Z_1) - Z_2 \widetilde{f}_2(Z_1) - h_1(Z_1) \sum_{j=3}^n Z_j \widetilde{f}_j(Z_1),$$

(8)
$$\Psi_2(Z) := f_2(Z_1) + Z_2 \widetilde{f}_1(Z_1) - h_2(Z_1) \sum_{j=3}^n Z_j \widetilde{f}_j(Z_1),$$

(9)
$$\Psi_j(Z) := f_j(Z_1) + Z_j, \ j = 3, \dots, n.$$

We claim that Ψ is biholomorphic on $G := \Psi^{-1}(D)$. It suffices to show that if $\Psi(Z) = \Psi(W) = z \in D$ then Z = W.

By direct computation both $\zeta = Z_1$ and $\zeta = W_1$ solve the equation

$$\tilde{f}(\zeta)(z - f(\zeta)) = 0$$

It was demonstrated in the proof of Proposition 2.1 that it has exactly one solution. Hence $Z_1 = W_1$. By (9) we have $Z_j = W_j$ for j = 3, ..., n. Finally $Z_2 = W_2$ follows from one of the equations (7), (8).

It is clear that Ψ extends to a neighbourhood of $\overline{\mathbb{D}} \times \mathbb{C}^{n-1}$ and Ψ is biholomorphic also on a neighbourhood of $\Psi^{-1}(\overline{D})$. The map $\Phi := \Psi^{-1}$ has desired properties. \Box

Proposition 5.2. Let $W : \partial \mathbb{D} \to GL(m, \mathbb{C})$ be a matrix valued \mathcal{C}^{ω} mapping such that $W(\zeta)$ is self-adjoint for every $\zeta \in \partial \mathbb{D}$. Then there exists a holomorphic mapping $H : \overline{\mathbb{D}} \to GL(m, \mathbb{C})$ such that $HH^* = W$ on $\partial \mathbb{D}$.

Let $D_0 \subset \mathbb{C}^n$ be a strictly linearly convex domain with a real analytic boundary. Then there exists an open neighbourhood V_0 of ∂D and a real analytic defining function $r_0: V_0 \to \mathbb{R}$ such that $dr_0 \neq 0$ and $D_0 \cap V_0 = \{z \in V_0: r_0(z) < 0\}$. It is sraightforward that r_0 extends to a holomorphic function on an open neighbourhood $V \subset \mathbb{C}^n$ of V_0 in the complexification of $\mathbb{R}^{2n} \cong \mathbb{C}^n$. Without losing generality we may assume that r_0 is bounded on V. Let

$$X := \{ r \in \mathcal{O}(V) \text{ s.t. } r(V_0) \subset \mathbb{R} \text{ and } r \text{ is bounded} \},\$$

which equipped with the sup-norm is a Banach space. If $r \in X$ is near to r_0 (w.r.t. the sup-norm), then $\{z \in V_0 : r(z) = 0\}$ is a compact real analytic hypersurface which bounds a bounded domain, say D^r .

Definition 5.3. We say that a domain D is near to D_0 if its defining function r can be taken from X, near to r_0 .

Proposition 5.4. Let $f_0: \mathbb{D} \to D_0$ be an E-mapping. Then there exist an open neighbourhood U of the point $(r_0, f'_0(0))$ in the space $X \times \mathbb{C}^n$ and a real analytic mapping $\Gamma: U \to \mathcal{C}^{1/2}(\overline{\mathbb{D}})$ such that $\Gamma(r_0, f'_0(0)) = f_0$ and for any $(r, v) \in U$ the mapping $f := \Gamma(r, v)$ is an E-mapping into D^r such that $f(0) = f_0(0)$ and $f'_0(0) = \lambda v, \lambda > 0$. Furthermore, let $\xi \in (0, 1)$. Then there exist an open neighbourhood W of $(r_0, f_0(\xi))$ in $X \times D_0$ and two real analytic mappings $\Lambda: W \to \mathcal{C}^{1/2}(\overline{\mathbb{D}}), \Omega: W \to (0, 1)$ such that $\Lambda(r_0, f_0(\xi)) = f_0, \Omega(r_0, f_0(\xi)) = \xi$, and for any $(r, v) \in W$ the mapping $f := \Lambda(r, v)$ is an E-mapping into D^r satisfying $f(0) = f_0(0)$ and $f(\Omega(r, v)) = v$.

Proof. We shall prove the first statement. The proof of the second one is similar.

Consider the Sobolev space $W^{2,2}(\mathbb{T})$ of functions on \mathbb{T} whose first two derivatives are in $L^2(\mathbb{T})$. It is known that we have the following characterization:

$$W^{2,2}(\mathbb{T}) = \{ f \in L^2(\mathbb{T}) : \sum_{k=-\infty}^{\infty} (1+k^2+k^4) |\widehat{f}_k|^2 < \infty \},\$$

where \widehat{f}_k 's are the Fourier coefficients of f. Note we have $W^{2,2} \subset \mathcal{C}^{1/2} \subset \mathcal{C}$. To see the first inclusion take $z_1, z_2 \in \mathbb{T}$ and compute:

$$\begin{aligned} |\sum_{k=-\infty}^{\infty} \widehat{f}_k z_1^k - \sum_{k=-\infty}^{\infty} \widehat{f}_k z_2^k| &\leq \sum_{k=-\infty}^{\infty} |\widehat{f}_k| |z_1^k - z_2^k| \leq \\ &\leq \sum_{k=-\infty}^{\infty} |\widehat{f}_k| |z_1 - z_2| |z_1^{k-1} + z_1^{k-2} z_2^+ \dots + z_2^{k-1}| \leq \sum_{k=-\infty}^{\infty} k |\widehat{f}_k| |z_1 - z_2| \leq \\ &\leq \sqrt{2} \sum_{k=-\infty}^{\infty} k |\widehat{f}_k| \sqrt{|z_1 - z_2|}, \end{aligned}$$

and it is an easy observation that the series $\sum_{k=-\infty}^{\infty} k |\hat{f}_k|$ is convergent. Moreover, both inclusions are continuous, which also implies their real analyticity. Put

$$Q := W^{2,2}(\mathbb{T}, \mathbb{R}), \quad Q_0 := Q \cap \{q : q(1) = 0\}, \quad A := W^{2,2}(\mathbb{T}, \mathbb{C}^n),$$

 $B := A \cap \{g : g \text{ extends holomorphically to } \mathbb{D} \text{ and the extension is } 0 \text{ at the origin} \},\$

$$\overline{B} := \{ \overline{g} : g \in B \}.$$

Introduce a bounded projection

$$\pi: A \ni \sum_{k=-\infty}^{\infty} a_k e^{ikt} \mapsto \sum_{k=-\infty}^{-1} a_k e^{ikt} \in \overline{B}.$$

Observe that $g \in A$ admits a holomorphic extension to \mathbb{D} if and only if $\pi(g) = 0$.

Using Proposition 5.1 we may assume without losing generality that $f_0(\zeta) = (\zeta, 0, ..., 0)$, $\overline{\nu(f_0(\zeta))} = r_{0z}(f_0(\zeta)) = (\overline{\zeta}, 0, ..., 0)$ and that for any $\zeta \in \mathbb{T}$, $f_0(\zeta)$ is a point of strict linear convexity of D_0 . Observe that the latter means that for any nonzero $v \in \mathbb{C}^{n-1}$ there is

(10)
$$\sum_{i,j=2}^{n} r_{0_{z_i \overline{z_j}}}(f_0(\zeta)) v_i \overline{v_j} > |\sum_{i,j=2}^{n} r_{0_{z_i z_j}}(f_0(\zeta)) v_i v_j|$$

Consider the mapping $\Phi: X \times \mathbb{C}^n \times B \times Q_0 \times \mathbb{R} \to Q \times \overline{B} \times \mathbb{C}^n$ defined by

$$\Phi(r, v, f, q, \lambda) := (r \circ f, \pi((1+q)\zeta(r_z \circ f)), f'(0) - \lambda v),$$

where ζ is just the identity function on the unit circle. From now on we shall identify $f \in B$ with its extension to \mathbb{D}^1 .

We shall show that there exist an open neighbourhood U of $(r_0, f'_0(0))$ in $X \times \mathbb{C}^n$ and a real analytic mapping $\Psi : U \to B \times Q_0 \times \mathbb{R}$ such that for any $(r, v) \in U$ there is $\Phi(r, v, \Psi(r, v)) = 0$, which will finish the proof.

Indeed, suppose we have such U and Ψ . Observe first that for (r, f'(0)) sufficiently close to $(r_0, f'_0(0))$, f is an E-mapping into D^r such that f(0) = 0 and $f'(0) = \lambda v$ iff there exists a $q \in Q_0$ such that q > -1 and $\Phi(r, v, f, q, \lambda) = 0$. The only problem here is to prove the fourth condition from the definition of an E-mapping in the backward implication. This fourth condition follows from the fact that for (r, f'(0)) near to $(r_0, f'_0(0))$, f and f_0 are uniformly close and then the respective winding numbers are equal.

In this situation taking Γ as the composition of Ψ with the projection $\pi_B : B \times Q_0 \times \mathbb{R} \to B$ and the inclusion $W^{2,2} \subset \mathcal{C}^{1/2}$ does the job.

To this end observe that Φ is real analytic, hence the existence of such U, Ψ would be a direct consequence of the implicit function theorem if only the partial derivative

$$\Phi_{(f,q,\lambda)}(r_0, f_0'(0), f_0, 0, 1) : B \times Q_0 \times \mathbb{R} \to Q \times \overline{B} \times \mathbb{C}^{n!}$$

is invertible. It is an easy computation to show that for a fixed $(\tilde{f}, \tilde{q}, \tilde{\lambda}) \in B \times Q_0 \times \mathbb{R}$ the following equality holds:

$$\Phi_{(f,q,\lambda)}(r_0, f_0'(0), f_0, 0, 1)(\widetilde{f}, \widetilde{q}, \widetilde{\lambda}) := \frac{d}{dt} \Big|_{t=0} \Phi(r_0, f_0'(0), f_0 + t\widetilde{f}, t\widetilde{q}, 1 + t\widetilde{\lambda}) =$$
$$= ((r_{0z} \circ f_0)\widetilde{f} + (r_{0\overline{z}} \circ f_0)\overline{\widetilde{f}}, \pi(\widetilde{q}\zeta r_{0z} \circ f_0 + \zeta(r_{0zz} \circ f_0)\widetilde{f} + \zeta(r_{0z\overline{z}} \circ f_0)\overline{\widetilde{f}}), \widetilde{f}'(0) - \widetilde{\lambda}f_0'(0)).$$

From now on we will consider $r_{0z}, r_{0\overline{z}}$ as row vectors, $\tilde{f}, \overline{\tilde{f}}$ as column vectors and $r_{0zz} = (\frac{\partial^2 r_0}{\partial z_i \partial z_j}), r_{0z\overline{z}} = (\frac{\partial^2 r_0}{\partial z_i \partial \overline{z_j}})$ as $n \times n$ matrices.

We have to show that for fixed $\eta \in Q, \varphi \in \overline{B}, v \in \mathbb{C}^n$ there exist exactly one element $(\tilde{f}, \tilde{q}, \tilde{\lambda}) \in B \times Q_0 \times \mathbb{R}$ satisfying

(11)
$$(r_{0z} \circ f_0)\tilde{f} + (r_{0\overline{z}} \circ f_0)\overline{\tilde{f}} = \eta_{\overline{z}}$$

(12)
$$\pi(\widetilde{q}\zeta r_{0z}\circ f_0 + \zeta(r_{0zz}\circ f_0)\widetilde{f} + \zeta(r_{0z\overline{z}}\circ f_0)\overline{\widetilde{f}}) = \varphi,$$

²Observe that we have $q_0 = 0, \lambda_0 = 1$.

¹Hence we are able to consider f(0) and f'(0).

(13)
$$\widetilde{f}'(0) - \widetilde{\lambda} f'_0(0) = v.$$

Observe that in view of our assumption (11) turns out to be

$$\overline{\zeta}\widetilde{f}_1 + \zeta\overline{\widetilde{f}_1} = \eta$$

or

(14)
$$\operatorname{Re}(f_1/\zeta) = \eta/2.$$

Since $\tilde{f}_1(0) = 0$, the function \tilde{f}_1/ζ is holomorphic and then (14) determines $\tilde{f}_1/\zeta \in W^{2,2}(\mathbb{T})$ up to an imaginary additive constant, which may be computed using (13).

Indeed, let $\tilde{f}_1/\zeta = r/2 + is(r/2) + ic$, where s(r/2) is an adjoint function to r/2 and c is our imaginary additive constant we have to compute. Observe that $r/2(0) + is(r/2)(0) + ic = \tilde{f}'_1(0)$ and

$$r/2(0) + is(r/2)(0) + ic - \widetilde{\lambda} \operatorname{Ref}_{01}'(0) - i \operatorname{Imf}_{01}'(0) = \operatorname{Rev}_1 + i \operatorname{Imv}_1,$$

 $r/2(0) - \widetilde{\lambda} \operatorname{Ref}_{01}'(0) = \operatorname{Rev}_1,$

which yields $\tilde{\lambda}$ and then c. Observe that having $\tilde{\lambda}$, once again using (13), we can easily find $\tilde{f}'_2(0), \ldots, \tilde{f}'_n(0)$.

Consider (12), which in fact is a system of n equations with unknowns $\tilde{q}, \tilde{f}_2, \ldots, \tilde{f}_n$. Observe that \tilde{q} appears only in the first of the equations and the remaining n-1 equations mean exactly that the mapping

(15)
$$\zeta(r_{0\widehat{z}\widehat{z}} \circ f_0)\widehat{\widetilde{f}} + \zeta(r_{0\widehat{z}\widehat{z}} \circ f_0)\widehat{\widetilde{f}} - \psi^3$$

extends to a holomorphic mapping from \mathbb{D} into \mathbb{C}^{n-1} , where $\psi \in W^{2,2}(\mathbb{T}, \mathbb{C}^{n-1})$ may be obtained from φ and \tilde{f}_1 .

Indeed, to see this, write (12) in the form:

$$\pi(M_1 + \zeta M_2 + \zeta M_3) = M_4,$$

where M_1 is a column vector having \tilde{q} on the first place and zero's on the remaining n-1places, $M_2 = (A_i)_{i=1}^n$ is a column vector such that $A_i = \sum_{j=1}^n (\frac{\partial^2 r_0}{\partial z_i \partial z_j} \circ f_0) \tilde{f}_j$, $M_3 = (B_i)_{i=1}^n$ is a column vector such that $B_i = \sum_{j=1}^n (\frac{\partial^2 r_0}{\partial z_i \partial \overline{z}_j} \circ f_0) \tilde{f}_j$, and M_4 is a column vector with φ_i on

i-th place. This implies as follows:

$$\widetilde{q} + \zeta A_1 + \zeta B_1 - \varphi_1$$

admits a holomorphic extension to \mathbb{D} and for $i = 2, \ldots, n$,

$$\zeta A_i + \zeta B_i - \varphi_i$$

extends holomorphically to \mathbb{D} and

$$\psi = \left(\left(\frac{\partial^2 r_0}{\partial z_2 \partial z_1} \circ f_0 \right) \widetilde{f_1} + \left(\frac{\partial^2 r_0}{\partial z_2 \partial \overline{z_1}} \circ f_0 \right) \overline{\widetilde{f_1}} - \varphi_2, \dots, \left(\frac{\partial^2 r_0}{\partial z_n \partial z_1} \circ f_0 \right) \widetilde{f_1} + \left(\frac{\partial^2 r_0}{\partial z_n \partial \overline{z_1}} \circ f_0 \right) \overline{\widetilde{f_1}} - \varphi_n \right),$$

which derives (15). Put

$$g(\zeta) := \widetilde{\widetilde{f}}(\zeta)/\zeta, \quad \alpha(\zeta) := \zeta^2 r_{0\widehat{z}\widehat{z}}(f_0(\zeta)), \quad \beta(\zeta) := r_{0\widehat{z}\widehat{z}}(f_0(\zeta)).$$

Observe that α , β are $(n-1) \times (n-1)$ matrices depending analytically on ζ and g is a column vector in \mathbb{C}^{n-1} . This allows us to reduce our task to the following: we need to find a $g \in W^{2,2}(\mathbb{T}, \mathbb{C}^{n-1})$ such that g extends holomorphically to \mathbb{D} and

(16)
$$\alpha g + \beta \overline{g} - \psi$$
 extends holomorphically to \mathbb{D} .

Observe that we necessarily have $g(0) = \widehat{\tilde{f}'}(0)$. Moreover, in view of (10) it is an easy observation that for any $z \in \mathbb{C}^{n-1} \setminus \{0\}$ there is

(17)
$$|z^T \alpha z| < z^T \beta \overline{z}.$$

Note that $\beta(\zeta)$ is self-adjoint, hence using the Proposition 5.2 we get the existence of a holomorphic mapping $H : \mathbb{D} \to GL(n-1, \mathbb{C})$ satisfying $HH^* = \beta$. In this situation, (16) is equivalent to

(18)
$$H^{-1}\alpha g + H^{\star}\overline{g} - H^{-1}\psi \quad \text{extends holomorphically to } \mathbb{D},$$

or, if we denote $h := H^T g, \gamma := H^{-1} \alpha (H^T)^{-1}$,

(19)
$$\gamma h + \overline{h} - H^{-1}\psi$$
 extends holomorphically to \mathbb{D} .

Using (17) and the results of [6] we get for any $\zeta \in \mathbb{T}$ the norm of the symmetric matrix $\gamma(\zeta)$ is less than 1. In fact, take a $z \in \mathbb{C}^{n-1}$: ||z|| = 1. Then

$$|z^{T}\gamma z| = |z^{T}H^{-1}\alpha(H^{T})^{-1}z| < z^{T}H^{-1}\beta\overline{(H^{T})^{-1}z} = z^{T}H^{-1}HH^{\star}\overline{(H^{T})^{-1}}\overline{z} = ||z||^{2}.$$

We have to prove that there is an unique solution $h \in W^{2,2}(\mathbb{T})$ of (19), holomorphic on \mathbb{D} and such that h(0) = a with certain a.

Define the operator

$$P: W^{2,2}(\mathbb{T}, \mathbb{C}^{n-1}) \ni \sum_{k=-\infty}^{\infty} a_k e^{ikt} \mapsto \overline{\sum_{k=-\infty}^{-1} a_k e^{ikt}} \in W^{2,2}(\mathbb{T}, \mathbb{C}^{n-1}).$$

We shall show that a mapping $h \in W^{2,2}(\mathbb{T}, \mathbb{C}^{n-1}) \cap \mathcal{O}(\mathbb{D}, \mathbb{C}^{n-1})$ satisfies (19) and is such that h(0) = a if and only if it is a fixed point of the mapping

$$K: W^{2,2}(\mathbb{T}, \mathbb{C}^{n-1}) \ni h \mapsto P(H^{-1}\psi - \gamma h) + a \in W^{2,2}(\mathbb{T}, \mathbb{C}^{n-1}).$$

Indeed, take an $h \in W^{2,2}(\mathbb{T}, \mathbb{C}^{n-1}) \cap \mathcal{O}(\mathbb{D}, \mathbb{C}^{n-1})$ and suppose h(0) = a and $\gamma h + \overline{h} - H^{-1}\psi$ extends holomorphically to \mathbb{D} . We then have

$$h = a + \sum_{k=1}^{\infty} a_k e^{ikt}, \quad \overline{h} = \overline{a} + \sum_{k=1}^{\infty} a_k e^{-ikt} = \sum_{k=-\infty}^{-1} a_{-k} e^{ikt} + \overline{a},$$
$$P(h) = 0, \quad P(\overline{h}) = \sum_{k=1}^{\infty} a_k e^{ikt} = h - a$$

and

$$P(\gamma h + \overline{h} - H^{-1}\psi) = 0,$$

which implies

$$P(H^{-1}\psi - \gamma h) = h - a$$

and finally K(h) = h. Conversely, suppose K(h) = h. Then

$$P(H^{-1}\psi - \gamma h) = h - a = \sum_{\substack{k=1\\15}}^{\infty} a_k e^{ikt} + a_1 + a, \quad P(h) = 0$$

and

$$P(\overline{h}) = \sum_{k=-\infty}^{-1} a_{-k} e^{ikt} = \sum_{k=1}^{\infty} a_k e^{ikt} = h - a_1,$$

from which follows

$$P(\gamma h + \overline{h} - H^{-1}\psi) = P(\overline{h}) - P(H^{-1}\psi - \gamma h) = a - a_1$$

and

$$P(\gamma h + \overline{h} - H^{-1}\psi) = 0$$
 if only $a = a_1$.

Observe that $K(h)(0) = h(0) = P(H^{-1}\psi - \gamma h)(0) + a = a$ and we are done.

Thus it is enough to use the Banach fixed poit theorem. Yet, we have first to show that K is a contraction. To do this, consider in $W^{2,2}(\mathbb{T})$ the following norm

$$||h||_{\varepsilon} = ||h||_{L^{2}(\mathbb{T})} + \varepsilon ||h'||_{L^{2}(\mathbb{T})} + \varepsilon^{2} ||h''||_{L^{2}(\mathbb{T})},$$

with positive ε . We shall show that for ε sufficiently small, K is a contraction with respect to the norm $|| \cdot ||_{\varepsilon}$.

Indeed, for each pair $h_1, h_2 \in W^{2,2}(\mathbb{T})$ there is

(20)
$$||K(h_1) - k(h_2)||_{L^2(\mathbb{T})} = ||P(\gamma(h_2 - h_1))||_{L^2(\mathbb{T})} \le \le ||\gamma(h_2 - h_1)||_{L^2(\mathbb{T})} < \Lambda ||h_2 - h_1||_{L^2(\mathbb{T})}$$

with $\Lambda := ||\gamma|| < 1$. Moreover,

(21)
$$||K(h_1)' - K(h_2)'||_{L^2(\mathbb{T})} = ||P(\gamma h_2)' - P(\gamma h_1)'||_{L^2(\mathbb{T})} \le \le ||(\gamma h_2)' - (\gamma h_1)'||_{L^2(\mathbb{T})} = ||\gamma'(h_2 - h_1) + \gamma(h_2' - h_1')||_{L^2(\mathbb{T})},$$

in view of the equality P(h)' = P(h') Furthermore,

(22)
$$||K(h_1)'' = K(h_2)''||_{L^2(\mathbb{T})} \leq ||\gamma''(h_2 - h_1) + 2\gamma'(h_2' - h_1') + \gamma(h_1'' - h_2'')||_{L^2(\mathbb{T})},$$

because of the formula P(h'') = -P(h)''. Using now the finiteness of the norms $||\gamma'||, ||\gamma''||$, the fact that $||P|| \leq 1$ and piecing together (20), (21), (22), we see there exists an $\varepsilon > 0$ such that K is a contraction with respect to the norm $|| \cdot ||_{\varepsilon}$.

So far we have found \tilde{f} and $\tilde{\lambda}$ such that (11),(13) and the last n-1 equations from (12) are satisfied. To the end, it has to be shown that there exists an unique $\tilde{q} \in Q_0$ such that

$$\widetilde{q} + \zeta A_1 + \zeta B_1 - \varphi_1$$

admits a holomorphic extension to \mathbb{D} .

It is not hard to see that if

$$\pi(\zeta A_1 + \zeta B_1 - \varphi_1) = \sum_{k=-\infty}^{-1} a_k e^{ikt},$$

then \tilde{q} should be taken as follows:

$$\widetilde{q} = -\sum_{k=-\infty}^{-1} a_k e^{ikt} - \sum_{k=0}^{\infty} a_k e^{ikt},$$

with a real b_0 and $b_k = \overline{a_k}$ for $k = 1, 2, \ldots$

16

6. Proof of Theorem 1.5.

Here we prove the main result, i.e. Theorem 1.5. First, from Proposition 2.2, we know that E-mappings are (unique) extremals. So it is sufficient to prove that if we have $z, w \in D$ (resp $z \in D$ and $v \in \mathbb{C}^n$) then there is a E-mapping $f : \mathbb{D} \to D$ such that $f(0) = z, f(\zeta) = w$, with $1 > \zeta > 0$ (resp. f(0) = z and $f'(0) = \lambda v$ for $\lambda > 0$). Then any extremal mapping for (z, w) (resp. for (z, v)) must be equal to f (since they are unique extremal).

First we consider the case, when D is strictly convex and we prove that there is a E-mapping for $(z, w) \in D \times D$ (resp. for $(z, v) \in D \times \mathbb{C}^n$). Without loos of generality we may assume that $D \subset \mathbb{B}_n$, where \mathbb{B}_n is a open unit ball in \mathbb{C}^n . For $t \in [0, 1]$ consider the domains $D_t := tD + (1 - t)\mathbb{B}_n$. It is easy to see that D_t are strictly convex (since D and \mathbb{B}_n are) and $D \subset D_t$ for all $t \in [0, 1]$. Let T be a subset of [0, 1] such that for all $t \in T$ there is a E-mapping $f_t : \mathbb{D} \to D_t$ for $(z, v) \in D \times \mathbb{C}^n$ (resp. for $(z, w) \in D \times D$). It is easy to see that $0 \in T$. To prove that $1 \in T$, we need to know that $(D_t, z) \in \mathcal{D}(c)$ for some c > 0 independent of t. Since for t = 0 there is E-mapping, then from Proposition ?? there is a neighborhood T_0 of 0 in [0, 1] and

- there are an E-mappings $f_t : \mathbb{D} \to D_t$ and $\xi_t \in (0, 1)$ such that for all $t \in T_0$ we have $f_t : \mathbb{D} \to D_t$, $f_t(0) = f(0)$, and $f_t(\xi_t) = f(\xi)$ (in the case of Lempert function);
- there are an E-mappings $f_t : \mathbb{D} \to D_t$ and $\lambda_t > 0$ such that for all $t \in T_0$ we have $f_t(0) = f(0)$, and $f'_t(0) = \lambda_t v$ (in the case of Kobayashi-Royden pseudometric).

It means that T is open in [0, 1].

Now we prove that T is closed in [0, 1]. Let us take $(t_n) \subset T$ such that $t_n \to t$. We prove that $t \in T$. From Proposition 4.4, 4.8 and 4.9 we have that f_{t_n} and $\widetilde{f_{t_n}}$ are equicontinuous in $\mathcal{C}^{1/2}(\overline{\mathbb{D}})$. From Arzela-Ascoli theorem there is a subsequence $(s_n) \subset (t_n)$ such that $f_{s_n} \to g$ and $\widetilde{f_{s_n}} \to G$ uniformly. It is easy to see that $g : \mathbb{D} \to D_t$ is an E-mapping. So T is closed subset of [0, 1]. This ends the proof in the case strict convexity of D.

Let us back to general situation. Let D be a strictly linearly convex domain and let $(z, w) \in D \times D$ (resp. $(z, v) \in D \times \mathbb{C}^n$). Take $\mu \in \partial D$ such that $\operatorname{dist}(z, \partial D) = ||z - \mu||$. Since D is strictly linearly convex then μ is a point of strict convexity. There exist a neighborhood V_0 of μ in \mathbb{C}^n such that $V_0 \cap D$ is strictly convex. From previous part of proof there exist an E-mapping $g: \mathbb{D} \to V_0 \cap D$ for $(g(0), g(\xi))$ (resp. for (g(0), g'(0))) such that $g(\partial \mathbb{D}) \subset V_0 \cap \partial D$, so g is an E-mapping in D. Let Z := g(0) and $W := g(\xi)$ (resp. Z := g(0) and V := g'(0)). If Z = z and W = w (resp. Z = z and V = v) then we are done. In opposite situation we take a curves $z_t : [0.1] \to D$, $w_t : [0,1] \to D$ (resp. $z_t : [0.1] \to D$, $v_t : [0.1] \to \mathbb{C}^n$) which joint z and Z, w and W (resp. z and Z, v and V). Again let T be a subset of [0, 1] such that for $t \in T$ there is an E-mapping g_t in D such that $(g_t(0), g_t(\xi_t)) = (z_t, w_t)$ for some $\xi_t \in (0, 1)$ (resp. $(g_t(0), g'_t(0)) = (z_t, \lambda_t v_t)$ for some $\lambda_t > 0$). The same argumentation as above leads to T = [0, 1]. In particular there exist an E-mapping $f : \mathbb{D} \to D$ for (z, w) (resp. (z, v)).

References

- M. Andersson, M. Passare, R. Sigurdsson, Complex convexity and analytic functionals, Birkhauser, Basel-Boston-Berlin, 2004.
- J. E. Fornaess, Embedding Strictly Pseudoconvex Domains in Convex Domains, Am. J. Math 98, No. 2 (1976), 529-569.

- [3] G. M. Goluzin, Geometric theory of functions of a complex variable, Nauka, Moscow, 1966.
- [4] M. Jarnicki & P. Pflug, Invariant Distances and Metrics in Complex Analysis, Walter de Gruyter, 1993.
- [5] W. Rudin, Function theory in the unit ball of \mathbb{C}^n , Springer-Verlag, Berlin, 2008.
- [6] E. Tadmor, Complex symmetric matrices with strongly stable iterates, Linear algebra and its applications 78:65-77 (1986).