1. DEFINITIONS AND MAIN RESULTS

We will study extremal mappings in the sense of Lempert function and in the sense
of Kobayashi-Royden pseudometric, so let us recall the objects we will deal with in this
paper. Let D denotes the unit disk in C. Let D C C" be a domain and let z,w € D, and
v € C". In this paper we consider two objects:

(1)  kp(z,w) :=inf{hyp dist (¢,€) : 3f € O(D, D) such that f(() = z, f(§) = w},
and
(2) kp(z,v) :=sup{A > 0:3f € O(D, D) : f(0) =z, f'(0) = \v}.

Using appropriate automorphisms of the unit disk, we can always assume that in
¢ = 0. First one we call Lempert function and second - Kobayashi — Royden
pseudeometric. We call f : D — D a kp-extremal (resp. kp-extremal) if for f in
(resp. (2)) the 'inf’ is attained for some z,w € D, z # w (resp. the ’sup’ is attained for
some z € D, X € C*\ {0}). In general k is not a pseudodistance - consider a domain
D, = {(z,w) € C* : |z] < 1,|w| < 1,|zw| < a}, then for all @ € (0,1) the triangle
inequality does not hold for kp, . More examples the reader may find in [4].

To overcome the difficulty connected with the triangle inequality we modify the function
kp in such a way that the new function becomes a pseudodistance. For z,w € D we put

N
kp(z,w) = inf{z kp(zj—1,2;) : N € Ny zg = 2, 21, ..., 28 € D, 2y = w}.
j=1
The function k7, is called the Kobayashi pseudodistance for D.
However, if D is strictly linearly convex, kp will be a distance. This is because of

Theorem 1.1. Let D C C" be a strictly linearly convex domain with C* boundary (k = oo
ork=w). Then kp = kiy = cp, where for z,w € D we define

(3) cp(z,w) = sup{hyp dist (F(z), F(w)) : F € O(D,D)}.

Function is called a C'arathéodory distance.

Our main goal is to describe extremals in the sense of Lempert function and in the
sense of Kobayashi-Royden pseudometric, in the case when D is strictly linearly convex
domain with C*¥ boundary (in this paper we always assume that & = oo or k = w). We
say that

Definition 1.2 (See [1]). Let D C C" be a bounded domain. D is called linearly convex if
trough any boundary point z € 0D there goes an (n — 1)-dimensional complex hyperplane
that is disjoint from D. D is called strictly linearly convex if

(1) D has C*-smooth boundary,

(2) the defining function r of D satisfies the inequality
Zrzjgk (a)w;wy, >

I
where a € 0D, w = (wy, ..., w,) € (C), with ;1. (a)w; = 0.

Z sz-zk (a>wkwk

j?k

bl

We remark here that in the following sections D will always denote a strictly linearly
convex domain which is, for the sake of simplicity, bounded by a real analytic hypersur-

face.
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Remark 1.3. If D is strictly linearly convexr domain, then each complex tangent plane
intersect the boundary 0D in precisely one point.

In addition, we shall use the following notations: C*(K), where K is compact subset of
C", denotes the spaces of all mappings that are [k]-times differentiable in the interior of K,
and in the case when k£ is an integer the derivatives up to order k extend continuously to K,
in other case, i.e. k—[k] := ¢ > 0, the derivatives up to order [k] are c-Holder continuous;
C¥(K) denotes the set of functions that extend analytically to a neighborhood of K.
Generally, if A is an arbitrary set in C", then C*(A) = N{C*(K) : K compact and K C
A}. || denotes the euclidean norm in C". For (2, ..., z,) € C" we define 2 := (22, ..., 2,),
and similarly, if f = (f1,..., fn) 1S a mapping into C", then by f we define a mapping
(f2, -+ fn) into C*~1. Finally: for z = (z1, ..., z,), w = (wy, ..., w,) € C" 2w 1= 37 zjw;.

Before we formulate the main result of this paper we need another definition.

Definition 1.4. Let D € C" be a domain. We call a holomorphic mapping f : D — D
an E—mapping, if

(1) f extends to a C* function on D (to be denoted by the same letter f);
(2) [(9D) C OD;

(3) there exist a positive C* function p : 0D — R such that the mapping OD > (

Cp(Ov(f(C)) € C™ extends to a C* mapping f:D — C", holomorphic in D (here
v(z) denotes the outward unit normal vector to 0D in z);

(4) the winding number of the function p(¢) :=v(f(C)) - (z — f(¢)) on ID is zero for
all z € D.

Furthermore, we shall call a holomorphic mapping f : D — D weakly-E—mapping f it
possesses the above properties (1)-(4) with k = 1/2.

Soon we shall see that there is no difference between E—mappings and weakly- E—mappings.
f(D) will be called a (weak) E—disk, if f will be a (weak) E—mapping.

From definition we have to compare f with all other ¢ € O(D, D) to check that f is
extremal. Next theorem shows how to describe extremal mappings, by checking certain
properties of f alone.

Theorem 1.5. Let D be a strictly linearly convex domain with a C* boundary (k = oo
ork =w). Then a holomorphic mapping f : D — D is extremal in the sense of Lempert
function (resp. in the sense of Kobayashi-Royden pseudometric) with respect to the points

(f(0), f(&)) (resp. with respect to (f(0), f'(0))), if and only if f is an E-mapping.

Theorem above is the main result of this paper. The idea of its proof is the following:
for any z,w € D (resp. any z € D and v € C") we prove that there is unique (weak)
E—mapping, which is extremal for (z,w) (resp. (z,v)). Using standard tool, i.e. explicit
function theorem, Arzela-Ascoli theorem we shall prove that trough any given pair of
points there goes a E—disk. This will then establish Theorem [L.5]

2. EXTREMAL MAPPINGS AND E-MAPPINGS

Proposition 2.1. Let f : D — D be an E-mapping. Then there exists a conlinuous
mapping F : D\ f(0D) — D, holomorphic on D and such that F o f = idp.
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Proof. Set A := D\ f(0D) and let ¢, denote the function from the condition from
the definition of F—mapping. Since D is strictly linearly convex, ¢, does not vanish in
0D for any z € A, so by the continuity argument the condition holds for every z in

some open neighbourhood W of the set A. Consider the function G : W x D — C given
by

G(2,¢) = f(¢) - (= = f(Q)).
We claim that for given z € W the equation G(z,() = 0 has exactly one solution ¢ € D.
Fix z € W and let p be as in the condition . We have

G(z,¢) = Cp(¢)¢=(C)

for ¢ € 0D, so the winding number of the function G(z,-) on JD is equal to 1. Since
this function is holomorphic on D, it has exactly one simple root F'(z) € D. Therefore
G(z,F(z)) = 0 and %—?(Z,F(Z)) # 0. In virtue of the implicit mapping theorem, the
function F' is holomorphic on W. U

Let us note that for given EF—mapping f the mapping F satisfies the equation

(4) f(F(2)- (= = f(F(2))) =0
at every point z € D\ f(9D).

Proposition 2.2. An E-mapping f : D — D is the unique extremal mapping with respect
to the point z = f(0) and direction v = f'(0), and also with respect to the couple of points
z = f(0),w = f(&), with £ € (0,1) being arbitrary.

Proof. We carry the proof in both cases simultaneously. Let F' be as in the Proposition
2.1l Suppose g : D — D is a holomorphic mapping such that ¢(0) = z and:

e ¢'(0) = Av for some A\ > 0, in the first case,
e g(n) = w for some n € (0,1), in the second case.

The function F o g maps the unit disc to itself and satisfy F'(g(0)) = F(f(0)) = 0.
Therefore by the Schwarz’ lemma we get:

e 1>|(Fog)(0)=A(Fof)0)]=Asol|f(0)]>]g(0)],in the first case,

e 0> [(Fog)m)| = |[F(w) = [(Fo f)(€)| = £ in the second case.
Therefore f is an extremal mapping.

We show that f is the unique extremal mapping. Suppose g is extremal. Then A\ =1
(in the first case) or n = £ (in the second case), so there holds the equality in the above
application of the Schwarz’ lemma. This implies F' o g = idp.

We claim that limpse_.c, 9(¢) = f(¢o) for each {; € JD. Suppose not. Then for
some (g € JD there is a sequence ((,)m C D convergent to (o and such that the limit
7 = limy, 00 9(Cn) € D exists and is not equal to f((y). Putting z = ¢(¢,,) in the
equation (4)) we get

0= f(F(9(Gm))) - (9(¢m) = F(F(9(Gm)))) = F(Gm) - (9(Cm) = f(Cm))-

Passing m — oo gives

0= f(Co) - (Z — f(Co)) = Cop(Co) ¥(f(Co)) - (Z — f(Co)),
so the vector Z — f((o) belongs to the complex tangent space of 9D at f((o). Hence
Z = f((), because Z € D and D is strictly linearly convex. This is a contradiction. [

Proposition 2.3. If f : D — D is an E-mapping and a is an automorphism of D, then
f oa is an E-mapping.
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Proof. Set g := foa. The conditions and are clear. To prove the condition 7 fix
a point z € D and let ¢y, ¢, be as in the condition . Then ¢, = ¢; o a. The winding
number of alsp is 1, so the winding numbers of the mappings ¢ and ¢, are equal.

We prove the condition . The winding number of the function ¢ — -~ on 9D is 0,

a(¢)
so there exists a real-valued C*(9D) function v such that % = ¢ on OD. Hence there
exists a real-valued C¥(0D) function u such that the function 0D > ¢ — %e“(o cC

extends to a nowhere-vanishing function A : D — C holomorphic on D. Moreover, u and
v are of class C¥ on dD), so h can be extended to a mapping of class C* on . Let p be
as in the condition for f. For ¢ € D put r(¢) := p(a(¢))e™©). We get

¢r(Qv(9(0)) = ¢e"p(a(Q))v(f(a(())) = alQ)()pla(O))w(f(al())) = h($) f(a(C)),
and this mapping extends to a C*(ID) mapping, holomorphic on D. U

Corollary 2.4. An E-disc f(D) is the unique extremal disc with respect to any couple of
different points z,w € f(D), and also with respect to any point z = f(¢) and direction

v=f"(Q).
Proposition 2.5. Let f be an E-mapping. Then the function f’-fz's a positive constant.

Proof. Since the curve t — f(e™) is contained in 9D, its tangent vector ie” f'(e”) belongs
to the tangent space T (.i)0D, so is orthogonal to v(f(e")) with respect to the real scalar
product. Hence for ( € dD we have

I /'(Q) - J¢) = p(Q) Re (i/'(Q) - v(F(Q))) =0,
so the holomorphic function f’- fis a real constant C'.
The curve [0,1) > t — f(t) lies in D and f(1) € 0D, so the tangent vector f'(1)

outwards from D. Hence

— 1 ~ C
< ‘(1) - 1)) =— - f1)) = —=.
0= Re (£(1)-¥{1) = - 5Re (£ 7)) = 55
This implies C' > 0. For each ¢ € dD we have
f(Q) = f(0) ~
— f(Q) = p(Q)v(f(Q)) - (F(¢) = f(0)).
By the condition , the last function has t}ie winding number equal to 0. Therefore
the holomorphic function h(() := w - f(¢) does not vanish in D. In particular,
C = h(0) #0. O
Proposition 2.6. Let f be an E-mapping and let z = f({),w = f(w), where (,w € D.

Then
CD('Z’w) = kD(’va) = kD(Z7w> = hyp dist (Cuw)'

Proof. Let F be as in the Proposition Using the equality F o f = idp we get
cp(z,w) > hyp dist (F(2), F(w)) = hyp dist (¢,w) > kp(z,w) > kp(z,w) > cp(z, w)
and we are done. O

Corollary 2.7. An E-mapping gives an embedding of D endowed with the hyperbolic
distance into D endowed with the Kobayashi or the Carathéodory distance.
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3. REGULARITY

Let M C C™ be a totally real local C* submanifold having the real dimension m. Take
an arbitrary point z € M. There are open subsets U,V of C™ and a C*-diffeomorphism
& : U — V such that V is a neighbourhood of z, #71(z) = 0 and VNM = &(UNR™). The
mapping q)\UmRm can be extended to a mapping ® analytic on an open neighbourhood of
the point 0. We have

T0) = 52(0) = 520,

so the complex derivative ®'(0) in an isomorphism. Therefore ® restricted to a small
neighbourhood of 0 is a biholomorphism of two open subsets of C” which carries an open
neighbourhood of 0 in R™ in an open neighbourhood of z in M.

Lemma 3.1 (Reflection principle). Let M C C™ be a totally real local C¥ submanifold,
having the real dimension m. Let V. C C be an open neighbourhood of a point (, € D
and let g : VND — C™ be a continuous mapping. Suppose g is holomorphic on V N D
and g(V NoD) C M. Then g can be continued holomorphically past V N OD.

Proof. In virtue of the identity principle it is sufficient to continue g locally past an
arbitrary point (o € VN ID. Fix { and take ® is as above, for the point g({y) € M. Let
Vi C V be an neighbourhood of ¢y such that g(V;ND) is contained in the image of ®. The
mapping ®~! o g is holomorphic on V; NID and has real values on V; N 0D. Hence by the
ordinary reflection principle we can extend this mapping holomorphically past V; N oD.
Denote that extension by h. Then ®oh is an extension of g in a neighbourhood of (. [

Proposition 3.2. Every weak E-mapping is also an E-mapping.

Proof. Let f be a weak EF—mapping. Our goal is to prove that the mappings f and fvare
of the class C¥. Write f = (fl, oo fn), f=(f1,..., fn). Choose a point (y € ID. Since

F(Co) # 0, we can suppose f1(¢) # 0 in U ND, where U is a neighbourhood of ¢;. This
implies 1/1( f(<o)) # 0, so v1(2) does not vanish on some set V' open in 9D and containing

the point f((p).
Define the mapping ¢ : V — C?*~! by

W(z) = (zl, ey Zny o(2) f11(2), .. ,Vn(Z)/l/l(Z)) .

The set M := (V) is the graph of a C¥ function defined on the local C¥ submanifold
V, so obviously is a local C* submanifold of C*"~!, having the real dimension 2n — 1.
Assume for the moment that M is totally real.

Consider the mapping

9(0) == (A £l o)/ A Jl) ] Hi(O))

defined for ¢ € UND. If ¢ € UnNaD, then f;(¢)/ fi(¢) = v;(f(Q))/vi(f(C)), so
9(¢) = ¥(f(¢)). Therefore g(U N D) C M. The reflection principle implies that g
extends analytically past U N 9D, so f is of class C¥ near (y. Since (y is arbitrary, f is of
class C¥ on JD.

The mapping m| op if of class C¥, so it clearly extends to some mapping h holomor-
phic on the neighbourhood of dD. For ¢ € U N 0D we have

Chi(€) 1
A0 pO)
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The function on the left side is holomorphic on U ND and continuous on U ND. Since it
has real values on U N JD, the reflection principle implies that it is of class C*. Hence p,
and then f, is of class C* near an arbitrarily chosen point (.

It remains to prove that M is totally real. Let r denote a defining function for 9D.
For every point z € 0D the vectors v(z) and gradr(z) = (r5(2),...,75(2)) are parallel
over R, so

v(2)

1
vi(z)  ralz)

Consider the mapping S = (S},...,5,) : V x C"! — R x C"! given by

grad r(z).

S(zy,w) = (1(2),72(2) —wir,, (2), ..., 72, (2) — Wp_174, (2)).

Clearly M = S~'({0}). This implies T{,,)M C ker S'(z, w) for any (z,w) € M.
Fix a point (z,w) € M. Our goal is to prove that T( yM = {0}. Take an arbitrary
vector (X,Y) = (Xq,..., X, Y1,..., Y, 1) € T wM- Then Y w72 (2) Xy = 0, because

X € TCOD. For each k =2,....,n we have wy,_; = Z’“Zi and
Tz

0= 0(xy)Sk(z,w) = E Tz (2) X5 — wie 1E Tz (2

Tz (Z) Z Tz \Z ( = rzk Z rzlz]
J
Note that the last equality holds also for £ = 1. Hence

., (2 Zrzkz] XXk = Zrzk Zrzlzj XXk
k

= <;m( )(Zr >_o

Therefore by from Definition we get X = 0, and this directly implies Y = 0. [

SO

4. HOLDER ESTIMATES

We will prove some uniform 1/2-Holder estimates for E-mappings f : D — D such
that f(0) = z. These maps we will denote as a function between marked domains

f:(D,0) — (D, z). We need the following

Definition 4.1. For given ¢ > 0 let the family D(c) consists of all marked domains (D, z)
satisfying

(1) dist(z,0D) > %;

(2) the diameter of D and the modulus of the normal curvature of 0D are smaller
than c;

(3) for any x,y € D there exist m < ¢* and balls By, ..., B,, C D of radius i such
that x € By, y € B, and the distance between the centers of the balls B;, Bji1 s
smaller than ﬁ for7=0,....m—1;

(4) for every ball B C C™ of radius not greater than % there exists a holomorphic map
®: D — C" such that
(a) for any w € ®(B N ID) there is a ball of radius smaller than ¢ containing

®(D) and tangent to 0P(D) at w;
(b) ® is biholomorphic on B N D;
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(c) the partial derivatives of the first order of ® and ®~' (on ®(B N D)) are
bounded by c;
(d) dist(®(z),0P(D)) > 1.

For strictly pseudoconvex domain D and point z € D there exists ¢ such that conditions
(1)-(4) are satisfied. The construction of mapping ® amounts to the construction of peak
functions (see [2]). In the case of D strictly convex and the normal curvatures of 0D
greater than %, one can take ® = id.

Fix ¢ > 1. Let us prove

Proposition 4.2. Let f: (D,0) — (D, z) be an E-mapping. Then
dp(f(Q)) < C(1—1¢]),CeD
with constant C > 0 uniform if (D, z) € D(c).

Proof. Thanks to the condition (3) there exists Cy such that kp(z,w) < Cy if dist(w, 0D) >
1. Fix ¢ € D with dist(f(¢),0D) > 1. Then

En(7(0), £(0)) < O — - log(dist(£(C), 0D)).

In the opposite case i.e. dist(f(¢),0D) < % let n be the nearest point to f(¢) on dD.
Set w € D as the center of the ball B of radius % tangent to 0D at 7. By condition (2)
B C D. Hence

kp(£(0), £(€)) < kp(f(0), w) + kp(w, f(C)) <
< Oy + kil £(0)) < Oy — S log(dist(£(0), 0D)) = O — - los(dist(£(C), 0D)).
On the other side, Proposition used to extremal disc f(DD) through f(0) and f(¢)
gives
ko (£(0), £(0)) = hyp dist (0,¢) > — 5 log(1 — |c]). =
Now we are going to obtain the same Holder estimates for an E-mapping f and as-

sociated mappings f, p. Thanks to Proposition the function f’f is constant, so p is
defined up to a constant factor. We may choose p such that f'f =1 i.e.

PO = C(O(F(O), CED.
In that way fvand p are uniquely determined by f.
Proposition 4.3. Let f: (D,0) — (D, z) be an E-mapping. Then
Cy < p(Q)™H < Cy, ¢ edD
with constants Cy,Cy > 0 uniform if (D, z) € D(c).

Proof. For the upper estimate choose ¢ € dD and define (. := (1 —€)¢ for small € > 0.
Set B := B (f(¢),1) and let ® : D — C" be chosen to the ball B as described in the
condition (4). One can assume that ®(f(¢)) = 0 and the normal vector to 0®(D) at 0
is N := (1,0,...,0). Then ®(D) is contained in the half space {w € C" : Rew; < 0}.
Putting h := ® o f we have

hy(D) C {w; € C: Rew; < 0}.
In virtue of the Schwarz lemma in the half plane

, 2Reh(¢) _ dist(h((.),00(D)))
@l = 4~ 1k

as € — 0,



since the transversality of t — ®(f(t()) to OP(D) is equivalent to the transversality of
t — f(t¢) to D and the second transversality follows from
d
Re | —=f(2
e (100

V(f(C))) — Re (F(OGTQ)) = pl0).

Clearly -
ist(®(£(5.)).09(D)) _ dist(£(¢.).0D)

L— ¢ I
which, by Proposition does not exceed some constant. Now the upper estimate
follows from the observation

L Qv ()] < Cs|A' (Qv(h(C))] = Cs[hi (C)]-
Indeed, if g is a defining function for D in the neighbourhood of f({) then

T < lee o)
POV = [z

ey e e o n O]

OO =19 e s T

BN (1) 105 I 1) (S I
Ve(F(O)@ Y (@(F(ON] — [VelF () evn

The lower estimate is related to a lemma of E. Hopf. Note that for small ¢ > 0 the
function

and analogously

o(w) := —log(e + dist(w,dD)) + loge, w € D,,
where D, is an e-envelope of D i.e. the set {w € C" : dist(w, D) < €}, is plurisubharmonic
and defining for D. Indeed, we have
—log(e + dist(w, D)) = —log(dist(w, dD,)), w € D,

and for sufficiently small € the domain D, is pseudoconvex. B
Let us define a non-positive subharmonic function v := po f : D — R. Since
|f(A) — 2| < cfor A € D, we have
1 1
A) — — if [N\ < —.
O =2l < oo i A € 5
Therefore, for fixed ( € ID
4 1
M(z) == ) < —log (14 =— | = —Cy if < —log(2¢?).
(o) = i 0(et) < —tog (14 5 ) = ~Ca if 0 < — log(22)

Since M, is convex for x < 0 and M(0) = 0 we get

0413 9
M(x) < log(22) for —log(2¢®) <z <0.
Hence c i
Tog(22%) < Sv(Ge”) T CLQvfENIValf ().
Easy calculations give 5
0 1

250 ==

e Vol(f(0)) i
Volf(ON = Vel (D gy = Ve OWF(©) = 0

[Vo(f(O))l
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Proposition 4.4. Let f : D — D be an E-mapping. Then

1F(G) = f(@) < CUG — G2 GG eD
where C' is uniform if (D, z) € D(c).
Lemma 4.5. Let g : D — B(zo, R) be a holomorphic mapping such that |g(0) — zo| = 7.

Then
g'(0)] < (R* —r?)'/2.

Proof. Assume that zp = 0 and R = 1. When r = 0 proof is similar to a proof of
classical Schwarz Lemma. Assume r # 0 and choose an automorphism ¢ of B,, such that

©(g(0)) = 0. From the explicite formula for ¢'(g(0)) we get that |¢/(g(0))] < =

= 1—r2

(i.e. see [5] Theorem 2.2.2 p. 26). From thesis for » = 0 we get that |(¢(g(0)))'| < 1, so
g'(0)] < VI =72

Proof of general case, when B(2g, R) is a ball with center at zy and radius R, is similar.
O

Theorem 4.6 (Littlewood, see [3] Theorem 3 p. 397). Let f : D — D be regular on D
and continuous on . Then for 0 < a <1 following properties are equivalent:

(5) () = f(e”)] < K| — 0"
(6) f(Q < MI—[¢)*, ¢eD

Theorem 4.7 (Hardy, Littlewood, see [3] Theorem 4 p. 399). Let f : D — D be reqular
on D and continuous on D such that |f(e?) — f(e?)| < K|0 —0'|*, 0 < a < 1. Then

1f(Q) = F(O) < KI¢ =% CeD.

Proof of Proposition[f.4. Fix (y € D. Let Z denote point in D such that dist(f({y),dD) =
|f(20) — Z| and let B(Zy, R) denote a smallest ball tangent to dD at Z containing D.

Define Gt
h(¢) = - )
©-r(3=
Then h is holomorphic, h(D) C B(Zy, R) and h(0) = f({y). Using Lemma we get

H(O)] < V120 = ZP = 1f (&) = ZoP? < C1/|f(Go) — Z
where ' depends only on diameter of D.

From the formula for //(¢) we get h'(0) = f'(¢o)(CoCo — 1) and

TN : V/dist(f (), 0D)
|f (<0>|_ 1_|<0|2|h(0>|§01 1_|C0|2
From Proposition 4.2
) el oo 1

Cpmmo
1-10PR ~ P A0

Since this inequality is true for every ¢ € D we get the thesis using Theorems and
M7 with a = 1/2.
0

Proposition 4.8. Let f : D — D be an E-mapping. Then

p(¢1) = p(&)] < C(1G = GD'Y2, ¢, G € D,
where C' is uniform if (D, z) € D(c).



Proof. Assume that there exists C'; > 0 such that proposition is true for (i, (o € 9D
such that |(; — (o] < Cy. The general case follows immediately: there exists a finite
N depending only on 4, such that for every (i, (o € 9D, |(; — (| > C there exists
{ni}il, COD, = Co, v = Co, |nj — me| < Cy for j, ke {1,...,N}. Then

Ip(¢1) = p(C)| < [p(m) — p(m2)| + ... + [p(nv—1) — ()|

< (I —mel + ...+ V-1 — nw]) < ON/C1 < ON(|¢ — G2
So it is sufficient to prove, that such C] really exists.

Fix (; € 0D. Without loss of generality we may assume that v4(f((;)) = 1. Choose C4
such that |v1(f(¢)) — 1| < 1/2 for |¢ — (1| < 2C). Such C) exists because of continuity of
function v o f.

Construct new function ¢ : 9D — C such that:

e p(¢) = (f(Q)) for |[¢ — G| <2C4,

e |p(¢)— 1| < 1/2 for all ¢ € D,

LIRS 01/2(8@)) and [[v o f’|01/2(am>) = H@Hcl/'z(a@)
Let r : 0D — R be such that r+ilm log ¢ extends to function holomorphic on . Because
¢ is 1/2-Holder continuous, log ¢ has the same property and using Privaloff’s theorem
we can show, that r is also 1/2-Hélder continuous and it’s norm is uniformly bounded.
Define ¢ := r—Re log ¢, which from the definition is 1/2-Hélder continuous with constant
Cs, depending on C;. Function ¢ +log ¢ = r + ilm ¢ extends to h : D — C, holomorphic
in D, continuous at D. Because on the boundary h = ¢, which is 1/2-Holder continuous,
from Theorem we get 1/2-Holder continuity of h in D.

Define functions g(¢) := f1(¢()e ™™ and G(¢) = ¢(¢)/¢. Then g is defined on D,
holomorphic in D, G is defined on D \ {0}, holomorphic in D \ {0}. For ¢ € D we have
that

9(0) = Cp(On (F())e " eitm le2(©)

which, combined with unform boundness of r and equality ||V o fllci/2@ep) = [[¢llcr2om),
gives uniform boundness of g. Define

U1 = {C eC: ‘C _Cl‘ < 201}
Then G is uniformly bounded on D N U;. Moreover, for ¢ € 0D N U; we have

G() = @ = p(Or (f(C))e 1@ e 1089(0) — 4)(()e " (OeRe losv() ¢ R

Because we can extend G holomorphically through 0D N U; to a function bounded on
Uy, G is 1/2-Holder continuous on connected components of U; N D, in particular for
every |(; — G| < Cy

|G(G) — G(Q)] < (¢ — Gl
Now, since p(¢) = (G(¢)e™)/(v1(f(€))) and for |(; — (| < C) all functions G, h and vy o f

are 1/2-Holder continuous, we get the thesis. U

Proposition 4.9. Let f : D — D be an E-mapping. Then

1£(G) = F(&) < CIG =GN, GG eD,
where C' is uniform if (D, z) € D(c).

Proof. Using Propositions [4.4] and [4.8) we have desired inequality for (1, (2 € 0D. Appli-
cation of Theorem {4.7| with o = 1/2 finishes the proof. U
10



5. PERTURBATION OF THE DOMAIN

We will describe what happens to F-mapping if the domain D is perturbed a little.

Proposition 5.1. Let f: D — D be an E-mapping. Then there is a biholomorpihism
®: D — G such that

(1) 9(¢) == @(f(¢)) = (¢,0,...,0), ¢ € D;

(2) v(g(¢)) = (¢,0,...,0), € ID;

(3) for any ¢ € OD the point g(C) is a point of strict linear convexity of 0G, i.e. for
w € T%(g(¢)) near g(¢) and positive constant c the inequality

dist(w, G) > clw — g(¢)?
holds.

Proof. After performing, if necessary, a linear change of coordinates one can assume that
fl, f2 do not have common zeroes in D. Then there are holomorphlc maps hy,hy : D — C
such that h1f 1+ he fg = 1. Indeed, let fj F;P;, 7 = 1,2, where F} are holomorphic

and non-zero in I and P; are polynomials with all zeroes in D (recall that ]?; extend
analytically through 0D). Then P; are relatively prime, so there are polynomials @),
7 = 1,2 such that

Q1P1+Q2P251.
Hence

Q15+ Q27

- —=fo=1

F1f1+F2f2

and h; := Q;/Fj, j = 1,2 extend analytically through OD.
Consider the mapping ¥ : D x C*~! — C" defined as

(7) Wﬂn:ﬁwn—%ﬂa,fMAEZZﬂa,
®) Ua(2) = fo20) + ZofulZ0) = hal(20) D _ 23 5(20),
9) Vi(Z):=fi(Z1)+Z;,7=3,....n

We claim that ¥ is biholomorphic on G := ¥~!(D). It suffices to show that if ¥(Z) =
U(W)=z¢€ D then Z=W.
By direct computation both ( = Z; and { = W; solve the equation

FO= - £(Q) =0.

It was demonstrated in the proof of Proposition @ that it has exactly one solution.
Hence Z; = W;. By @} we have Z; = W for j = 3,...,n. Finally Z, = W, follows from
one of the equations ([7)), .

It is clear that ¥ extends to a neighbourhood of D x C*~! and ¥ is biholomorphic also
on a neighbourhood of ¥=(D). The map ® := ¥~! has desired properties. O

Proposition 5.2. Let W : 0D — GL(m,C) be a matriz valued C¥ mapping such that
W () is self-adjoint for every ( € OD. Then there exists a holomorphic mapping H :

D — GL(m,C) such that HH* =W on OD.
11



Let Dy C C™ be a strictly linearly convex domain with a real analytic boundary.
Then there exists an open neighbourhood Vj of D and a real analytic defining function
ro : Vo — R such that drg # 0 and Do N Vy = {z € Vj : r9(2) < 0}. It is sraightforward
that ry extends to a holomorphic function on an open neighbourhood V- C C" of Vj in

the complexification of R** = C". Without losing generality we may assume that ry is
bounded on V. Let

X :={reO(V)st. r(V) C R and r is bounded},

which equipped with the sup—norm is a Banach space. If r € X is near to o (w.r.t.
the sup—norm), then {z € Vj : r(2) = 0} is a compact real analytic hypersurface which
bounds a bounded domain, say D".

Definition 5.3. We say that a domain D s near to D if its defining function r can be
taken from X, near to ry.

Proposition 5.4. Let fy: D — Dy be an E—mapping. Then there exist an open neigh-
bourhood U of the point (ro, f}(0)) in the space X x C"* and a real analytic mapping
I : U — CY*D) such that T'(ro, £5(0)) = fo and for any (r,v) € U the mapping
f:=T(r,v) is an E—mapping into D" such that f(0) = fo(0) and f5(0) = Av, A > 0.
Furthermore, let & € (0,1). Then there exist an open neighbourhood W of (ro, fo(£)) in
X x Dy and two real analytic mappings A : W — CY/3(D), Q : W — (0,1) such that
A(ro, fo(€)) = fo, Qro, f0(€)) =&, and for any (r,v) € W the mapping f := A(r,v) is an
E—mapping into D" satisfying f(0) = fo(0) and f(Q(r,v)) = v.

Proof. We shall prove the first statement. The proof of the second one is similar.
Consider the Sobolev space W#?(T) of functions on T whose first two derivatives are
in L*(T). It is known that we have the following characterization:

W2(T) = {f € LX(T): . (1+K + k)| fif? < o},

k=—o00

where f,’s are the Fourier coefficients of f. Note we have W22 C CY/2 C C. To see the
first inclusion take z1, 20 € T and compute:

00 ) 0o
DN D = S V|
k=—o0 k=—o00 k=—o00
0o R 0o R
< Rllz =zl + 472+ AT <Y Elflla - 2l <
k=—00 ke — oo
w A~
<V2 Y kflVIz = 2l
k=—o00

00 —~

and it is an easy observation that the series > k|fx| is convergent. Moreover, both
k=—00

inclusions are continuous, which also implies their real analyticity. Put

Q:=W**T,R), Qo:=Qn{g:q(1)=0}, A:=W??*T,C"),
B := AnN{g: g extends holomorphically to D and the extension is 0 at the origin},

B:={g:g€ B}.
12



Introduce a bounded projection

00 —1
T:AD Z apett — Z ape’* € B.
k=—o0 k=—o00
Observe that g € A admits a holomorphic extension to D if and only if 7(g) = 0.
Using Proposition [5.1| we may assume without losing generality that fo(¢) = ((,0,...,0),
v(fo(C)) = r0.(fo(¢)) = ((,0,...,0) and that for any ¢ € T, f5(¢) is a point of strict linear
convexity of Dy. Observe that the latter means that for any nonzero v € C"! there is

(10) > 70,z (fo(Q))viv; > | > ro.,., (o(¢))vivj].

i,j=2 4,j=2
Consider the mapping ® : X x C" x B x Qo x R — Q x B x C" defined by
(r,v, f,q,A) := (ro f,m((1+q)¢(r- o f)), f(0) — Av),

where ( is just the identity function on the unit circle. From now on we shall identify
f € B with its extension to Df]

We shall show that there exist an open neighbourhood U of (rg, f;(0)) in X x C" and
a real analytic mapping W : U — B X Qo X R such that for any (r,v) € U there is
O (r,v,¥(r,v)) = 0, which will finish the proof.

Indeed, suppose we have such U and W. Observe first that for (r, f'(0)) sufficiently close
to (1o, f4(0)), f is an EF—mapping into D" such that f(0) = 0 and f’(0) = Av iff there
exists a ¢ € Qg such that ¢ > —1 and ®(r, v, f, ¢, A\) = 0. The only problem here is to prove
the fourth condition from the definition of an EF—mapping in the backward implication.
This fourth condition follows from the fact that for (r, f(0)) near to (ro, f}(0)), f and fy
are uniformly close and then the respective winding numbers are equal.

In this situation taking I" as the composition of ¥ with the projection 7g : BX@Qy xR —
B and the inclusion W22 C C'/? does the job.

To this end observe that ® is real analytic, hence the existence of such U, ¥ would be
a direct consequence of the implicit function theorem if only the partial derivative

D00 (10, £5(0), £6,0,1) : Bx Qo x R — Q x B x C"™|

is invertible. It is an easy computation to show that for a fixed (f, q, X) € BxQyxR
the following equality holds:

-~ d
cI)(f,q,A)(TOaf(;(O)’anoa 1)(f7Q7 >‘) = E =0

= ((Tozofo)f‘F (TOEOfO)??W(ZjCTOZof0+<-(r02zof())f“’ Q(rongfo)f),f(O) —Xfé(O)).

From now on we will consider rg,,rgs as row vectors, f,f as column vectors and

— 627‘0 _ 827‘0 .
702z = (8ziaz]-)w T0sz = (aziajj) as m X m matrices.

®(ro, £5(0), fo +tf, 13,1+ 1)) =

~We have to show that for fixed n € Q, ¢ € B,v € C" there exist exactly one element
(f,q,\) € B x Qp x R satisfying

(11) (Tozofo)f+ (rozo fo)f =,

(12) W(@CrozofoJrC(Tozzofo)fﬂL C(rosz 0 fo)f) = o,

'Hence we are able to consider f(0) and f’(0).
20Observe that we have gg = 0, \g = 1.
13



(13) F1(0) = Xf5(0) = v.
Observe that in view of our assumption turns out to be
Ch+ch=n
or

(14) Re(fi/¢) = n/2.

Since E(O) = 0, the function fl /C is holomorphic and then determines ]71 /¢ €
W?22(T) up to an imaginary additive constant, which may be computed using .

Indeed, let f1 /¢ = r/2+is(r/2) +ic, where s(r/2) is an adjoint function to r/2 and c is
our imaginary additive constant we have to compute. Observe that r/2(0)+1is(r/2)(0) +
ic = f1(0) and

r/2(0) + is(r/2)(0) + ic — ARefy’ (0) — iImfy, (0) = Rev; + ilmvy,

r/2(0) — ARefy) (0) = Revy,

which yields X and then c. Observe that having X, once again using , we can easily
find f3(0), ..., f.(0).

Consider 1' which in fact is a system of n equations with unknowns ¢, f;, ey ﬁl
Observe that ¢ appears only in the first of the equations and the remaining n—1 equations
mean exactly that the mapping

(15) C(Toszofo)?‘i‘ C(Toﬁofo)?—w

extends to a holomorphic mapping from I into C*~!, where ¢» € W22(T,C"!) may be

obtained from ¢ and f;.
Indeed, to see this, write in the form:

w(My + ( My + (Ms) = My,

where M is a column vector having ¢ on the first place and zero’s on the remaining n — 1

places, My = (A;), is a column vector such that A; = Z(%’—g;j o fo)fj, M;s = (By), is

Jj=1

82%rq

a column vector such that B; = > ( o fo)fj, and My is a column vector with ¢; on

7j=1
1—th place. This implies as follows:

q+CA + (B — ¢

admits a holomorphic extension to D and for ¢ = 2,...,n,
CAi +(Bi — i
extends holomorphically to D and
@27“0 ~ 827“0 = 827’0 ~ 82’/’0 =~
’l/} - ((822821 Ofo)fl + <82282_1 Of0>f1 — P2, (aznazl © fo)fl + (aznaz—l © f(])fl - 9071)7

which derives . Put

9(0) = JO/¢, Q) == Cros(fol©)), BO) = ro=(fol©)).

14



Observe that «, 3 are (n — 1) x (n — 1) matrices depending analytically on ¢ and ¢ is
a column vector in C"~!. This allows us to reduce our task to the following: we need to
find a g € W2%(T,C"!) such that g extends holomorphically to D and

(16) ag + 6g — 1  extends holomorphically to D.

Observe that we necessarily have g(0) = f/(0). Moreover, in view of it is an easy
observation that for any z € C"~ 1\ {0} there is

(17) 12T az| < 273z

Note that 5(() is self—adjoint, hence using the Proposition we get the existence of
a holomorphic mapping H : D — GL(n — 1,C) satisfying HH* = . In this situation,
(16) is equivalent to

(18) H'ag+ H*g— H ' extends holomorphically to D,
or, if we denote h:= H g,y := H 'a(H?)™ !,
(19) vh +h — H ' extends holomorphically to .

Using and the results of [6] we get for any ¢ € T the norm of the symmetric matrix
7(¢) is less than 1. In fact, take a z € C*! : ||z|| = 1. Then
|2z = [ZTH a(HY) 2| < ZTH'B(HT) 12 = 2T H Y HH*(HT) 12 = ||2] )%

We have to prove that there is an unique solution h € W?22%(T) of , holomorphic
on D and such that h(0) = a with certain a.
Define the operator

00 —1
P:W**(T,C" 1) > Z ape™ — Z apeit € W2(T, C" ).
k=—00 k=—00
We shall show that a mapping h € W2*(T,C"1) N O(D,C"!) satisfies and is
such that h(0) = a if and only if it is a fixed point of the mapping
K :W2»*(T,C" ") > hw P(H ' —~h)+a € W>*(T,C" ).
Indeed, take an h € W22(T,C" ) N O(D, C* ') and suppose h(0) = a and vh + h —
H~14 extends holomorphically to D. We then have
-1

o0 o0
h=a+ g ae™, h=a+ g are M = E a_pe™ +a,
k=1 k=1

k=—o00
P(h)=0, P(h)=> ™ =h-a
k=1

and

P(yh+h—H ') =0,
which implies

P(H % —~h)=h—a
and finally K (h) = h. Conversely, suppose K (h) = h. Then

PH " —yh)=h—a= ZakeiktJrch +a, P(h)=0
k=1
15



and

-1 o)
— E a_kezkt: E /‘akezkt:h_al’
k=1

k=—o00

from which follows
P(yh+h—H )= P(h) — P(H ' —~vh) =a—a;
and
P(yh+h—H ') =0 ifonlya=a,.

Observe that K (h)(0) = h(0) = P(H ' —vh)(0) + a = a and we are done.
Thus it is enough to use the Banach fixed poit theorem. Yet, we have first to show
that K is a contraction. To do this, consider in W%?(T) the following norm

[12ls = llRllz2cr) + ellB] | z2cry + €*[1A" || z2r)

with positive e. We shall show that for e sufficiently small, K is a contraction with respect
to the norm || - ||..
Indeed, for each pair hy, hy € W2(T) there is

(20) [|K(h1) = k(ho)||r2ry = [|P(v(h2 — h1))||L2(m) <
< |ly(hs — hl)HL2(T) < Allhg — h1||L2(T)

with A := |]v|| < 1. Moreover,

(21) |IK(h1)" = K(h2)'llz2(ry = [[P(vha)" = P(yha)'l|2(my <
< |l(vhe)' = (Yha) N L2qry = |17 (ha = ha) + (R — B[ L2y
in view of the equality P(h) = P(Rh') Furthermore,

(22) ||K(h1)" = K(he)"|l2my < |7 (ha — ha) + 29/ (R — RY) + (A — hY)||r2(m

because of the formula P(h”) = —P(h)". Using now the finiteness of the norms |||, ||y
the fact that ||P|| < 1 and piecing together (20), [21), (22)), we see there exists an & > 0
such that K is a contraction with respect to the norm || - ||..

So far we have found ]7 and A such that , and the last n — 1 equations from
are satisfied. To the end, it has to be shown that there exists an unique ¢ € )y such
that

/l||

g+ CAL + (B, —

admits a holomorphic extension to ID.
It is not hard to see that if

T(CA +C¢Bi— 1) = > age™,

k=—0c0
then ¢ should be taken as follows:
o S TaE W
k=—00 k=0
with a real by and by, =@y, for k =1,2,... O
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6. PROOF OF THEOREM [L.5l

Here we prove the main result, i.e. Theorem [[.5] First, from Proposition [2.2], we know
that F—mappings are (unique) extremals. So it is sufficient to prove that if we have
z,w € D (resp z € D and v € C") then there is a F—mapping f : D — D such that
f(0) ==z, f({) =w, with1 > ¢ > 0 (resp. f(0) =z and f'(0) = Av for A > 0). Then any
extremal mapping for (z,w) (resp. for (z,v)) must be equal to f (since they are unique
extremal).

First we consider the case, when D is strictly convex and we prove that there is a
E—mapping for (z,w) € D x D (resp. for (z,v) € D x C"). Without loos of generality
we may assume that D C B,,, where B, is a open unit ball in C". For ¢ € [0, 1] consider
the domains D, :=tD + (1 — t)B,,. It is easy to see that D, are strictly convex (since D
and B,, are) and D C D, for all ¢t € [0,1]. Let T" be a subset of [0, 1] such that for all
t € T there is a E—mapping f; : D — D, for (z,v) € D x C" (resp. for (z,w) € D x D).
It is easy to see that 0 € T'. To prove that 1 € T, we need to know that (D, z) € D(c) for
some ¢ > 0 independent of ¢. Since for ¢ = 0 there is E—mapping, then from Proposition
?? there is a neighborhood T} of 0 in [0, 1] and

e there are an E—mappings f; : D — D, and & € (0,1) such that for all ¢t € T,
we have f; : D — Dy, fi(0) = f(0), and fi(&) = f(€) (in the case of Lempert
function);

e there are an F—mappings f; : D — D; and \; > 0 such that for all ¢ € T;) we have
f:(0) = £(0), and f/(0) = A\v (in the case of Kobayashi-Royden pseudometric).

It means that 7" is open in [0, 1].
Now we prove that T is closed i ﬂ iLet us take (t,) C T such that t,, — t. We

prove that ¢ € T'. From Proposition and |4 . 9 we have that f; and ftn are equicon-
tinuous in C/2(D). From Arzela-Ascoli theorem there is a subsequence (s,) C (¢,) such
that fs, — g and ]};n — G uniformly. It is easy to see that g : D — D, is an EF—mapping.
So T is closed subset of [0,1]. This ends the proof in the case strict convexity of D.

Let us back to general situation. Let D be a strictly linearly convex domain and let
(z,w) € D x D (resp. (z,v) € D x C"). Take u € D such that dist(z,0D) = ||z — pl|.
Since D is strictly linearly convex then p is a point of strict convexity. There exist a
neighborhood V; of v in C™ such that Vj N D is strictly convex. From previous part of
proof there exist an E—mapping ¢ : D — V5 N D for (¢g(0),g(§)) (resp. for (¢(0),¢'(0)))
such that g(0D) C Vo NID, so g is an E—mapping in D. Let Z := g(0) and W := g(&)
(resp. Z :=¢g(0) and V := ¢'(0)). If Z =z and W = w (resp. Z = z and V = v) then
we are done. In opposite situation we take a curves z; : [0.1] — D, w; : [0,1] — D (resp.
2t 1 [0.1] = D, v : [0.1] — C™) which joint z and Z, w and W (resp. z and Z, v and V).
Again let T be a subset of [0, 1] such that for ¢ € T there is an F—mapping g, in D such
that (g:(0), g:(&)) = (2, wy) for some & € (0,1) (resp. (¢:(0), g,(0)) = (2¢, \rvy) for some
At > 0). The same argumentation as above leads to 7' = [0, 1]. In particular there exist
an F—mapping f : D — D for (z,w) (resp. (z,v)).
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