1. DEFINITIONS AND MAIN RESULTS

We will study extremal mappings in the sense of Lempert function and in the sense of Kobayashi-Royden pseudometric, so let us recall the objects we will deal with in this paper. Let \mathbb{D} denotes the unit disk in \mathbb{C}. Let $D \subset \mathbb{C}^{n}$ be a domain and let $z, w \in D$, and $v \in \mathbb{C}^{n}$. In this paper we consider two objects:
(1) $\quad k_{D}(z, w):=\inf \{\operatorname{hyp} \operatorname{dist}(\zeta, \xi): \exists f \in \mathcal{O}(\mathbb{D}, D)$ such that $f(\zeta)=z, f(\xi)=w\}$,
and

$$
\begin{equation*}
\kappa_{D}(z, v):=\sup \left\{\lambda>0: \exists f \in \mathcal{O}(\mathbb{D}, D): f(0)=z, f^{\prime}(0)=\lambda v\right\} . \tag{2}
\end{equation*}
$$

Using appropriate automorphisms of the unit disk, we can always assume that in (1) $\zeta=0$. First one we call Lempert function and second - Kobayashi - Royden pseudeometric. We call $f: \mathbb{D} \rightarrow D$ a k_{D}-extremal (resp. κ_{D}-extremal) if for f in (1) (resp. (22) the 'inf' is attained for some $z, w \in D, z \neq w$ (resp. the 'sup' is attained for some $z \in D, X \in \mathbb{C}^{n} \backslash\{0\}$). In general k is not a pseudodistance - consider a domain $D_{\alpha}:=\left\{(z, w) \in \mathbb{C}^{2}:|z|<1,|w|<1,|z w|<\alpha\right\}$, then for all $\alpha \in(0,1)$ the triangle inequality does not hold for $k_{D_{\alpha}}$. More examples the reader may find in [4].

To overcome the difficulty connected with the triangle inequality we modify the function k_{D} in such a way that the new function becomes a pseudodistance. For $z, w \in D$ we put

$$
k_{D}^{\prime}(z, w):=\inf \left\{\sum_{j=1}^{N} k_{D}\left(z_{j-1}, z_{j}\right): N \in \mathbb{N}, z_{0}=z, z_{1}, \ldots, z_{N} \in D, z_{N}=w\right\} .
$$

The function k_{D}^{\prime} is called the Kobayashi pseudodistance for D.
However, if D is strictly linearly convex, k_{D} will be a distance. This is because of
Theorem 1.1. Let $D \subset \mathbb{C}^{n}$ be a strictly linearly convex domain with \mathcal{C}^{k} boundary ($k=\infty$ or $k=\omega)$. Then $k_{D}=k_{D}^{\prime}=c_{D}$, where for $z, w \in D$ we define

$$
\begin{equation*}
c_{D}(z, w)=\sup \{\operatorname{hyp} \operatorname{dist}(F(z), F(w)): F \in \mathcal{O}(D, \mathbb{D})\} . \tag{3}
\end{equation*}
$$

Function (3) is called a Carathéodory distance.
Our main goal is to describe extremals in the sense of Lempert function and in the sense of Kobayashi-Royden pseudometric, in the case when D is strictly linearly convex domain with \mathcal{C}^{k} boundary (in this paper we always assume that $k=\infty$ or $k=\omega$). We say that

Definition 1.2 (See [1). Let $D \subset \mathbb{C}^{n}$ be a bounded domain. D is called linearly convex if trough any boundary point $z \in \partial D$ there goes an $(n-1)$-dimensional complex hyperplane that is disjoint from $D . D$ is called strictly linearly convex if
(1) D has \mathcal{C}^{2}-smooth boundary,
(2) the defining function r of D satisfies the inequality

$$
\sum_{j, k} r_{z_{j} \bar{z}_{k}}(a) w_{j} \bar{w}_{k}>\left|\sum_{j, k} r_{z_{j} z_{k}}(a) w_{k} w_{k}\right|,
$$

where $a \in \partial D, w=\left(w_{1}, \ldots, w_{n}\right) \in\left(\mathbb{C}^{n}\right)_{*}$ with $\sum_{j} r_{z_{j}}(a) w_{j}=0$.
We remark here that in the following sections D will always denote a strictly linearly convex domain which is, for the sake of simplicity, bounded by a real analytic hypersurface.

Remark 1.3. If D is strictly linearly convex domain, then each complex tangent plane intersect the boundary ∂D in precisely one point.

In addition, we shall use the following notations: $\mathcal{C}^{k}(K)$, where K is compact subset of \mathbb{C}^{n}, denotes the spaces of all mappings that are $[k]$-times differentiable in the interior of K, and in the case when k is an integer the derivatives up to order k extend continuously to K, in other case, i.e. $k-[k]:=c>0$, the derivatives up to order $[k]$ are c-Hölder continuous; $\mathcal{C}^{\omega}(K)$ denotes the set of functions that extend analytically to a neighborhood of K. Generally, if A is an arbitrary set in \mathbb{C}^{n}, then $\mathcal{C}^{k}(A)=\bigcap\left\{\mathcal{C}^{k}(K): K\right.$ compact and $K \subset$ $A\} .|\cdot|$ denotes the euclidean norm in \mathbb{C}^{n}. For $\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ we define $\widehat{z}:=\left(z_{2}, \ldots, z_{n}\right)$, and similarly, if $f=\left(f_{1}, \ldots, f_{n}\right)$ is a mapping into \mathbb{C}^{n}, then by \widehat{f} we define a mapping $\left(f_{2}, \ldots, f_{n}\right)$ into \mathbb{C}^{n-1}. Finally: for $z=\left(z_{1}, \ldots, z_{n}\right), w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{C}^{n} z \cdot w:=\sum_{j} z_{j} w_{j}$.

Before we formulate the main result of this paper we need another definition.
Definition 1.4. Let $D \in \mathbb{C}^{n}$ be a domain. We call a holomorphic mapping $f: \mathbb{D} \rightarrow D$ an E-mapping, if
(1) f extends to a \mathcal{C}^{k} function on $\overline{\mathbb{D}}$ (to be denoted by the same letter f);
(2) $f(\partial \mathbb{D}) \subset \partial D$;
(3) there exist a positive \mathcal{C}^{k} function $\rho: \partial \mathbb{D} \rightarrow \mathbb{R}$ such that the mapping $\partial \mathbb{D} \ni \zeta \mapsto$ $\zeta \rho(\zeta) \overline{\nu(f(\zeta))} \in \mathbb{C}^{n}$ extends to a \mathcal{C}^{k} mapping $\tilde{f}: \overline{\mathbb{D}} \rightarrow \mathbb{C}^{n}$, holomorphic in \mathbb{D} (here $\nu(z)$ denotes the outward unit normal vector to ∂D in z);
(4) the winding number of the function $\varphi(\zeta):=\overline{\nu(f(\zeta))} \cdot(z-f(\zeta))$ on $\partial \mathbb{D}$ is zero for all $z \in \mathbb{D}$.
Furthermore, we shall call a holomorphic mapping $f: \mathbb{D} \rightarrow D$ weakly- E-mapping if it possesses the above properties (1)-(4) with $k=1 / 2$.

Soon we shall see that there is no difference between E-mappings and weakly- E-mappings. $f(\mathbb{D})$ will be called a (weak) E-disk, if f will be a (weak) E-mapping.

From definition we have to compare f with all other $g \in \mathcal{O}(\mathbb{D}, D)$ to check that f is extremal. Next theorem shows how to describe extremal mappings, by checking certain properties of f alone.

Theorem 1.5. Let D be a strictly linearly convex domain with a \mathcal{C}^{k} boundary ($k=\infty$ or $k=\omega$). Then a holomorphic mapping $f: \mathbb{D} \rightarrow D$ is extremal in the sense of Lempert function (resp. in the sense of Kobayashi-Royden pseudometric) with respect to the points $(f(0), f(\xi))$ (resp. with respect to $\left(f(0), f^{\prime}(0)\right)$), if and only if f is an E-mapping.

Theorem above is the main result of this paper. The idea of its proof is the following: for any $z, w \in D$ (resp. any $z \in D$ and $v \in \mathbb{C}^{n}$) we prove that there is unique (weak) E-mapping, which is extremal for (z, w) (resp. (z, v)). Using standard tool, i.e. explicit function theorem, Arzela-Ascoli theorem we shall prove that trough any given pair of points there goes a E-disk. This will then establish Theorem 1.5.

2. Extremal mappings and E-mappings

Proposition 2.1. Let $f: \mathbb{D} \rightarrow D$ be an E-mapping. Then there exists a continuous mapping $F: \bar{D} \backslash f(\partial \mathbb{D}) \rightarrow \mathbb{D}$, holomorphic on D and such that $F \circ f=i d_{\mathbb{D}}$.

Proof. Set $A:=\bar{D} \backslash f(\partial \mathbb{D})$ and let φ_{z} denote the function from the condition (4) from the definition of E-mapping. Since D is strictly linearly convex, φ_{z} does not vanish in $\partial \mathbb{D}$ for any $z \in A$, so by the continuity argument the condition (4) holds for every z in some open neighbourhood W of the set A. Consider the function $G: W \times \overline{\mathbb{D}} \rightarrow \mathbb{C}$ given by

$$
G(z, \zeta):=\widetilde{f}(\zeta) \cdot(z-f(\zeta))
$$

We claim that for given $z \in W$ the equation $G(z, \zeta)=0$ has exactly one solution $\zeta \in \mathbb{D}$. Fix $z \in W$ and let ρ be as in the condition (3). We have

$$
G(z, \zeta)=\zeta \rho(\zeta) \varphi_{z}(\zeta)
$$

for $\zeta \in \partial \mathbb{D}$, so the winding number of the function $G(z, \cdot)$ on $\partial \mathbb{D}$ is equal to 1 . Since this function is holomorphic on \mathbb{D}, it has exactly one simple root $F(z) \in \mathbb{D}$. Therefore $G(z, F(z))=0$ and $\frac{\partial G}{\partial \zeta}(z, F(z)) \neq 0$. In virtue of the implicit mapping theorem, the function F is holomorphic on W.

Let us note that for given E-mapping f the mapping F satisfies the equation

$$
\begin{equation*}
\widetilde{f}(F(z)) \cdot(z-f(F(z)))=0 \tag{4}
\end{equation*}
$$

at every point $z \in \bar{D} \backslash f(\partial \mathbb{D})$.
Proposition 2.2. An E-mapping $f: \mathbb{D} \rightarrow D$ is the unique extremal mapping with respect to the point $z=f(0)$ and direction $v=f^{\prime}(0)$, and also with respect to the couple of points $z=f(0), w=f(\xi)$, with $\xi \in(0,1)$ being arbitrary.

Proof. We carry the proof in both cases simultaneously. Let F be as in the Proposition 2.1. Suppose $g: \mathbb{D} \rightarrow D$ is a holomorphic mapping such that $g(0)=z$ and:

- $g^{\prime}(0)=\lambda v$ for some $\lambda \geq 0$, in the first case,
- $g(\eta)=w$ for some $\eta \in(0,1)$, in the second case.

The function $F \circ g$ maps the unit disc to itself and satisfy $F(g(0))=F(f(0))=0$. Therefore by the Schwarz' lemma we get:

- $1 \geq\left|(F \circ g)^{\prime}(0)\right|=\lambda\left|(F \circ f)^{\prime}(0)\right|=\lambda$, so $\left|f^{\prime}(0)\right| \geq\left|g^{\prime}(0)\right|$, in the first case,
- $\eta \geq|(F \circ g)(\eta)|=|F(w)|=|(F \circ f)(\xi)|=\xi$, in the second case.

Therefore f is an extremal mapping.
We show that f is the unique extremal mapping. Suppose g is extremal. Then $\lambda=1$ (in the first case) or $\eta=\xi$ (in the second case), so there holds the equality in the above application of the Schwarz' lemma. This implies $F \circ g=i d_{\mathbb{D}}$.
We claim that $\lim _{\mathbb{D} \ni \zeta \rightarrow \zeta_{0}} g(\zeta)=f\left(\zeta_{0}\right)$ for each $\zeta_{0} \in \partial \mathbb{D}$. Suppose not. Then for some $\zeta_{0} \in \partial \mathbb{D}$ there is a sequence $\left(\zeta_{m}\right)_{m} \subset \mathbb{D}$ convergent to ζ_{0} and such that the limit $Z:=\lim _{m \rightarrow \infty} g\left(\zeta_{m}\right) \in \bar{D}$ exists and is not equal to $f\left(\zeta_{0}\right)$. Putting $z=g\left(\zeta_{m}\right)$ in the equation (4) we get

$$
0=\widetilde{f}\left(F\left(g\left(\zeta_{m}\right)\right)\right) \cdot\left(g\left(\zeta_{m}\right)-f\left(F\left(g\left(\zeta_{m}\right)\right)\right)\right)=\widetilde{f}\left(\zeta_{m}\right) \cdot\left(g\left(\zeta_{m}\right)-f\left(\zeta_{m}\right)\right)
$$

Passing $m \rightarrow \infty$ gives

$$
0=\widetilde{f}\left(\zeta_{0}\right) \cdot\left(Z-f\left(\zeta_{0}\right)\right)=\zeta_{0} p\left(\zeta_{0}\right) \overline{\nu\left(f\left(\zeta_{0}\right)\right)} \cdot\left(Z-f\left(\zeta_{0}\right)\right),
$$

so the vector $Z-f\left(\zeta_{0}\right)$ belongs to the complex tangent space of ∂D at $f\left(\zeta_{0}\right)$. Hence $Z=f\left(\zeta_{0}\right)$, because $Z \in \bar{D}$ and D is strictly linearly convex. This is a contradiction.

Proposition 2.3. If $f: \mathbb{D} \rightarrow D$ is an E-mapping and a is an automorphism of \mathbb{D}, then $f \circ a$ is an E-mapping.

Proof. Set $g:=f \circ a$. The conditions (1) and (2) are clear. To prove the condition (4), fix a point $z \in D$ and let φ_{f}, φ_{g} be as in the condition (4). Then $\varphi_{g}=\varphi_{f} \circ a$. The winding number of $\left.a\right|_{\partial \mathbb{D}}$ is 1 , so the winding numbers of the mappings φ_{f} and φ_{g} are equal.

We prove the condition (3). The winding number of the function $\zeta \mapsto \frac{\zeta}{a(\zeta)}$ on $\partial \mathbb{D}$ is 0 , so there exists a real-valued $\mathcal{C}^{\omega}(\partial \mathbb{D})$ function v such that $\frac{\zeta}{a(\zeta)}=e^{i v(\zeta)}$ on $\partial \mathbb{D}$. Hence there exists a real-valued $\mathcal{C}^{\omega}(\partial \mathbb{D})$ function u such that the function $\partial \mathbb{D} \ni \zeta \mapsto \frac{\zeta}{a(\zeta)} e^{u(\zeta)} \in \mathbb{C}$ extends to a nowhere-vanishing function $h: \overline{\mathbb{D}} \rightarrow \mathbb{C}$ holomorphic on \mathbb{D}. Moreover, u and v are of class \mathcal{C}^{ω} on $\partial \mathbb{D}$, so h can be extended to a mapping of class \mathcal{C}^{ω} on $\overline{\mathbb{D}}$. Let ρ be as in the condition (3) for f. For $\zeta \in \partial \mathbb{D}$ put $r(\zeta):=\rho(a(\zeta)) e^{u(\zeta)}$. We get

$$
\zeta r(\zeta) \overline{\nu(g(\zeta))}=\zeta e^{u(\zeta)} \rho(a(\zeta)) \overline{\nu(f(a(\zeta)))}=a(\zeta) h(\zeta) \rho(a(\zeta)) \overline{\nu(f(a(\zeta)))}=h(\zeta) \tilde{f}(a(\zeta))
$$

and this mapping extends to a $\mathcal{C}^{\omega}(\overline{\mathbb{D}})$ mapping, holomorphic on \mathbb{D}.
Corollary 2.4. An E-disc $f(\mathbb{D})$ is the unique extremal disc with respect to any couple of different points $z, w \in f(\mathbb{D})$, and also with respect to any point $z=f(\zeta)$ and direction $v=f^{\prime}(\zeta)$.
Proposition 2.5. Let f be an E-mapping. Then the function $f^{\prime} \cdot \tilde{f}$ is a positive constant.
Proof. Since the curve $t \mapsto f\left(e^{i t}\right)$ is contained in ∂D, its tangent vector $i e^{i t} f^{\prime}\left(e^{i t}\right)$ belongs to the tangent space $T_{f\left(e^{i t}\right)} \partial D$, so is orthogonal to $\nu\left(f\left(e^{i t}\right)\right)$ with respect to the real scalar product. Hence for $\zeta \in \partial \mathbb{D}$ we have

$$
\operatorname{Im} f^{\prime}(\zeta) \cdot \tilde{f}(\zeta)=\rho(\zeta) \operatorname{Re}\left(i \zeta f^{\prime}(\zeta) \cdot \overline{\nu(f(\zeta))}\right)=0
$$

so the holomorphic function $f^{\prime} \cdot \tilde{f}$ is a real constant C.
The curve $[0,1) \ni t \mapsto f(t)$ lies in D and $f(1) \in \partial D$, so the tangent vector $f^{\prime}(1)$ outwards from D. Hence

$$
0 \leq \operatorname{Re}\left(f^{\prime}(1) \cdot \overline{\nu(f(1))}\right)=\frac{1}{\rho(1)} \operatorname{Re}\left(f^{\prime}(1) \cdot \tilde{f}(1)\right)=\frac{C}{\rho(1)}
$$

This implies $C \geq 0$. For each $\zeta \in \partial \mathbb{D}$ we have

$$
\frac{f(\zeta)-f(0)}{\zeta} \cdot \tilde{f}(\zeta)=\rho(\zeta) \overline{\nu(f(\zeta))} \cdot(f(\zeta)-f(0))
$$

By the condition (4), the last function has the winding number equal to 0 . Therefore the holomorphic function $h(\zeta):=\frac{f(\zeta)-f(0)}{\zeta} \cdot \widetilde{f}(\zeta)$ does not vanish in \mathbb{D}. In particular, $C=h(0) \neq 0$.
Proposition 2.6. Let f be an E-mapping and let $z=f(\zeta), w=f(\omega)$, where $\zeta, \omega \in \mathbb{D}$. Then

$$
c_{D}(z, w)=k_{D}(z, w)=\widetilde{k}_{D}(z, w)=\text { hyp dist }(\zeta, \omega)
$$

Proof. Let F be as in the Proposition 2.1. Using the equality $F \circ f=i d_{\mathbb{D}}$ we get

$$
c_{D}(z, w) \geq \operatorname{hyp} \operatorname{dist}(F(z), F(w))=\operatorname{hyp} \operatorname{dist}(\zeta, \omega) \geq \widetilde{k}_{D}(z, w) \geq k_{D}(z, w) \geq c_{D}(z, w)
$$

and we are done.
Corollary 2.7. An E-mapping gives an embedding of \mathbb{D} endowed with the hyperbolic distance into D endowed with the Kobayashi or the Carathéodory distance.

3. Regularity

Let $M \subset \mathbb{C}^{m}$ be a totally real local \mathcal{C}^{ω} submanifold having the real dimension m. Take an arbitrary point $z \in M$. There are open subsets U, V of \mathbb{C}^{m} and a \mathcal{C}^{ω}-diffeomorphism $\widetilde{\Phi}: U \rightarrow V$ such that V is a neighbourhood of $z, \widetilde{\Phi}^{-1}(z)=0$ and $V \cap M=\widetilde{\Phi}\left(U \cap \mathbb{R}^{m}\right)$. The mapping $\left.\widetilde{\Phi}\right|_{U \cap \mathbb{R}^{m}}$ can be extended to a mapping Φ analytic on an open neighbourhood of the point 0 . We have

$$
\frac{\partial \Phi_{j}}{\partial z_{k}}(0)=\frac{\partial \Phi_{j}}{\partial x_{k}}(0)=\frac{\partial \widetilde{\Phi}_{j}}{\partial x_{k}}(0),
$$

so the complex derivative $\Phi^{\prime}(0)$ in an isomorphism. Therefore Φ restricted to a small neighbourhood of 0 is a biholomorphism of two open subsets of \mathbb{C}^{m} which carries an open neighbourhood of 0 in \mathbb{R}^{m} in an open neighbourhood of z in M.

Lemma 3.1 (Reflection principle). Let $M \subset \mathbb{C}^{m}$ be a totally real local \mathcal{C}^{ω} submanifold, having the real dimension m. Let $V \subset \mathbb{C}$ be an open neighbourhood of a point $\zeta_{0} \in \partial \mathbb{D}$ and let $g: V \cap \overline{\mathbb{D}} \rightarrow \mathbb{C}^{m}$ be a continuous mapping. Suppose g is holomorphic on $V \cap \mathbb{D}$ and $g(V \cap \partial \mathbb{D}) \subset M$. Then g can be continued holomorphically past $V \cap \partial \mathbb{D}$.
Proof. In virtue of the identity principle it is sufficient to continue g locally past an arbitrary point $\zeta_{0} \in V \cap \partial \mathbb{D}$. Fix ζ_{0} and take Φ is as above, for the point $g\left(\zeta_{0}\right) \in M$. Let $V_{1} \subset V$ be an neighbourhood of ζ_{0} such that $g\left(V_{1} \cap \overline{\mathbb{D}}\right)$ is contained in the image of Φ. The mapping $\Phi^{-1} \circ g$ is holomorphic on $V_{1} \cap \mathbb{D}$ and has real values on $V_{1} \cap \partial \mathbb{D}$. Hence by the ordinary reflection principle we can extend this mapping holomorphically past $V_{1} \cap \partial \mathbb{D}$. Denote that extension by h. Then $\Phi \circ h$ is an extension of g in a neighbourhood of ζ_{0}.
Proposition 3.2. Every weak E-mapping is also an E-mapping.
Proof. Let f be a weak E-mapping. Our goal is to prove that the mappings f and \tilde{f} are of the class \mathcal{C}^{ω}. Write $f=\left(f_{1}, \ldots, f_{n}\right), \tilde{f}=\left(\widetilde{f}_{1}, \ldots, \widetilde{f}_{n}\right)$. Choose a point $\zeta_{0} \in \partial \mathbb{D}$. Since $\widetilde{f}\left(\zeta_{0}\right) \neq 0$, we can suppose $\widetilde{f}_{1}(\zeta) \neq 0$ in $U \cap \overline{\mathbb{D}}$, where U is a neighbourhood of ζ_{0}. This implies $\nu_{1}\left(f\left(\zeta_{0}\right)\right) \neq 0$, so $\nu_{1}(z)$ does not vanish on some set V open in ∂D and containing the point $f\left(\zeta_{0}\right)$.

Define the mapping $\psi: V \rightarrow \mathbb{C}^{2 n-1}$ by

$$
\psi(z)=\left(z_{1}, \ldots, z_{n}, \overline{\nu_{2}(z)} / \overline{\nu_{1}(z)}, \ldots, \overline{\nu_{n}(z)} / \overline{\nu_{1}(z)}\right)
$$

The set $M:=\psi(V)$ is the graph of a \mathcal{C}^{ω} function defined on the local \mathcal{C}^{ω} submanifold V, so obviously is a local \mathcal{C}^{ω} submanifold of $\mathbb{C}^{2 n-1}$, having the real dimension $2 n-1$. Assume for the moment that M is totally real.

Consider the mapping

$$
g(\zeta):=\left(f_{1}(\zeta), \ldots, f_{n}(\zeta), \widetilde{f}_{2}(\zeta) / \widetilde{f}_{1}(\zeta), \ldots, \widetilde{f}_{n}(\zeta) / \widetilde{f}_{1}(\zeta)\right)
$$

defined for $\zeta \in U \cap \overline{\mathbb{D}}$. If $\zeta \in U \cap \partial \mathbb{D}$, then $\tilde{f}_{j}(\zeta) / \widetilde{f}_{1}(\zeta)=\overline{\nu_{j}(f(\zeta))} / \overline{\nu_{1}(f(\zeta))}$, so $g(\zeta)=\psi(f(\zeta))$. Therefore $g(U \cap \partial \mathbb{D}) \subset M$. The reflection principle implies that g extends analytically past $U \cap \partial \mathbb{D}$, so f is of class \mathcal{C}^{ω} near ζ_{0}. Since ζ_{0} is arbitrary, f is of class \mathcal{C}^{ω} on $\partial \mathbb{D}$.

The mapping $\left.\overline{\nu \circ f}\right|_{\partial \mathbb{D}}$ if of class \mathcal{C}^{ω}, so it clearly extends to some mapping h holomorphic on the neighbourhood of $\partial \mathbb{D}$. For $\zeta \in U \cap \partial \mathbb{D}$ we have

$$
\frac{\zeta h_{1}(\zeta)}{\widetilde{f}_{1}(\zeta)}=\frac{1}{p(\zeta)}
$$

The function on the left side is holomorphic on $U \cap \overline{\mathbb{D}}$ and continuous on $U \cap \overline{\mathbb{D}}$. Since it has real values on $U \cap \partial \mathbb{D}$, the reflection principle implies that it is of class \mathcal{C}^{ω}. Hence p, and then \widetilde{f}, is of class \mathcal{C}^{ω} near an arbitrarily chosen point ζ_{0}.

It remains to prove that M is totally real. Let r denote a defining function for ∂D. For every point $z \in \partial D$ the vectors $\nu(z)$ and $\operatorname{grad} r(z)=\left(r_{\overline{z_{1}}}(z), \ldots, r_{\overline{z_{n}}}(z)\right)$ are parallel over \mathbb{R}, so

$$
\frac{\nu(z)}{\nu_{1}(z)}=\frac{1}{r_{\overline{z_{1}}}(z)} \operatorname{grad} r(z) .
$$

Consider the mapping $S=\left(S_{1}, \ldots, S_{n}\right): V \times \mathbb{C}^{n-1} \rightarrow \mathbb{R} \times \mathbb{C}^{n-1}$ given by

$$
S(z, w):=\left(r(z), r_{z_{2}}(z)-w_{1} r_{z_{1}}(z), \ldots, r_{z_{n}}(z)-w_{n-1} r_{z_{1}}(z)\right) .
$$

Clearly $M=S^{-1}(\{0\})$. This implies $T_{(z, w)} M \subset \operatorname{ker} S^{\prime}(z, w)$ for any $(z, w) \in M$.
Fix a point $(z, w) \in M$. Our goal is to prove that $T_{(z, w)}^{\mathbb{C}} M=\{0\}$. Take an arbitrary vector $(X, Y)=\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n-1}\right) \in T_{(z, w)}^{\mathbb{C}} M$. Then $\sum_{k} r_{z_{k}}(z) X_{k}=0$, because $X \in T_{z}^{\mathbb{C}} \partial D$. For each $k=2, \ldots, n$ we have $w_{k-1}=\frac{r_{z_{k}}(z)}{r_{z_{1}}(z)}$ and

$$
0=\bar{\partial}_{(X, Y)} S_{k}(z, w)=\sum_{j} r_{z_{k} \overline{\bar{z}_{j}}}(z) \overline{X_{j}}-w_{k-1} \sum_{j} r_{z_{1} \overline{z_{j}}}(z) \overline{X_{j}},
$$

so

$$
r_{z_{1}}(z) \sum_{j} r_{z_{k} \overline{\bar{z}_{j}}}(z) \overline{X_{j}}=r_{z_{k}}(z) \sum_{j} r_{z_{1} \overline{z_{j}}}(z) \overline{X_{j}} .
$$

Note that the last equality holds also for $k=1$. Hence

$$
\begin{aligned}
r_{z_{1}}(z) \sum_{j, k} r_{z_{k} \overline{z_{j}}}(z) \overline{X_{j}} X_{k} & =\sum_{k} r_{z_{k}}(z) \sum_{j} r_{z_{1} \overline{z_{j}}}(z) \overline{X_{j}} X_{k}= \\
& =\left(\sum_{k} r_{z_{k}}(z) X_{k}\right)\left(\sum_{j} r_{z_{1} \overline{z_{j}}}(z) \overline{X_{j}}\right)=0 .
\end{aligned}
$$

Therefore by (2) from Definition 1.2 we get $X=0$, and this directly implies $Y=0$.

4. HÖLDER EStimates

We will prove some uniform $1 / 2$-Hölder estimates for E-mappings $f: \mathbb{D} \longrightarrow D$ such that $f(0)=z$. These maps we will denote as a function between marked domains $f:(\mathbb{D}, 0) \longrightarrow(D, z)$. We need the following

Definition 4.1. For given $c>0$ let the family $\mathcal{D}(c)$ consists of all marked domains (D, z) satisfying
(1) $\operatorname{dist}(z, \partial D)>\frac{1}{c}$;
(2) the diameter of D and the modulus of the normal curvature of ∂D are smaller than c;
(3) for any $x, y \in D$ there exist $m<c^{2}$ and balls $B_{0}, \ldots, B_{m} \subset D$ of radius $\frac{1}{2 c}$ such that $x \in B_{0}, y \in B_{m}$ and the distance between the centers of the balls B_{j}, B_{j+1} is smaller than $\frac{1}{4 c}$ for $j=0, \ldots, m-1$;
(4) for every ball $B \subset \mathbb{C}^{n}$ of radius not greater than $\frac{1}{c}$ there exists a holomorphic map $\Phi: \bar{D} \longrightarrow \mathbb{C}^{n}$ such that
(a) for any $w \in \Phi(B \cap \partial D)$ there is a ball of radius smaller than c containing $\Phi(D)$ and tangent to $\partial \Phi(D)$ at w;
(b) Φ is biholomorphic on $B \cap \bar{D}$;
(c) the partial derivatives of the first order of Φ and $\Phi^{-1}($ on $\Phi(B \cap \bar{D})$) are bounded by c;
(d) $\operatorname{dist}(\Phi(z), \partial \Phi(D))>\frac{1}{c}$.

For strictly pseudoconvex domain D and point $z \in D$ there exists c such that conditions (1)-(4) are satisfied. The construction of mapping Φ amounts to the construction of peak functions (see [2]). In the case of D strictly convex and the normal curvatures of ∂D greater than $\frac{1}{c}$, one can take $\Phi=\mathrm{id}$.

Fix $c>1$. Let us prove
Proposition 4.2. Let $f:(\mathbb{D}, 0) \longrightarrow(D, z)$ be an E-mapping. Then

$$
d_{D}(f(\zeta)) \leq C(1-|\zeta|), \zeta \in \mathbb{D}
$$

with constant $C>0$ uniform if $(D, z) \in \mathcal{D}(c)$.
Proof. Thanks to the condition (3) there exists C_{1} such that $k_{D}(z, w)<C_{1}$ if $\operatorname{dist}(w, \partial D) \geq$ $\frac{1}{c}$. Fix $\zeta \in \mathbb{D}$ with $\operatorname{dist}(f(\zeta), \partial D) \geq \frac{1}{c}$. Then

$$
k_{D}(f(0), f(\zeta)) \leq C_{2}-\frac{1}{2} \log (\operatorname{dist}(f(\zeta), \partial D)) .
$$

In the opposite case i.e. $\operatorname{dist}(f(\zeta), \partial D)<\frac{1}{c}$ let η be the nearest point to $f(\zeta)$ on ∂D. Set $w \in D$ as the center of the ball B of radius $\frac{1}{c}$ tangent to ∂D at η. By condition (2) $B \subset D$. Hence

$$
\begin{gathered}
k_{D}(f(0), f(\zeta)) \leq k_{D}(f(0), w)+k_{D}(w, f(\zeta)) \leq \\
\leq C_{1}+k_{B}(w, f(\zeta)) \leq C_{3}-\frac{1}{2} \log (\operatorname{dist}(f(\zeta), \partial D))=C_{3}-\frac{1}{2} \log (\operatorname{dist}(f(\zeta), \partial D))
\end{gathered}
$$

On the other side, Proposition 2.6 used to extremal disc $f(\mathbb{D})$ through $f(0)$ and $f(\zeta)$ gives

$$
k_{D}(f(0), f(\zeta))=\operatorname{hyp} \operatorname{dist}(0, \zeta) \geq-\frac{1}{2} \log (1-|\zeta|)
$$

Now we are going to obtain the same Hölder estimates for an E-mapping f and associated mappings \widetilde{f}, ρ. Thanks to Proposition 2.5 the function $f^{\prime} \widetilde{f}$ is constant, so ρ is defined up to a constant factor. We may choose ρ such that $f^{\prime} \tilde{f} \equiv 1$ i.e.

$$
\rho(\zeta)^{-1}=\zeta f^{\prime}(\zeta) \overline{\nu(f(\zeta))}, \zeta \in \overline{\mathbb{D}} .
$$

In that way \tilde{f} and ρ are uniquely determined by f.
Proposition 4.3. Let $f:(\mathbb{D}, 0) \longrightarrow(D, z)$ be an E-mapping. Then

$$
C_{1}<\rho(\zeta)^{-1}<C_{2}, \zeta \in \partial \mathbb{D}
$$

with constants $C_{1}, C_{2}>0$ uniform if $(D, z) \in \mathcal{D}(c)$.
Proof. For the upper estimate choose $\zeta \in \partial \mathbb{D}$ and define $\zeta_{\varepsilon}:=(1-\varepsilon) \zeta$ for small $\varepsilon>0$. Set $B:=B\left(f(\zeta), \frac{1}{c}\right)$ and let $\Phi: \bar{D} \longrightarrow \mathbb{C}^{n}$ be chosen to the ball B as described in the condition (4). One can assume that $\Phi(f(\zeta))=0$ and the normal vector to $\partial \Phi(D)$ at 0 is $N:=(1,0, \ldots, 0)$. Then $\Phi(D)$ is contained in the half space $\left\{w \in \mathbb{C}^{n}: \operatorname{Re} w_{1}<0\right\}$. Putting $h:=\Phi \circ f$ we have

$$
h_{1}(\mathbb{D}) \subset\left\{w_{1} \in \mathbb{C}: \operatorname{Re} w_{1}<0\right\} .
$$

In virtue of the Schwarz lemma in the half plane

$$
\left|h_{1}^{\prime}\left(\zeta_{\varepsilon}\right)\right| \leq \frac{2 \operatorname{Re} h_{1}\left(\zeta_{\varepsilon}\right)}{1-\left|\zeta_{\varepsilon}\right|^{2}} \approx \frac{\left.\operatorname{dist}\left(h\left(\zeta_{\varepsilon}\right), \partial \Phi(D)\right)\right)}{1-\left|\zeta_{\varepsilon}\right|} \quad \text { as } \quad \varepsilon \rightarrow 0
$$

since the transversality of $t \longmapsto \Phi(f(t \zeta))$ to $\partial \Phi(D)$ is equivalent to the transversality of $t \longmapsto f(t \zeta)$ to ∂D and the second transversality follows from

$$
\operatorname{Re}\left(\left.\frac{d}{d t} f(t \zeta)\right|_{t=1} \overline{\nu(f(\zeta))}\right)=\operatorname{Re}\left(f^{\prime}(\zeta) \zeta \overline{\nu(f(\zeta))}\right)=\rho(\zeta)^{-1}
$$

Clearly

$$
\frac{\operatorname{dist}\left(\Phi\left(f\left(\zeta_{\varepsilon}\right)\right), \partial \Phi(D)\right)}{1-\left|\zeta_{\varepsilon}\right|} \approx \frac{\operatorname{dist}\left(f\left(\zeta_{\varepsilon}\right), \partial D\right)}{1-\left|\zeta_{\varepsilon}\right|}
$$

which, by Proposition 4.2, does not exceed some constant. Now the upper estimate follows from the observation

$$
\left|f^{\prime}(\zeta) \overline{\nu(f(\zeta))}\right| \leq C_{3}\left|h^{\prime}(\zeta) \overline{\nu(h(\zeta))}\right|=C_{3}\left|h_{1}^{\prime}(\zeta)\right|
$$

Indeed, if ϱ is a defining function for D in the neighbourhood of $f(\zeta)$ then

$$
\left|f^{\prime}(\zeta) \overline{\nu(f(\zeta))}\right|=\frac{\left|(\varrho \circ f)^{\prime}(\zeta)\right|}{|\nabla \varrho(f(\zeta))|}
$$

and analogously

$$
\begin{gathered}
\left|h^{\prime}(\zeta) \overline{\nu(h(\zeta))}\right|=\frac{\left|\left(\varrho \circ \Phi^{-1} \circ h\right)^{\prime}(\zeta)\right|}{\left|\nabla\left(\varrho \circ \Phi^{-1}\right)(h(\zeta))\right|}= \\
=\frac{\left|(\varrho \circ f)^{\prime}(\zeta)\right|}{\left|\nabla \varrho(f(\zeta)) \overline{\left(\Phi^{-1}\right)^{\prime}}(\Phi(f(\zeta)))\right|} \geq \frac{\left|(\varrho \circ f)^{\prime}(\zeta)\right|}{|\nabla \varrho(f(\zeta))|} \frac{1}{c \sqrt{n}} .
\end{gathered}
$$

The lower estimate is related to a lemma of E. Hopf. Note that for small $\varepsilon>0$ the function

$$
\varrho(w):=-\log (\varepsilon+\operatorname{dist}(w, \partial D))+\log \varepsilon, w \in D_{\varepsilon},
$$

where D_{ε} is an ε-envelope of D i.e. the set $\left\{w \in \mathbb{C}^{n}: \operatorname{dist}(w, D)<\varepsilon\right\}$, is plurisubharmonic and defining for D. Indeed, we have

$$
-\log (\varepsilon+\operatorname{dist}(w, \partial D))=-\log \left(\operatorname{dist}\left(w, \partial D_{\varepsilon}\right)\right), w \in D_{\varepsilon}
$$

and for sufficiently small ε the domain D_{ε} is pseudoconvex.
Let us define a non-positive subharmonic function $v:=\varrho \circ f: \overline{\mathbb{D}} \longrightarrow \mathbb{R}$. Since $|f(\lambda)-z|<c$ for $\lambda \in \mathbb{D}$, we have

$$
|f(\lambda)-z|<\frac{1}{2 c} \text { if }|\lambda| \leq \frac{1}{2 c^{2}} .
$$

Therefore, for fixed $\zeta \in \partial \mathbb{D}$

$$
M_{\zeta}(x):=\max _{t \in[0,2 \pi]} v\left(\zeta e^{x+i t}\right) \leq-\log \left(1+\frac{1}{2 c \varepsilon}\right)=:-C_{4} \text { if } x \leq-\log \left(2 c^{2}\right)
$$

Since M_{ζ} is convex for $x \leq 0$ and $M_{\zeta}(0)=0$ we get

$$
M_{\zeta}(x) \leq \frac{C_{4} x}{\log \left(2 c^{2}\right)} \quad \text { for } \quad-\log \left(2 c^{2}\right) \leq x \leq 0 .
$$

Hence

$$
\frac{C_{4}}{\log \left(2 c^{2}\right)} \leq\left.\frac{d}{d x} v\left(\zeta e^{x}\right)\right|_{x=0}=\zeta f^{\prime}(\zeta) \overline{\nu(f(\zeta))}|\nabla \varrho(f(\zeta))| .
$$

Easy calculations give

$$
\frac{\partial \varrho}{\partial \nu}(f(\zeta))=\frac{1}{\varepsilon}
$$

thus

$$
|\nabla \varrho(f(\zeta))|=\nabla \varrho(f(\zeta)) \frac{\nabla \varrho(f(\zeta))}{|\nabla \varrho(f(\zeta))|}=\nabla \varrho(f(\zeta)) \nu(f(\zeta))=\frac{1}{\varepsilon} .
$$

Proposition 4.4. Let $f: \overline{\mathbb{D}} \rightarrow \bar{D}$ be an E-mapping. Then

$$
\left|f\left(\zeta_{1}\right)-f\left(\zeta_{2}\right)\right| \leq C\left(\left|\zeta_{1}-\zeta_{2}\right|\right)^{1 / 2}, \zeta_{1}, \zeta_{2} \in \mathbb{D}
$$

where C is uniform if $(D, z) \in \mathcal{D}(c)$.
Lemma 4.5. Let $g: \mathbb{D} \rightarrow \mathbb{B}\left(z_{0}, R\right)$ be a holomorphic mapping such that $\left|g(0)-z_{0}\right|=r$. Then

$$
\left|g^{\prime}(0)\right| \leq\left(R^{2}-r^{2}\right)^{1 / 2}
$$

Proof. Assume that $z_{0}=0$ and $R=1$. When $r=0$ proof is similar to a proof of classical Schwarz Lemma. Assume $r \neq 0$ and choose an automorphism φ of \mathbb{B}_{n} such that $\varphi(g(0))=0$. From the explicite formula for $\varphi^{\prime}(g(0))$ we get that $\left|\varphi^{\prime}(g(0))\right| \leq \frac{1+\sqrt{1-r^{2}}}{1-r^{2}}$ (i.e. see [5] Theorem 2.2.2 p. 26). From thesis for $r=0$ we get that $\left|(\varphi(g(0)))^{\prime}\right| \leq 1$, so $\left|g^{\prime}(0)\right| \leq \sqrt{1-r^{2}}$.

Proof of general case, when $\mathbb{B}\left(z_{0}, R\right)$ is a ball with center at z_{0} and radius R, is similar.

Theorem 4.6 (Littlewood, see [3] Theorem 3 p. 397). Let $f: \overline{\mathbb{D}} \rightarrow D$ be regular on \mathbb{D} and continuous on $\overline{\mathbb{D}}$. Then for $0<\alpha \leq 1$ following properties are equivalent:

$$
\begin{array}{r}
\left|f\left(e^{i \theta}\right)-f\left(e^{i \theta^{\prime}}\right)\right| \leq K\left|\theta-\theta^{\prime}\right|^{\alpha} \\
\left|f^{\prime}(\zeta)\right| \leq M(1-|\zeta|)^{\alpha-1}, \zeta \in \mathbb{D} \tag{6}
\end{array}
$$

Theorem 4.7 (Hardy, Littlewood, see [3] Theorem 4 p. 399). Let $f: \overline{\mathbb{D}} \rightarrow D$ be regular on \mathbb{D} and continuous on $\overline{\mathbb{D}}$ such that $\left|f\left(e^{i \theta}\right)-f\left(e^{i \theta^{\prime}}\right)\right| \leq K\left|\theta-\theta^{\prime}\right|^{\alpha}, 0<\alpha \leq 1$. Then

$$
\left|f(\zeta)-f\left(\zeta^{\prime}\right)\right| \leq K\left|\zeta-\zeta^{\prime}\right|^{\alpha}, \zeta \in \mathbb{D}
$$

Proof of Proposition 4.4. Fix $\zeta_{0} \in \mathbb{D}$. Let Z denote point in ∂D such that $\operatorname{dist}\left(f\left(\zeta_{0}\right), \partial D\right)=$ $\left|f\left(z_{0}\right)-Z\right|$ and let $\mathbb{B}\left(Z_{0}, R\right)$ denote a smallest ball tangent to ∂D at Z containing D. Define

$$
h(\zeta)=f\left(\frac{\zeta_{0}-\zeta}{1-\overline{\zeta_{0} \zeta}}\right)
$$

Then h is holomorphic, $h(\mathbb{D}) \subset \mathbb{B}\left(Z_{0}, R\right)$ and $h(0)=f\left(\zeta_{0}\right)$. Using Lemma 4.5 we get

$$
\left|h^{\prime}(0)\right| \leq \sqrt{\left|Z_{0}-Z\right|^{2}-\left|f\left(\zeta_{0}\right)-Z_{0}\right|^{2}} \leq C_{1} \sqrt{\left|f\left(\zeta_{0}\right)-Z\right|}
$$

where C_{1} depends only on diameter of D.
From the formula for $h^{\prime}(\zeta)$ we get $h^{\prime}(0)=f^{\prime}\left(\zeta_{0}\right)\left(\zeta_{0} \overline{\zeta_{0}}-1\right)$ and

$$
\left|f^{\prime}\left(\zeta_{0}\right)\right|=\frac{1}{1-\left|\zeta_{0}\right|^{2}}\left|h^{\prime}(0)\right| \leq C_{1} \frac{\sqrt{\operatorname{dist}\left(f\left(\zeta_{0}\right), \partial D\right)}}{1-\left|\zeta_{0}\right|^{2}}
$$

From Proposition 4.2

$$
\left|f^{\prime}\left(\zeta_{0}\right)\right| \leq C_{2} \frac{\sqrt{1-\left|\zeta_{0}\right|}}{1-\left|\zeta_{0}\right|^{2}} \leq C_{3} \frac{1}{\sqrt{1-\left|\zeta_{0}\right|}}
$$

Since this inequality is true for every $\zeta \in \mathbb{D}$ we get the thesis using Theorems 4.6 and 4.7 with $\alpha=1 / 2$.

Proposition 4.8. Let $f: \overline{\mathbb{D}} \rightarrow \bar{D}$ be an E-mapping. Then

$$
\left|p\left(\zeta_{1}\right)-p\left(\zeta_{2}\right)\right| \leq C\left(\left|\zeta_{1}-\zeta_{2}\right|\right)^{1 / 2}, \zeta_{1}, \zeta_{2} \in \partial \mathbb{D}
$$

where C is uniform if $(D, z) \in \mathcal{D}(c)$.

Proof. Assume that there exists $C_{1}>0$ such that proposition is true for $\zeta_{1}, \zeta_{2} \in \partial \mathbb{D}$ such that $\left|\zeta_{1}-\zeta_{2}\right| \leq C_{1}$. The general case follows immediately: there exists a finite N depending only on C_{1}, such that for every $\zeta_{1}, \zeta_{2} \in \partial \mathbb{D},\left|\zeta_{1}-\zeta_{2}\right|>C_{1}$ there exists $\left\{\eta_{j}\right\}_{j=1}^{N} \subset \partial \mathbb{D}, \eta_{1}=\zeta_{1}, \eta_{N}=\zeta_{2},\left|\eta_{j}-\eta_{k}\right| \leq C_{1}$ for $j, k \in\{1, \ldots, N\}$. Then

$$
\begin{gathered}
\left|p\left(\zeta_{1}\right)-p\left(\zeta_{2}\right)\right| \leq\left|p\left(\eta_{1}\right)-p\left(\eta_{2}\right)\right|+\ldots+\left|p\left(\eta_{N-1}\right)-p\left(\eta_{N}\right)\right| \\
\leq C\left(\sqrt{\left|\eta_{1}-\eta_{2}\right|}+\ldots+\sqrt{\left|\eta_{N-1}-\eta_{N}\right|}\right) \leq C N \sqrt{C_{1}}<C N\left(\left|\zeta_{1}-\zeta_{2}\right|\right)^{1 / 2}
\end{gathered}
$$

So it is sufficient to prove, that such C_{1} really exists.
Fix $\zeta_{1} \in \partial \mathbb{D}$. Without loss of generality we may assume that $\nu_{1}\left(f\left(\zeta_{1}\right)\right)=1$. Choose C_{1} such that $\left|\nu_{1}(f(\zeta))-1\right|<1 / 2$ for $\left|\zeta-\zeta_{1}\right| \leq 2 C_{1}$. Such C_{1} exists because of continuity of function $\nu \circ f$.

Construct new function $\varphi: \partial \mathbb{D} \rightarrow \mathbb{C}$ such that:

- $\varphi(\zeta)=\overline{\nu_{1}(f(\zeta))}$ for $\left|\zeta-\zeta_{1}\right| \leq 2 C_{1}$,
- $|\varphi(\zeta)-1|<1 / 2$ for all $\zeta \in \partial \mathbb{D}$,
- $\varphi \in \mathcal{C}^{1 / 2}(\partial \mathbb{D})$ and $\|\nu \circ f\|_{\mathcal{C}^{1 / 2}(\partial \mathbb{D})}=\|\varphi\|_{\mathcal{C}^{1 / 2}(\partial \mathbb{D})}$

Let $r: \partial \mathbb{D} \rightarrow \mathbb{R}$ be such that $r+i \operatorname{Im} \log \varphi$ extends to function holomorphic on \mathbb{D}. Because φ is $1 / 2$-Hölder continuous, $\log \varphi$ has the same property and using Privaloff's theorem we can show, that r is also $1 / 2$-Hölder continuous and it's norm is uniformly bounded. Define $q:=r-\operatorname{Re} \log \varphi$, which from the definition is $1 / 2$-Hölder continuous with constant C_{2}, depending on C_{1}. Function $q+\log \varphi=r+i \operatorname{Im} \varphi$ extends to $h: \overline{\mathbb{D}} \rightarrow \mathbb{C}$, holomorphic in \mathbb{D}, continuous at $\overline{\mathbb{D}}$. Because on the boundary $h=q$, which is $1 / 2$-Hölder continuous, from Theorem 4.7 we get $1 / 2$-Hölder continuity of h in \mathbb{D}.

Define functions $g(\zeta):=\widetilde{f}_{1}(\zeta) e^{-h(\zeta)}$ and $G(\zeta)=g(\zeta) / \zeta$. Then g is defined on $\overline{\mathbb{D}}$, holomorphic in \mathbb{D}, G is defined on $\overline{\mathbb{D}} \backslash\{0\}$, holomorphic in $\mathbb{D} \backslash\{0\}$. For $\zeta \in \partial \mathbb{D}$ we have that

$$
g(\zeta)=\zeta p(\zeta) \overline{\nu_{1}(f(\zeta))} e^{-r(\zeta)} e^{i \operatorname{Im} \log \varphi(\zeta)}
$$

which, combined with unform boundness of r and equality $\|\nu \circ f\|_{\mathcal{C}^{1 / 2}(\partial \mathbb{D})}=\|\varphi\|_{\mathcal{C}^{1 / 2}(\partial \mathbb{D})}$, gives uniform boundness of g. Define

$$
U_{1}:=\left\{\zeta \in \mathbb{C}:\left|\zeta-\zeta_{1}\right|<2 C_{1}\right\}
$$

Then G is uniformly bounded on $\overline{\mathbb{D}} \cap U_{1}$. Moreover, for $\zeta \in \partial \mathbb{D} \cap U_{1}$ we have

$$
G(\zeta)=\frac{g(\zeta)}{\zeta}=p(\zeta) \overline{\nu_{1}(f(\zeta))} e^{-q(\zeta)} e^{-\log \varphi(\zeta)}=p(\zeta) e^{-r(\zeta)} e^{\operatorname{Re} \log \varphi(\zeta)} \in \mathbb{R}
$$

Because we can extend G holomorphically through $\partial \mathbb{D} \cap U_{1}$ to a function bounded on U_{1}, G is $1 / 2$-Hölder continuous on connected components of $U_{1} \cap \overline{\mathbb{D}}$, in particular for every $\left|\zeta_{1}-\zeta_{2}\right|<C_{1}$

$$
\left|G\left(\zeta_{1}\right)-G\left(\zeta_{2}\right)\right| \leq\left|\zeta_{1}-\zeta_{2}\right|
$$

Now, since $p(\zeta)=\left(G(\zeta) e^{h}\right) /\left(\overline{\nu_{1}(f(\zeta))}\right)$ and for $\left|\zeta_{1}-\zeta_{2}\right|<C_{1}$ all functions G, h and $\nu_{1} \circ f$ are $1 / 2$-Hölder continuous, we get the thesis.
Proposition 4.9. Let $f: \overline{\mathbb{D}} \rightarrow \bar{D}$ be an E-mapping. Then

$$
\left|\widetilde{f}\left(\zeta_{1}\right)-\tilde{f}\left(\zeta_{2}\right)\right| \leq C\left(\left|\zeta_{1}-\zeta_{2}\right|\right)^{1 / 2}, \zeta_{1}, \zeta_{2} \in \overline{\mathbb{D}}
$$

where C is uniform if $(D, z) \in \mathcal{D}(c)$.
Proof. Using Propositions 4.4 and 4.8 we have desired inequality for $\zeta_{1}, \zeta_{2} \in \partial \mathbb{D}$. Application of Theorem 4.7 with $\alpha=1 / 2$ finishes the proof.

5. Perturbation of the domain

We will describe what happens to E-mapping if the domain D is perturbed a little.
Proposition 5.1. Let $f: \mathbb{D} \longrightarrow D$ be an E-mapping. Then there is a biholomorpihism $\Phi: \bar{D} \longrightarrow \bar{G}$ such that
(1) $g(\zeta):=\Phi(f(\zeta))=(\zeta, 0, \ldots, 0), \zeta \in \mathbb{D}$;
(2) $\nu(g(\zeta))=(\zeta, 0, \ldots, 0), \zeta \in \partial \mathbb{D}$;
(3) for any $\zeta \in \partial \mathbb{D}$ the point $g(\zeta)$ is a point of strict linear convexity of ∂G, i.e. for $w \in T^{\mathbb{C}}(g(\zeta))$ near $g(\zeta)$ and positive constant c the inequality

$$
\operatorname{dist}(w, G) \geq c|w-g(\zeta)|^{2}
$$

holds.
Proof. After performing, if necessary, a linear change of coordinates one can assume that $\widetilde{f}_{1}, \widetilde{f}_{2}$ do not have common zeroes in $\overline{\mathbb{D}}$. Then there are holomorphic maps $h_{1}, h_{2}: \overline{\mathbb{D}} \longrightarrow \mathbb{C}$ such that $h_{1} \widetilde{f}_{1}+h_{2} \widetilde{f}_{2} \equiv 1$. Indeed, let $\widetilde{f}_{j}=F_{j} P_{j}, j=1,2$, where F_{j} are holomorphic and non-zero in $\overline{\mathbb{D}}$ and P_{j} are polynomials with all zeroes in $\overline{\mathbb{D}}$ (recall that \widetilde{f}_{j} extend analytically through $\partial \mathbb{D}$). Then P_{j} are relatively prime, so there are polynomials Q_{j}, $j=1,2$ such that

$$
Q_{1} P_{1}+Q_{2} P_{2} \equiv 1
$$

Hence

$$
\frac{Q_{1}}{F_{1}} \widetilde{f}_{1}+\frac{Q_{2}}{F_{2}} \widetilde{f}_{2} \equiv 1
$$

and $h_{j}:=Q_{j} / F_{j}, j=1,2$ extend analytically through $\partial \mathbb{D}$.
Consider the mapping $\Psi: \mathbb{D} \times \mathbb{C}^{n-1} \longrightarrow \mathbb{C}^{n}$ defined as

$$
\begin{align*}
& \Psi_{1}(Z):=f_{1}\left(Z_{1}\right)-Z_{2} \widetilde{f}_{2}\left(Z_{1}\right)-h_{1}\left(Z_{1}\right) \sum_{j=3}^{n} Z_{j} \widetilde{f}_{j}\left(Z_{1}\right), \tag{7}\\
& \Psi_{2}(Z):=f_{2}\left(Z_{1}\right)+Z_{2} \widetilde{f}_{1}\left(Z_{1}\right)-h_{2}\left(Z_{1}\right) \sum_{j=3}^{n} Z_{j} \widetilde{f}_{j}\left(Z_{1}\right),
\end{align*}
$$

$$
\begin{equation*}
\Psi_{j}(Z):=f_{j}\left(Z_{1}\right)+Z_{j}, j=3, \ldots, n . \tag{9}
\end{equation*}
$$

We claim that Ψ is biholomorphic on $G:=\Psi^{-1}(D)$. It suffices to show that if $\Psi(Z)=$ $\Psi(W)=z \in D$ then $Z=W$.

By direct computation both $\zeta=Z_{1}$ and $\zeta=W_{1}$ solve the equation

$$
\tilde{f}(\zeta)(z-f(\zeta))=0
$$

It was demonstrated in the proof of Proposition 2.1 that it has exactly one solution. Hence $Z_{1}=W_{1}$. By (9) we have $Z_{j}=W_{j}$ for $j=3, \ldots, n$. Finally $Z_{2}=W_{2}$ follows from one of the equations (7), (8).

It is clear that Ψ extends to a neighbourhood of $\overline{\mathbb{D}} \times \mathbb{C}^{n-1}$ and Ψ is biholomorphic also on a neighbourhood of $\Psi^{-1}(\bar{D})$. The map $\Phi:=\Psi^{-1}$ has desired properties.

Proposition 5.2. Let $W: \partial \mathbb{D} \rightarrow G L(m, \mathbb{C})$ be a matrix valued \mathcal{C}^{ω} mapping such that $\underline{W}(\zeta)$ is self-adjoint for every $\zeta \in \partial \mathbb{D}$. Then there exists a holomorphic mapping H : $\overline{\mathbb{D}} \rightarrow G L(m, \mathbb{C})$ such that $H H^{*}=W$ on $\partial \mathbb{D}$.

Let $D_{0} \subset \mathbb{C}^{n}$ be a strictly linearly convex domain with a real analytic boundary. Then there exists an open neighbourhood V_{0} of ∂D and a real analytic defining function $r_{0}: V_{0} \rightarrow \mathbb{R}$ such that $d r_{0} \neq 0$ and $D_{0} \cap V_{0}=\left\{z \in V_{0}: r_{0}(z)<0\right\}$. It is sraightforward that r_{0} extends to a holomorphic function on an open neighbourhood $V \subset \mathbb{C}^{n}$ of V_{0} in the complexification of $\mathbb{R}^{2 n} \cong \mathbb{C}^{n}$. Without losing generality we may assume that r_{0} is bounded on V. Let

$$
X:=\left\{r \in \mathcal{O}(V) \text { s.t. } r\left(V_{0}\right) \subset \mathbb{R} \text { and } r \text { is bounded }\right\}
$$

which equipped with the sup-norm is a Banach space. If $r \in X$ is near to r_{0} (w.r.t. the sup-norm), then $\left\{z \in V_{0}: r(z)=0\right\}$ is a compact real analytic hypersurface which bounds a bounded domain, say D^{r}.

Definition 5.3. We say that a domain D is near to D_{0} if its defining function r can be taken from X, near to r_{0}.

Proposition 5.4. Let $f_{0}: \mathbb{D} \rightarrow D_{0}$ be an E-mapping. Then there exist an open neighbourhood U of the point $\left(r_{0}, f_{0}^{\prime}(0)\right)$ in the space $X \times \mathbb{C}^{n}$ and a real analytic mapping $\Gamma: U \rightarrow \mathcal{C}^{1 / 2}(\overline{\mathbb{D}})$ such that $\Gamma\left(r_{0}, f_{0}^{\prime}(0)\right)=f_{0}$ and for any $(r, v) \in U$ the mapping $f:=\Gamma(r, v)$ is an E-mapping into D^{r} such that $f(0)=f_{0}(0)$ and $f_{0}^{\prime}(0)=\lambda v, \lambda>0$.
Furthermore, let $\xi \in(0,1)$. Then there exist an open neighbourhood W of $\left(r_{0}, f_{0}(\xi)\right)$ in $X \times D_{0}$ and two real analytic mappings $\Lambda: W \rightarrow \mathcal{C}^{1 / 2}(\overline{\mathbb{D}}), \Omega: W \rightarrow(0,1)$ such that $\Lambda\left(r_{0}, f_{0}(\xi)\right)=f_{0}, \Omega\left(r_{0}, f_{0}(\xi)\right)=\xi$, and for any $(r, v) \in W$ the mapping $f:=\Lambda(r, v)$ is an E-mapping into D^{r} satisfying $f(0)=f_{0}(0)$ and $f(\Omega(r, v))=v$.

Proof. We shall prove the first statement. The proof of the second one is similar.
Consider the Sobolev space $W^{2,2}(\mathbb{T})$ of functions on \mathbb{T} whose first two derivatives are in $L^{2}(\mathbb{T})$. It is known that we have the following characterization:

$$
W^{2,2}(\mathbb{T})=\left\{f \in L^{2}(\mathbb{T}): \sum_{k=-\infty}^{\infty}\left(1+k^{2}+k^{4}\right)\left|\widehat{f}_{k}\right|^{2}<\infty\right\}
$$

where \widehat{f}_{k} 's are the Fourier coefficients of f. Note we have $W^{2,2} \subset \mathcal{C}^{1 / 2} \subset \mathcal{C}$. To see the first inclusion take $z_{1}, z_{2} \in \mathbb{T}$ and compute:

$$
\begin{aligned}
\left|\sum_{k=-\infty}^{\infty} \widehat{f}_{k} z_{1}^{k}-\sum_{k=-\infty}^{\infty} \widehat{f}_{k} z_{2}^{k}\right| \leq \sum_{k=-\infty}^{\infty}\left|\widehat{f}_{k}\right|\left|z_{1}^{k}-z_{2}^{k}\right| \leq & \\
\leq \sum_{k=-\infty}^{\infty}\left|\widehat{f}_{k}\right|\left|z_{1}-z_{2}\right|\left|z_{1}^{k-1}+z_{1}^{k-2} z_{2}^{+} \ldots+z_{2}^{k-1}\right| \leq & \sum_{k=-\infty}^{\infty} k\left|\widehat{f}_{k}\right|\left|z_{1}-z_{2}\right| \leq \\
& \leq \sqrt{2} \sum_{k=-\infty}^{\infty} k\left|\widehat{f}_{k}\right| \sqrt{\left|z_{1}-z_{2}\right|},
\end{aligned}
$$

and it is an easy observation that the series $\sum_{k=-\infty}^{\infty} k\left|\widehat{f}_{k}\right|$ is convergent. Moreover, both inclusions are continuous, which also implies their real analyticity. Put

$$
Q:=W^{2,2}(\mathbb{T}, \mathbb{R}), \quad Q_{0}:=Q \cap\{q: q(1)=0\}, \quad A:=W^{2,2}\left(\mathbb{T}, \mathbb{C}^{n}\right)
$$

$B:=A \cap\{g: g$ extends holomorphically to \mathbb{D} and the extension is 0 at the origin $\}$,

$$
\bar{B}:=\left\{\begin{array}{c}
\bar{g}: g \in B\} . \\
12
\end{array}\right.
$$

Introduce a bounded projection

$$
\pi: A \ni \sum_{k=-\infty}^{\infty} a_{k} e^{i k t} \mapsto \sum_{k=-\infty}^{-1} a_{k} e^{i k t} \in \bar{B}
$$

Observe that $g \in A$ admits a holomorphic extension to \mathbb{D} if and only if $\pi(g)=0$.
Using Proposition5.1 we may assume without losing generality that $f_{0}(\zeta)=(\zeta, 0, \ldots, 0)$, $\overline{\nu\left(f_{0}(\zeta)\right)}=r_{0 z}\left(f_{0}(\zeta)\right)=(\bar{\zeta}, 0, \ldots, 0)$ and that for any $\zeta \in \mathbb{T}, f_{0}(\zeta)$ is a point of strict linear convexity of D_{0}. Observe that the latter means that for any nonzero $v \in \mathbb{C}^{n-1}$ there is

$$
\begin{equation*}
\sum_{i, j=2}^{n} r_{0_{z_{i} \overline{\bar{z}_{j}}}}\left(f_{0}(\zeta)\right) v_{i} \overline{v_{j}}>\left|\sum_{i, j=2}^{n} r_{0_{z_{i} z_{j}}}\left(f_{0}(\zeta)\right) v_{i} v_{j}\right| . \tag{10}
\end{equation*}
$$

Consider the mapping $\Phi: X \times \mathbb{C}^{n} \times B \times Q_{0} \times \mathbb{R} \rightarrow Q \times \bar{B} \times \mathbb{C}^{n}$ defined by

$$
\Phi(r, v, f, q, \lambda):=\left(r \circ f, \pi\left((1+q) \zeta\left(r_{z} \circ f\right)\right), f^{\prime}(0)-\lambda v\right)
$$

where ζ is just the identity function on the unit circle. From now on we shall identify $f \in B$ with its extension to $\mathbb{D} \mathbb{}^{1}$.

We shall show that there exist an open neighbourhood U of $\left(r_{0}, f_{0}^{\prime}(0)\right)$ in $X \times \mathbb{C}^{n}$ and a real analytic mapping $\Psi: U \rightarrow B \times Q_{0} \times \mathbb{R}$ such that for any $(r, v) \in U$ there is $\Phi(r, v, \Psi(r, v))=0$, which will finish the proof.

Indeed, suppose we have such U and Ψ. Observe first that for $\left(r, f^{\prime}(0)\right)$ sufficiently close to $\left(r_{0}, f_{0}^{\prime}(0)\right), f$ is an E-mapping into D^{r} such that $f(0)=0$ and $f^{\prime}(0)=\lambda v$ iff there exists a $q \in Q_{0}$ such that $q>-1$ and $\Phi(r, v, f, q, \lambda)=0$. The only problem here is to prove the fourth condition from the definition of an E-mapping in the backward implication. This fourth condition follows from the fact that for $\left(r, f^{\prime}(0)\right)$ near to $\left(r_{0}, f_{0}^{\prime}(0)\right), f$ and f_{0} are uniformly close and then the respective winding numbers are equal.

In this situation taking Γ as the composition of Ψ with the projection $\pi_{B}: B \times Q_{0} \times \mathbb{R} \rightarrow$ B and the inclusion $W^{2,2} \subset \mathcal{C}^{1 / 2}$ does the job.
To this end observe that Φ is real analytic, hence the existence of such U, Ψ would be a direct consequence of the implicit function theorem if only the partial derivative

$$
\Phi_{(f, q, \lambda)}\left(r_{0}, f_{0}^{\prime}(0), f_{0}, 0,1\right): B \times Q_{0} \times \mathbb{R} \rightarrow Q \times \bar{B} \times \mathbb{C}^{n / 2}
$$

is invertible. It is an easy computation to show that for a fixed $(\widetilde{f}, \widetilde{q}, \widetilde{\lambda}) \in B \times Q_{0} \times \mathbb{R}$ the following equality holds:

$$
\begin{aligned}
& \Phi_{(f, q, \lambda)}\left(r_{0}, f_{0}^{\prime}(0), f_{0}, 0,1\right)(\widetilde{f}, \widetilde{q}, \widetilde{\lambda}):=\left.\frac{d}{d t}\right|_{t=0} \Phi\left(r_{0}, f_{0}^{\prime}(0), f_{0}+t \widetilde{f}, t \widetilde{q}, 1+t \widetilde{\lambda}\right)= \\
= & \left(\left(r_{0 z} \circ f_{0}\right) \widetilde{f}+\left(r_{0 \bar{z}} \circ f_{0}\right) \overline{\tilde{f}}, \pi\left(\widetilde{q} \zeta r_{0 z} \circ f_{0}+\zeta\left(r_{0 z z} \circ f_{0}\right) \widetilde{f}+\zeta\left(r_{0 z \bar{z}} \circ f_{0}\right) \overline{\widetilde{f}}\right), \tilde{f}^{\prime}(0)-\widetilde{\lambda} f_{0}^{\prime}(0)\right) .
\end{aligned}
$$

From now on we will consider $r_{0 z}, r_{0 \bar{z}}$ as row vectors, \widetilde{f}, \bar{f} as column vectors and $r_{0 z z}=\left(\frac{\partial^{2} r_{0}}{\partial z_{i} z_{j}}\right), r_{0 z \bar{z}}=\left(\frac{\partial^{2} r_{0}}{\partial z_{i} \partial z_{j}}\right)$ as $n \times n$ matrices.

We have to show that for fixed $\eta \in Q, \varphi \in \bar{B}, v \in \mathbb{C}^{n}$ there exist exactly one element $(\widetilde{f}, \widetilde{q}, \widetilde{\lambda}) \in B \times Q_{0} \times \mathbb{R}$ satisfying

$$
\begin{gather*}
\left(r_{0 z} \circ f_{0}\right) \tilde{f}+\left(r_{0 \bar{z}} \circ f_{0}\right) \overline{\widetilde{f}}=\eta \tag{11}\\
\pi\left(\widetilde{q} \zeta r_{0 z} \circ f_{0}+\zeta\left(r_{0 z z} \circ f_{0}\right) \tilde{f}+\zeta\left(r_{0 z \bar{z}} \circ f_{0}\right) \overline{\widetilde{f}}\right)=\varphi \tag{12}
\end{gather*}
$$

[^0]\[

$$
\begin{equation*}
\tilde{f}^{\prime}(0)-\widetilde{\lambda} f_{0}^{\prime}(0)=v \tag{13}
\end{equation*}
$$

\]

Observe that in view of our assumption (11) turns out to be

$$
\bar{\zeta} \widetilde{f_{1}}+\zeta \overline{\tilde{f}_{1}}=\eta
$$

or

$$
\begin{equation*}
\operatorname{Re}\left(\widetilde{\mathfrak{f}}_{1} / \zeta\right)=\eta / 2 . \tag{14}
\end{equation*}
$$

Since $\widetilde{f}_{1}(0)=0$, the function $\widetilde{f}_{1} / \zeta$ is holomorphic and then (14) determines $\widetilde{f}_{1} / \zeta \in$ $W^{2,2}(\mathbb{T})$ up to an imaginary additive constant, which may be computed using (13).
Indeed, let $\widetilde{f}_{1} / \zeta=r / 2+i s(r / 2)+i c$, where $s(r / 2)$ is an adjoint function to $r / 2$ and c is our imaginary additive constant we have to compute. Observe that $r / 2(0)+i s(r / 2)(0)+$ $i c=\widetilde{f_{1}^{\prime}}(0)$ and

$$
\begin{gathered}
r / 2(0)+i s(r / 2)(0)+i c-\widetilde{\lambda} \operatorname{Ref}_{0_{1}}^{\prime}(0)-\operatorname{imf}_{0_{1}}^{\prime}(0)=\operatorname{Rev}_{1}+\operatorname{iImv}_{1}, \\
r / 2(0)-\widetilde{\lambda} \operatorname{Ref}_{0_{1}}^{\prime}(0)=\operatorname{Rev}_{1}
\end{gathered}
$$

which yields $\widetilde{\lambda}$ and then c. Observe that having $\widetilde{\lambda}$, once again using (13), we can easily find $\widetilde{f_{2}^{\prime}}(0), \ldots, \widetilde{f_{n}^{\prime}}(0)$.

Consider 12 , which in fact is a system of n equations with unknowns $\widetilde{q}, \widetilde{f}_{2}, \ldots, \widetilde{f}_{n}$. Observe that \widetilde{q} appears only in the first of the equations and the remaining $n-1$ equations mean exactly that the mapping

$$
\begin{equation*}
\left.\zeta\left(r_{0 \widetilde{z} \widetilde{z}} \circ f_{0}\right) \widehat{\widetilde{f}}+\zeta\left(r_{0 \widehat{z} \bar{z}} \circ f_{0}\right) \widehat{\overline{\tilde{f}}}-\psi\right\}^{3} \tag{15}
\end{equation*}
$$

extends to a holomorphic mapping from \mathbb{D} into \mathbb{C}^{n-1}, where $\psi \in W^{2,2}\left(\mathbb{T}, \mathbb{C}^{n-1}\right)$ may be obtained from φ and \widetilde{f}_{1}.

Indeed, to see this, write (12) in the form:

$$
\pi\left(M_{1}+\zeta M_{2}+\zeta M_{3}\right)=M_{4},
$$

where M_{1} is a column vector having \widetilde{q} on the first place and zero's on the remaining $n-1$ places, $M_{2}=\left(A_{i}\right)_{i=1}^{n}$ is a column vector such that $A_{i}=\sum_{j=1}^{n}\left(\frac{\partial^{2} r_{0}}{\partial z_{i} \partial z_{j}} \circ f_{0}\right) \widetilde{f}_{j}, M_{3}=\left(B_{i}\right)_{i=1}^{n}$ is a column vector such that $B_{i}=\sum_{j=1}^{n}\left(\frac{\partial^{2} r_{0}}{\partial z_{i} \partial z_{j}} \circ f_{0}\right) \widetilde{f}_{j}$, and M_{4} is a column vector with φ_{i} on $i-$ th place. This implies as follows:

$$
\widetilde{q}+\zeta A_{1}+\zeta B_{1}-\varphi_{1}
$$

admits a holomorphic extension to \mathbb{D} and for $i=2, \ldots, n$,

$$
\zeta A_{i}+\zeta B_{i}-\varphi_{i}
$$

extends holomorphically to \mathbb{D} and
$\psi=\left(\left(\frac{\partial^{2} r_{0}}{\partial z_{2} \partial z_{1}} \circ f_{0}\right) \widetilde{f}_{1}+\left(\frac{\partial^{2} r_{0}}{\partial z_{2} \partial \overline{z_{1}}} \circ f_{0}\right) \widetilde{\tilde{f}_{1}}-\varphi_{2}, \ldots,\left(\frac{\partial^{2} r_{0}}{\partial z_{n} \partial z_{1}} \circ f_{0}\right) \widetilde{f}_{1}+\left(\frac{\partial^{2} r_{0}}{\partial z_{n} \partial \overline{z_{1}}} \circ f_{0}\right) \widetilde{\tilde{f}_{1}}-\varphi_{n}\right)$, which derives (15). Put

$$
g(\zeta):=\widehat{\widetilde{f}}(\zeta) / \zeta, \quad \alpha(\zeta):=\zeta^{2} r_{0 \widetilde{z} z}\left(f_{0}(\zeta)\right), \quad \beta(\zeta):=r_{0 \hat{z} \widehat{\bar{z}}}\left(f_{0}(\zeta)\right)
$$

Observe that α, β are $(n-1) \times(n-1)$ matrices depending analytically on ζ and g is a column vector in \mathbb{C}^{n-1}. This allows us to reduce our task to the following: we need to find a $g \in W^{2,2}\left(\mathbb{T}, \mathbb{C}^{n-1}\right)$ such that g extends holomorphically to \mathbb{D} and

$$
\begin{equation*}
\alpha g+\beta \bar{g}-\psi \quad \text { extends holomorphically to } \mathbb{D} \text {. } \tag{16}
\end{equation*}
$$

Observe that we necessarily have $g(0)=\widehat{\tilde{f}}(0)$. Moreover, in view of (10) it is an easy observation that for any $z \in \mathbb{C}^{n-1} \backslash\{0\}$ there is

$$
\begin{equation*}
\left|z^{T} \alpha z\right|<z^{T} \beta \bar{z} . \tag{17}
\end{equation*}
$$

Note that $\beta(\zeta)$ is self-adjoint, hence using the Proposition 5.2 we get the existence of a holomorphic mapping $H: \mathbb{D} \rightarrow G L(n-1, \mathbb{C})$ satisfying $H \overline{H^{\star}}=\beta$. In this situation, (16) is equivalent to

$$
\begin{equation*}
H^{-1} \alpha g+H^{\star} \bar{g}-H^{-1} \psi \quad \text { extends holomorphically to } \mathbb{D}, \tag{18}
\end{equation*}
$$

or, if we denote $h:=H^{T} g, \gamma:=H^{-1} \alpha\left(H^{T}\right)^{-1}$,

$$
\begin{equation*}
\gamma h+\bar{h}-H^{-1} \psi \quad \text { extends holomorphically to } \mathbb{D} . \tag{19}
\end{equation*}
$$

Using (17) and the results of [6] we get for any $\zeta \in \mathbb{T}$ the norm of the symmetric matrix $\gamma(\zeta)$ is less than 1 . In fact, take a $z \in \mathbb{C}^{n-1}:\|z\|=1$. Then

$$
\left|z^{T} \gamma z\right|=\left|z^{T} H^{-1} \alpha\left(H^{T}\right)^{-1} z\right|<z^{T} H^{-1} \beta \overline{\left(H^{T}\right)^{-1} z}=z^{T} H^{-1} H H^{\star} \overline{\left(H^{T}\right)^{-1}} \bar{z}=\|z\|^{2} .
$$

We have to prove that there is an unique solution $h \in W^{2,2}(\mathbb{T})$ of 19$)$, holomorphic on \mathbb{D} and such that $h(0)=a$ with certain a.

Define the operator

$$
P: W^{2,2}\left(\mathbb{T}, \mathbb{C}^{n-1}\right) \ni \sum_{k=-\infty}^{\infty} a_{k} e^{i k t} \mapsto \overline{\sum_{k=-\infty}^{-1} a_{k} e^{i k t}} \in W^{2,2}\left(\mathbb{T}, \mathbb{C}^{n-1}\right)
$$

We shall show that a mapping $h \in W^{2,2}\left(\mathbb{T}, \mathbb{C}^{n-1}\right) \cap \mathcal{O}\left(\mathbb{D}, \mathbb{C}^{n-1}\right)$ satisfies 19p and is such that $h(0)=a$ if and only if it is a fixed point of the mapping

$$
K: W^{2,2}\left(\mathbb{T}, \mathbb{C}^{n-1}\right) \ni h \mapsto P\left(H^{-1} \psi-\gamma h\right)+a \in W^{2,2}\left(\mathbb{T}, \mathbb{C}^{n-1}\right) .
$$

Indeed, take an $h \in W^{2,2}\left(\mathbb{T}, \mathbb{C}^{n-1}\right) \cap \mathcal{O}\left(\mathbb{D}, \mathbb{C}^{n-1}\right)$ and suppose $h(0)=a$ and $\gamma h+\bar{h}-$ $H^{-1} \psi$ extends holomorphically to \mathbb{D}. We then have

$$
\begin{gathered}
h=a+\sum_{k=1}^{\infty} a_{k} e^{i k t}, \quad \bar{h}=\bar{a}+\sum_{k=1}^{\infty} a_{k} e^{-i k t}=\sum_{k=-\infty}^{-1} a_{-k} e^{i k t}+\bar{a} \\
P(h)=0, \quad P(\bar{h})=\sum_{k=1}^{\infty} a_{k} e^{i k t}=h-a
\end{gathered}
$$

and

$$
P\left(\gamma h+\bar{h}-H^{-1} \psi\right)=0,
$$

which implies

$$
P\left(H^{-1} \psi-\gamma h\right)=h-a
$$

and finally $K(h)=h$. Conversely, suppose $K(h)=h$. Then

$$
P\left(H^{-1} \psi-\gamma h\right)=h-a=\sum_{\substack{k=1 \\ 15}}^{\infty} a_{k} e^{i k t}+a_{1}+a, \quad P(h)=0
$$

and

$$
P(\bar{h})=\sum_{k=-\infty}^{-1} a_{-k} e^{i k t}=\sum_{k=1}^{\infty} a_{k} e^{i k t}=h-a_{1},
$$

from which follows

$$
P\left(\gamma h+\bar{h}-H^{-1} \psi\right)=P(\bar{h})-P\left(H^{-1} \psi-\gamma h\right)=a-a_{1}
$$

and

$$
P\left(\gamma h+\bar{h}-H^{-1} \psi\right)=0 \quad \text { if only } a=a_{1} .
$$

Observe that $K(h)(0)=h(0)=P\left(H^{-1} \psi-\gamma h\right)(0)+a=a$ and we are done.
Thus it is enough to use the Banach fixed poit theorem. Yet, we have first to show that K is a contraction. To do this, consider in $W^{2,2}(\mathbb{T})$ the following norm

$$
\|h\|_{\varepsilon}=\|h\|_{L^{2}(\mathbb{T})}+\varepsilon\left\|h^{\prime}\right\|_{L^{2}(\mathbb{T})}+\varepsilon^{2}\left\|h^{\prime \prime}\right\|_{L^{2}(\mathbb{T})},
$$

with positive ε. We shall show that for ε sufficiently small, K is a contraction with respect to the norm $\|\cdot\|_{\varepsilon}$.

Indeed, for each pair $h_{1}, h_{2} \in W^{2,2}(\mathbb{T})$ there is

$$
\begin{align*}
&\left\|K\left(h_{1}\right)-k\left(h_{2}\right)\right\|_{L^{2}(\mathbb{T})}=\left\|P\left(\gamma\left(h_{2}-h_{1}\right)\right)\right\|_{L^{2}(\mathbb{T})} \leq \tag{20}\\
& \leq\left\|\gamma\left(h_{2}-h_{1}\right)\right\|_{L^{2}(\mathbb{T})}<\Lambda\left\|h_{2}-h_{1}\right\|_{L^{2}(\mathbb{T})}
\end{align*}
$$

with $\Lambda:=\|\gamma\|<1$. Moreover,

$$
\begin{align*}
&\left\|K\left(h_{1}\right)^{\prime}-K\left(h_{2}\right)^{\prime}\right\|_{L^{2}(\mathbb{T})}=\left\|P\left(\gamma h_{2}\right)^{\prime}-P\left(\gamma h_{1}\right)^{\prime}\right\|_{L^{2}(\mathbb{T})} \leq \tag{21}\\
& \leq\left\|\left(\gamma h_{2}\right)^{\prime}-\left(\gamma h_{1}\right)^{\prime}\right\|_{L^{2}(\mathbb{T})}=\left\|\gamma^{\prime}\left(h_{2}-h_{1}\right)+\gamma\left(h_{2}^{\prime}-h_{1}^{\prime}\right)\right\|_{L^{2}(\mathbb{T})}
\end{align*}
$$

in view of the equality $P(h)^{\prime}=P\left(h^{\prime}\right)$ Furthermore,

$$
\begin{equation*}
\left\|K\left(h_{1}\right)^{\prime \prime}=K\left(h_{2}\right)^{\prime \prime}\right\|_{L^{2}(\mathbb{T})} \leq\left\|\gamma^{\prime \prime}\left(h_{2}-h_{1}\right)+2 \gamma^{\prime}\left(h_{2}^{\prime}-h_{1}^{\prime}\right)+\gamma\left(h_{1}^{\prime \prime}-h_{2}^{\prime \prime}\right)\right\|_{L^{2}(\mathbb{T})}, \tag{22}
\end{equation*}
$$

because of the formula $P\left(h^{\prime \prime}\right)=-P(h)^{\prime \prime}$. Using now the finiteness of the norms $\left\|\gamma^{\prime}\right\|,\left\|\gamma^{\prime \prime}\right\|$, the fact that $\|P\| \leq 1$ and piecing together (20), (21), (22), we see there exists an $\varepsilon>0$ such that K is a contraction with respect to the norm $\|\cdot\|_{\varepsilon}$.
So far we have found \widetilde{f} and $\tilde{\lambda}$ such that (11), (13) and the last $n-1$ equations from (12) are satisfied. To the end, it has to be shown that there exists an unique $\widetilde{q} \in Q_{0}$ such that

$$
\widetilde{q}+\zeta A_{1}+\zeta B_{1}-\varphi_{1}
$$

admits a holomorphic extension to \mathbb{D}.
It is not hard to see that if

$$
\pi\left(\zeta A_{1}+\zeta B_{1}-\varphi_{1}\right)=\sum_{k=-\infty}^{-1} a_{k} e^{i k t}
$$

then \widetilde{q} should be taken as follows:

$$
\widetilde{q}=-\sum_{k=-\infty}^{-1} a_{k} e^{i k t}-\sum_{k=0}^{\infty} a_{k} e^{i k t}
$$

with a real b_{0} and $b_{k}=\overline{a_{k}}$ for $k=1,2, \ldots$

6. Proof of Theorem 1.5.

Here we prove the main result, i.e. Theorem 1.5. First, from Proposition 2.2, we know that E-mappings are (unique) extremals. So it is sufficient to prove that if we have $z, w \in D\left(\operatorname{resp} z \in D\right.$ and $\left.v \in \mathbb{C}^{n}\right)$ then there is a E-mapping $f: \mathbb{D} \rightarrow D$ such that $f(0)=z, f(\zeta)=w$, with $1>\zeta>0$ (resp. $f(0)=z$ and $f^{\prime}(0)=\lambda v$ for $\left.\lambda>0\right)$. Then any extremal mapping for (z, w) (resp. for (z, v)) must be equal to f (since they are unique extremal).

First we consider the case, when D is strictly convex and we prove that there is a E-mapping for $(z, w) \in D \times D$ (resp. for $(z, v) \in D \times \mathbb{C}^{n}$). Without loos of generality we may assume that $D \subset \mathbb{B}_{n}$, where \mathbb{B}_{n} is a open unit ball in \mathbb{C}^{n}. For $t \in[0,1]$ consider the domains $D_{t}:=t D+(1-t) \mathbb{B}_{n}$. It is easy to see that D_{t} are strictly convex (since D and \mathbb{B}_{n} are) and $D \subset D_{t}$ for all $t \in[0,1]$. Let T be a subset of $[0,1]$ such that for all $t \in T$ there is a E-mapping $f_{t}: \mathbb{D} \rightarrow D_{t}$ for $(z, v) \in D \times \mathbb{C}^{n}$ (resp. for $\left.(z, w) \in D \times D\right)$. It is easy to see that $0 \in T$. To prove that $1 \in T$, we need to know that $\left(D_{t}, z\right) \in \mathcal{D}(c)$ for some $c>0$ independent of t. Since for $t=0$ there is E-mapping, then from Proposition ?? there is a neighborhood T_{0} of 0 in $[0,1]$ and

- there are an E-mappings $f_{t}: \mathbb{D} \rightarrow D_{t}$ and $\xi_{t} \in(0,1)$ such that for all $t \in T_{0}$ we have $f_{t}: \mathbb{D} \rightarrow D_{t}, f_{t}(0)=f(0)$, and $f_{t}\left(\xi_{t}\right)=f(\xi)$ (in the case of Lempert function);
- there are an E-mappings $f_{t}: \mathbb{D} \rightarrow D_{t}$ and $\lambda_{t}>0$ such that for all $t \in T_{0}$ we have $f_{t}(0)=f(0)$, and $f_{t}^{\prime}(0)=\lambda_{t} v$ (in the case of Kobayashi-Royden pseudometric).
It means that T is open in $[0,1]$.
Now we prove that T is closed in [0, 1]. Let us take $\left(t_{n}\right) \subset T$ such that $t_{n} \rightarrow t$. We prove that $t \in T$. From Proposition 4.4 4.8 and 4.9 we have that $f_{t_{n}}$ and $\widetilde{f_{t_{n}}}$ are equicontinuous in $\mathcal{C}^{1 / 2}(\overline{\mathbb{D}})$. From Arzela-Ascoli theorem there is a subsequence $\left(s_{n}\right) \subset\left(t_{n}\right)$ such that $f_{s_{n}} \rightarrow g$ and $\widetilde{f}_{s_{n}} \rightarrow G$ uniformly. It is easy to see that $g: \mathbb{D} \rightarrow D_{t}$ is an E-mapping. So T is closed subset of $[0,1]$. This ends the proof in the case strict convexity of D.

Let us back to general situation. Let D be a strictly linearly convex domain and let $(z, w) \in D \times D\left(\right.$ resp. $\left.(z, v) \in D \times \mathbb{C}^{n}\right)$. Take $\mu \in \partial D$ such that $\operatorname{dist}(z, \partial D)=\|z-\mu\|$. Since D is strictly linearly convex then μ is a point of strict convexity. There exist a neighborhood V_{0} of μ in \mathbb{C}^{n} such that $V_{0} \cap D$ is strictly convex. From previous part of proof there exist an E-mapping $g: \mathbb{D} \rightarrow V_{0} \cap D$ for $\left(g(0), g(\xi)\right.$) (resp. for $\left(g(0), g^{\prime}(0)\right)$) such that $g(\partial \mathbb{D}) \subset V_{0} \cap \partial D$, so g is an E-mapping in D. Let $Z:=g(0)$ and $W:=g(\xi)$ (resp. $Z:=g(0)$ and $\left.V:=g^{\prime}(0)\right)$. If $Z=z$ and $W=w($ resp. $Z=z$ and $V=v$) then we are done. In opposite situation we take a curves $z_{t}:[0.1] \rightarrow D, w_{t}:[0,1] \rightarrow D$ (resp. $z_{t}:[0.1] \rightarrow D, v_{t}:[0.1] \rightarrow \mathbb{C}^{n}$) which joint z and Z, w and W (resp. z and Z, v and V). Again let T be a subset of $[0,1]$ such that for $t \in T$ there is an E-mapping g_{t} in D such that $\left(g_{t}(0), g_{t}\left(\xi_{t}\right)\right)=\left(z_{t}, w_{t}\right)$ for some $\xi_{t} \in(0,1)$ (resp. $\left(g_{t}(0), g_{t}^{\prime}(0)\right)=\left(z_{t}, \lambda_{t} v_{t}\right)$ for some $\left.\lambda_{t}>0\right)$. The same argumentation as above leads to $T=[0,1]$. In particular there exist an E-mapping $f: \mathbb{D} \rightarrow D$ for (z, w) (resp. (z, v)).

References

[1] M. Andersson, M. Passare, R. Sigurdsson, Complex convexity and analytic functionals, Birkhauser, Basel-Boston-Berlin, 2004.
[2] J. E. Fornaess, Embedding Strictly Pseudoconvex Domains in Convex Domains, Am. J. Math 98, No. 2 (1976), 529-569.
[3] G. M. Goluzin, Geometric theory of functions of a complex variable, Nauka, Moscow, 1966.
[4] M. Jarnicki \& P. Pflug, Invariant Distances and Metrics in Complex Analysis, Walter de Gruyter, 1993.
[5] W. Rudin, Function theory in the unit ball of \mathbb{C}^{n}, Springer-Verlag, Berlin, 2008.
[6] E. Tadmor, Complex symmetric matrices with strongly stable iterates, Linear algebra and its applications 78:65-77 (1986).

[^0]: ${ }^{1}$ Hence we are able to consider $f(0)$ and $f^{\prime}(0)$.
 ${ }^{2}$ Observe that we have $q_{0}=0, \lambda_{0}=1$.

