
1. definitions and main results

We will study extremal mappings in the sense of Lempert function and in the sense
of Kobayashi-Royden pseudometric, so let us recall the objects we will deal with in this
paper. Let D denotes the unit disk in C. Let D ⊂ Cn be a domain and let z, w ∈ D, and
v ∈ Cn. In this paper we consider two objects:

(1) kD(z, w) := inf{hyp dist (ζ, ξ) : ∃f ∈ O(D, D) such that f(ζ) = z, f(ξ) = w},
and

(2) κD(z, v) := sup{λ > 0 : ∃f ∈ O(D, D) : f(0) = z, f ′(0) = λv}.
Using appropriate automorphisms of the unit disk, we can always assume that in

(1) ζ = 0. First one we call Lempert function and second - Kobayashi − Royden
pseudeometric. We call f : D → D a kD-extremal (resp. κD-extremal) if for f in (1)
(resp. (2)) the ’inf’ is attained for some z, w ∈ D, z 6= w (resp. the ’sup’ is attained for
some z ∈ D, X ∈ Cn \ {0}). In general k is not a pseudodistance - consider a domain
Dα := {(z, w) ∈ C2 : |z| < 1, |w| < 1, |zw| < α}, then for all α ∈ (0, 1) the triangle
inequality does not hold for kDα . More examples the reader may find in [4].

To overcome the difficulty connected with the triangle inequality we modify the function
kD in such a way that the new function becomes a pseudodistance. For z, w ∈ D we put

k′D(z, w) := inf{
N∑
j=1

kD(zj−1, zj) : N ∈ N, z0 = z, z1, ..., zN ∈ D, zN = w}.

The function k′D is called the Kobayashi pseudodistance for D.
However, if D is strictly linearly convex, kD will be a distance. This is because of

Theorem 1.1. Let D ⊂ Cn be a strictly linearly convex domain with Ck boundary (k =∞
or k = ω). Then kD = k′D = cD, where for z, w ∈ D we define

(3) cD(z, w) = sup{hyp dist (F (z), F (w)) : F ∈ O(D,D)}.

Function (3) is called a Carathéodory distance.
Our main goal is to describe extremals in the sense of Lempert function and in the

sense of Kobayashi-Royden pseudometric, in the case when D is strictly linearly convex
domain with Ck boundary (in this paper we always assume that k = ∞ or k = ω). We
say that

Definition 1.2 (See [1]). Let D ⊂ Cn be a bounded domain. D is called linearly convex if
trough any boundary point z ∈ ∂D there goes an (n− 1)-dimensional complex hyperplane
that is disjoint from D. D is called strictly linearly convex if

(1) D has C2-smooth boundary,

(2) the defining function r of D satisfies the inequality∑
j,k

rzjzk(a)wjwk >

∣∣∣∣∣∑
j,k

rzjzk(a)wkwk

∣∣∣∣∣ ,
where a ∈ ∂D, w = (w1, ..., wn) ∈ (Cn)∗ with

∑
j rzj(a)wj = 0.

We remark here that in the following sections D will always denote a strictly linearly
convex domain which is, for the sake of simplicity, bounded by a real analytic hypersur-
face.
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Remark 1.3. If D is strictly linearly convex domain, then each complex tangent plane
intersect the boundary ∂D in precisely one point.

In addition, we shall use the following notations: Ck(K), where K is compact subset of
Cn, denotes the spaces of all mappings that are [k]-times differentiable in the interior of K,
and in the case when k is an integer the derivatives up to order k extend continuously toK,
in other case, i.e. k− [k] := c > 0, the derivatives up to order [k] are c-Hölder continuous;
Cω(K) denotes the set of functions that extend analytically to a neighborhood of K.
Generally, if A is an arbitrary set in Cn, then Ck(A) =

⋂
{Ck(K) : K compact and K ⊂

A}. | · | denotes the euclidean norm in Cn. For (z1, ..., zn) ∈ Cn we define ẑ := (z2, ..., zn),
and similarly, if f = (f1, ..., fn) is a mapping into Cn, then by f̂ we define a mapping
(f2, ..., fn) into Cn−1. Finally: for z = (z1, ..., zn), w = (w1, ..., wn) ∈ Cn z ·w :=

∑
j zjwj.

Before we formulate the main result of this paper we need another definition.

Definition 1.4. Let D ∈ Cn be a domain. We call a holomorphic mapping f : D → D
an E−mapping, if

(1) f extends to a Ck function on D (to be denoted by the same letter f);

(2) f(∂D) ⊂ ∂D;

(3) there exist a positive Ck function ρ : ∂D → R such that the mapping ∂D 3 ζ 7→
ζρ(ζ)ν(f(ζ)) ∈ Cn extends to a Ck mapping f̃ : D→ Cn, holomorphic in D (here
ν(z) denotes the outward unit normal vector to ∂D in z);

(4) the winding number of the function ϕ(ζ) := ν(f(ζ)) · (z − f(ζ)) on ∂D is zero for
all z ∈ D.

Furthermore, we shall call a holomorphic mapping f : D → D weakly-E−mapping if it
possesses the above properties (1)-(4) with k = 1/2.

Soon we shall see that there is no difference between E−mappings and weakly-E−mappings.
f(D) will be called a (weak) E−disk, if f will be a (weak) E−mapping.

From definition we have to compare f with all other g ∈ O(D, D) to check that f is
extremal. Next theorem shows how to describe extremal mappings, by checking certain
properties of f alone.

Theorem 1.5. Let D be a strictly linearly convex domain with a Ck boundary (k = ∞
or k = ω). Then a holomorphic mapping f : D→ D is extremal in the sense of Lempert
function (resp. in the sense of Kobayashi-Royden pseudometric) with respect to the points
(f(0), f(ξ)) (resp. with respect to (f(0), f ′(0))), if and only if f is an E-mapping.

Theorem above is the main result of this paper. The idea of its proof is the following:
for any z, w ∈ D (resp. any z ∈ D and v ∈ Cn) we prove that there is unique (weak)
E−mapping, which is extremal for (z, w) (resp. (z, v)). Using standard tool, i.e. explicit
function theorem, Arzela-Ascoli theorem we shall prove that trough any given pair of
points there goes a E−disk. This will then establish Theorem 1.5.

2. Extremal mappings and E-mappings

Proposition 2.1. Let f : D → D be an E-mapping. Then there exists a continuous
mapping F : D \ f(∂D)→ D, holomorphic on D and such that F ◦ f = idD.
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Proof. Set A := D \ f(∂D) and let ϕz denote the function from the condition (4) from
the definition of E−mapping. Since D is strictly linearly convex, ϕz does not vanish in
∂D for any z ∈ A, so by the continuity argument the condition (4) holds for every z in
some open neighbourhood W of the set A. Consider the function G : W × D→ C given
by

G(z, ζ) := f̃(ζ) · (z − f(ζ)).

We claim that for given z ∈ W the equation G(z, ζ) = 0 has exactly one solution ζ ∈ D.
Fix z ∈ W and let ρ be as in the condition (3). We have

G(z, ζ) = ζρ(ζ)ϕz(ζ)

for ζ ∈ ∂D, so the winding number of the function G(z, ·) on ∂D is equal to 1. Since
this function is holomorphic on D, it has exactly one simple root F (z) ∈ D. Therefore
G(z, F (z)) = 0 and ∂G

∂ζ
(z, F (z)) 6= 0. In virtue of the implicit mapping theorem, the

function F is holomorphic on W . �

Let us note that for given E−mapping f the mapping F satisfies the equation

(4) f̃(F (z)) · (z − f(F (z))) = 0

at every point z ∈ D \ f(∂D).

Proposition 2.2. An E-mapping f : D→ D is the unique extremal mapping with respect
to the point z = f(0) and direction v = f ′(0), and also with respect to the couple of points
z = f(0), w = f(ξ), with ξ ∈ (0, 1) being arbitrary.

Proof. We carry the proof in both cases simultaneously. Let F be as in the Proposition
2.1. Suppose g : D→ D is a holomorphic mapping such that g(0) = z and:

• g′(0) = λv for some λ ≥ 0, in the first case,
• g(η) = w for some η ∈ (0, 1), in the second case.

The function F ◦ g maps the unit disc to itself and satisfy F (g(0)) = F (f(0)) = 0.
Therefore by the Schwarz’ lemma we get:

• 1 ≥ |(F ◦ g)′(0)| = λ|(F ◦ f)′(0)| = λ, so |f ′(0)| ≥ |g′(0)|, in the first case,
• η ≥ |(F ◦ g)(η)| = |F (w)| = |(F ◦ f)(ξ)| = ξ, in the second case.

Therefore f is an extremal mapping.
We show that f is the unique extremal mapping. Suppose g is extremal. Then λ = 1

(in the first case) or η = ξ (in the second case), so there holds the equality in the above
application of the Schwarz’ lemma. This implies F ◦ g = idD.

We claim that limD3ζ→ζ0 g(ζ) = f(ζ0) for each ζ0 ∈ ∂D. Suppose not. Then for
some ζ0 ∈ ∂D there is a sequence (ζm)m ⊂ D convergent to ζ0 and such that the limit
Z := limm→∞ g(ζm) ∈ D exists and is not equal to f(ζ0). Putting z = g(ζm) in the
equation (4) we get

0 = f̃(F (g(ζm))) · (g(ζm)− f(F (g(ζm)))) = f̃(ζm) · (g(ζm)− f(ζm)).

Passing m→∞ gives

0 = f̃(ζ0) · (Z − f(ζ0)) = ζ0p(ζ0) ν(f(ζ0)) · (Z − f(ζ0)),

so the vector Z − f(ζ0) belongs to the complex tangent space of ∂D at f(ζ0). Hence
Z = f(ζ0), because Z ∈ D and D is strictly linearly convex. This is a contradiction. �

Proposition 2.3. If f : D→ D is an E-mapping and a is an automorphism of D, then
f ◦ a is an E-mapping.
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Proof. Set g := f ◦a. The conditions (1) and (2) are clear. To prove the condition (4), fix
a point z ∈ D and let ϕf , ϕg be as in the condition (4). Then ϕg = ϕf ◦ a. The winding
number of a|∂D is 1, so the winding numbers of the mappings ϕf and ϕg are equal.

We prove the condition (3). The winding number of the function ζ 7→ ζ
a(ζ)

on ∂D is 0,

so there exists a real-valued Cω(∂D) function v such that ζ
a(ζ)

= eiv(ζ) on ∂D. Hence there

exists a real-valued Cω(∂D) function u such that the function ∂D 3 ζ 7→ ζ
a(ζ)

eu(ζ) ∈ C
extends to a nowhere-vanishing function h : D→ C holomorphic on D. Moreover, u and
v are of class Cω on ∂D, so h can be extended to a mapping of class Cω on D. Let ρ be
as in the condition (3) for f . For ζ ∈ ∂D put r(ζ) := ρ(a(ζ))eu(ζ). We get

ζr(ζ)ν(g(ζ)) = ζeu(ζ)ρ(a(ζ))ν(f(a(ζ))) = a(ζ)h(ζ)ρ(a(ζ))ν(f(a(ζ))) = h(ζ)f̃(a(ζ)),

and this mapping extends to a Cω(D) mapping, holomorphic on D. �

Corollary 2.4. An E-disc f(D) is the unique extremal disc with respect to any couple of
different points z, w ∈ f(D), and also with respect to any point z = f(ζ) and direction
v = f ′(ζ).

Proposition 2.5. Let f be an E-mapping. Then the function f ′ · f̃ is a positive constant.

Proof. Since the curve t 7→ f(eit) is contained in ∂D, its tangent vector ieitf ′(eit) belongs
to the tangent space Tf(eit)∂D, so is orthogonal to ν(f(eit)) with respect to the real scalar
product. Hence for ζ ∈ ∂D we have

Im f ′(ζ) · f̃(ζ) = ρ(ζ) Re
(
iζf ′(ζ) · ν(f(ζ))

)
= 0,

so the holomorphic function f ′ · f̃ is a real constant C.
The curve [0, 1) 3 t 7→ f(t) lies in D and f(1) ∈ ∂D, so the tangent vector f ′(1)

outwards from D. Hence

0 ≤ Re
(
f ′(1) · ν(f(1))

)
=

1

ρ(1)
Re
(
f ′(1) · f̃(1)

)
=

C

ρ(1)
.

This implies C ≥ 0. For each ζ ∈ ∂D we have

f(ζ)− f(0)

ζ
· f̃(ζ) = ρ(ζ) ν(f(ζ)) · (f(ζ)− f(0)).

By the condition (4), the last function has the winding number equal to 0. Therefore
the holomorphic function h(ζ) := f(ζ)−f(0)

ζ
· f̃(ζ) does not vanish in D. In particular,

C = h(0) 6= 0. �

Proposition 2.6. Let f be an E-mapping and let z = f(ζ), w = f(ω), where ζ, ω ∈ D.
Then

cD(z, w) = kD(z, w) = k̃D(z, w) = hyp dist (ζ, ω).

Proof. Let F be as in the Proposition 2.1. Using the equality F ◦ f = idD we get

cD(z, w) ≥ hyp dist (F (z), F (w)) = hyp dist (ζ, ω) ≥ k̃D(z, w) ≥ kD(z, w) ≥ cD(z, w)

and we are done. �

Corollary 2.7. An E-mapping gives an embedding of D endowed with the hyperbolic
distance into D endowed with the Kobayashi or the Carathéodory distance.
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3. Regularity

Let M ⊂ Cm be a totally real local Cω submanifold having the real dimension m. Take
an arbitrary point z ∈ M . There are open subsets U, V of Cm and a Cω-diffeomorphism
Φ̃ : U → V such that V is a neighbourhood of z, Φ̃−1(z) = 0 and V ∩M = Φ̃(U∩Rm). The
mapping Φ̃|U∩Rm can be extended to a mapping Φ analytic on an open neighbourhood of
the point 0. We have

∂Φj

∂zk
(0) =

∂Φj

∂xk
(0) =

∂Φ̃j

∂xk
(0),

so the complex derivative Φ′(0) in an isomorphism. Therefore Φ restricted to a small
neighbourhood of 0 is a biholomorphism of two open subsets of Cm which carries an open
neighbourhood of 0 in Rm in an open neighbourhood of z in M .

Lemma 3.1 (Reflection principle). Let M ⊂ Cm be a totally real local Cω submanifold,
having the real dimension m. Let V ⊂ C be an open neighbourhood of a point ζ0 ∈ ∂D
and let g : V ∩ D → Cm be a continuous mapping. Suppose g is holomorphic on V ∩ D
and g(V ∩ ∂D) ⊂M . Then g can be continued holomorphically past V ∩ ∂D.

Proof. In virtue of the identity principle it is sufficient to continue g locally past an
arbitrary point ζ0 ∈ V ∩ ∂D. Fix ζ0 and take Φ is as above, for the point g(ζ0) ∈M . Let
V1 ⊂ V be an neighbourhood of ζ0 such that g(V1∩D) is contained in the image of Φ. The
mapping Φ−1 ◦ g is holomorphic on V1 ∩D and has real values on V1 ∩ ∂D. Hence by the
ordinary reflection principle we can extend this mapping holomorphically past V1 ∩ ∂D.
Denote that extension by h. Then Φ◦h is an extension of g in a neighbourhood of ζ0. �

Proposition 3.2. Every weak E-mapping is also an E-mapping.

Proof. Let f be a weak E−mapping. Our goal is to prove that the mappings f and f̃ are
of the class Cω. Write f = (f1, . . . , fn), f̃ = (f̃1, . . . , f̃n). Choose a point ζ0 ∈ ∂D. Since
f̃(ζ0) 6= 0, we can suppose f̃1(ζ) 6= 0 in U ∩ D, where U is a neighbourhood of ζ0. This
implies ν1(f(ζ0)) 6= 0, so ν1(z) does not vanish on some set V open in ∂D and containing
the point f(ζ0).

Define the mapping ψ : V → C2n−1 by

ψ(z) =
(
z1, . . . , zn, ν2(z) / ν1(z), . . . , νn(z) / ν1(z)

)
.

The set M := ψ(V ) is the graph of a Cω function defined on the local Cω submanifold
V , so obviously is a local Cω submanifold of C2n−1, having the real dimension 2n − 1.
Assume for the moment that M is totally real.

Consider the mapping

g(ζ) :=
(
f1(ζ), . . . , fn(ζ), f̃2(ζ) / f̃1(ζ), . . . , f̃n(ζ) / f̃1(ζ)

)
,

defined for ζ ∈ U ∩ D. If ζ ∈ U ∩ ∂D, then f̃j(ζ) / f̃1(ζ) = νj(f(ζ)) / ν1(f(ζ)), so
g(ζ) = ψ(f(ζ)). Therefore g(U ∩ ∂D) ⊂ M . The reflection principle implies that g
extends analytically past U ∩ ∂D, so f is of class Cω near ζ0. Since ζ0 is arbitrary, f is of
class Cω on ∂D.

The mapping ν ◦ f |∂D if of class Cω, so it clearly extends to some mapping h holomor-
phic on the neighbourhood of ∂D. For ζ ∈ U ∩ ∂D we have

ζh1(ζ)

f̃1(ζ)
=

1

p(ζ)
.
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The function on the left side is holomorphic on U ∩D and continuous on U ∩D. Since it
has real values on U ∩ ∂D, the reflection principle implies that it is of class Cω. Hence p,
and then f̃ , is of class Cω near an arbitrarily chosen point ζ0.

It remains to prove that M is totally real. Let r denote a defining function for ∂D.
For every point z ∈ ∂D the vectors ν(z) and grad r(z) = (rz1(z), . . . , rzn(z)) are parallel
over R, so

ν(z)

ν1(z)
=

1

rz1(z)
grad r(z).

Consider the mapping S = (S1, . . . , Sn) : V × Cn−1 → R× Cn−1 given by

S(z, w) := (r(z), rz2(z)− w1rz1(z), . . . , rzn(z)− wn−1rz1(z)).

Clearly M = S−1({0}). This implies T(z,w)M ⊂ kerS ′(z, w) for any (z, w) ∈M .
Fix a point (z, w) ∈ M . Our goal is to prove that TC

(z,w)M = {0}. Take an arbitrary
vector (X, Y ) = (X1, . . . , Xn, Y1, . . . , Yn−1) ∈ TC

(z,w)M . Then
∑

k rzk(z)Xk = 0, because

X ∈ TC
z ∂D. For each k = 2, . . . , n we have wk−1 =

rzk (z)

rz1 (z)
and

0 = ∂(X,Y )Sk(z, w) =
∑
j

rzkzj(z)Xj − wk−1

∑
j

rz1zj(z)Xj,

so
rz1(z)

∑
j

rzkzj(z)Xj = rzk(z)
∑
j

rz1zj(z)Xj.

Note that the last equality holds also for k = 1. Hence

rz1(z)
∑
j,k

rzkzj(z)XjXk =
∑
k

rzk(z)
∑
j

rz1zj(z)XjXk =

=

(∑
k

rzk(z)Xk

)(∑
j

rz1zj(z)Xj

)
= 0.

Therefore by (2) from Definition 1.2 we get X = 0, and this directly implies Y = 0. �

4. Hölder estimates

We will prove some uniform 1/2-Hölder estimates for E-mappings f : D −→ D such
that f(0) = z. These maps we will denote as a function between marked domains
f : (D, 0) −→ (D, z). We need the following

Definition 4.1. For given c > 0 let the family D(c) consists of all marked domains (D, z)
satisfying

(1) dist(z, ∂D) > 1
c
;

(2) the diameter of D and the modulus of the normal curvature of ∂D are smaller
than c;

(3) for any x, y ∈ D there exist m < c2 and balls B0, . . . , Bm ⊂ D of radius 1
2c

such
that x ∈ B0, y ∈ Bm and the distance between the centers of the balls Bj, Bj+1 is
smaller than 1

4c
for j = 0, . . . ,m− 1;

(4) for every ball B ⊂ Cn of radius not greater than 1
c

there exists a holomorphic map
Φ : D −→ Cn such that
(a) for any w ∈ Φ(B ∩ ∂D) there is a ball of radius smaller than c containing

Φ(D) and tangent to ∂Φ(D) at w;
(b) Φ is biholomorphic on B ∩D;
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(c) the partial derivatives of the first order of Φ and Φ−1 (on Φ(B ∩ D)) are
bounded by c;

(d) dist(Φ(z), ∂Φ(D)) > 1
c
.

For strictly pseudoconvex domain D and point z ∈ D there exists c such that conditions
(1)-(4) are satisfied. The construction of mapping Φ amounts to the construction of peak
functions (see [2]). In the case of D strictly convex and the normal curvatures of ∂D
greater than 1

c
, one can take Φ = id.

Fix c > 1. Let us prove

Proposition 4.2. Let f : (D, 0) −→ (D, z) be an E-mapping. Then

dD(f(ζ)) ≤ C(1− |ζ|), ζ ∈ D
with constant C > 0 uniform if (D, z) ∈ D(c).

Proof. Thanks to the condition (3) there exists C1 such that kD(z, w) < C1 if dist(w, ∂D) ≥
1
c
. Fix ζ ∈ D with dist(f(ζ), ∂D) ≥ 1

c
. Then

kD(f(0), f(ζ)) ≤ C2 −
1

2
log(dist(f(ζ), ∂D)).

In the opposite case i.e. dist(f(ζ), ∂D) < 1
c

let η be the nearest point to f(ζ) on ∂D.
Set w ∈ D as the center of the ball B of radius 1

c
tangent to ∂D at η. By condition (2)

B ⊂ D. Hence
kD(f(0), f(ζ)) ≤ kD(f(0), w) + kD(w, f(ζ)) ≤

≤ C1 + kB(w, f(ζ)) ≤ C3 −
1

2
log(dist(f(ζ), ∂D)) = C3 −

1

2
log(dist(f(ζ), ∂D)).

On the other side, Proposition 2.6 used to extremal disc f(D) through f(0) and f(ζ)
gives

kD(f(0), f(ζ)) = hyp dist (0, ζ) ≥ −1

2
log(1− |ζ|). �

Now we are going to obtain the same Hölder estimates for an E-mapping f and as-
sociated mappings f̃ , ρ. Thanks to Proposition 2.5 the function f ′f̃ is constant, so ρ is
defined up to a constant factor. We may choose ρ such that f ′f̃ ≡ 1 i.e.

ρ(ζ)−1 = ζf ′(ζ)ν(f(ζ)), ζ ∈ D.

In that way f̃ and ρ are uniquely determined by f .

Proposition 4.3. Let f : (D, 0) −→ (D, z) be an E-mapping. Then

C1 < ρ(ζ)−1 < C2, ζ ∈ ∂D
with constants C1, C2 > 0 uniform if (D, z) ∈ D(c).

Proof. For the upper estimate choose ζ ∈ ∂D and define ζε := (1 − ε)ζ for small ε > 0.
Set B := B

(
f(ζ), 1

c

)
and let Φ : D −→ Cn be chosen to the ball B as described in the

condition (4). One can assume that Φ(f(ζ)) = 0 and the normal vector to ∂Φ(D) at 0
is N := (1, 0, . . . , 0). Then Φ(D) is contained in the half space {w ∈ Cn : Rew1 < 0}.
Putting h := Φ ◦ f we have

h1(D) ⊂ {w1 ∈ C : Rew1 < 0}.
In virtue of the Schwarz lemma in the half plane

|h′1(ζε)| ≤
2Reh1(ζε)

1− |ζε|2
≈ dist(h(ζε), ∂Φ(D)))

1− |ζε|
as ε→ 0,
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since the transversality of t 7−→ Φ(f(tζ)) to ∂Φ(D) is equivalent to the transversality of
t 7−→ f(tζ) to ∂D and the second transversality follows from

Re
(
d

dt
f(tζ)

∣∣∣∣
t=1

ν(f(ζ))

)
= Re (f ′(ζ)ζν(f(ζ))) = ρ(ζ)−1.

Clearly
dist(Φ(f(ζε)), ∂Φ(D))

1− |ζε|
≈ dist(f(ζε), ∂D)

1− |ζε|
which, by Proposition 4.2, does not exceed some constant. Now the upper estimate
follows from the observation

|f ′(ζ)ν(f(ζ))| ≤ C3|h′(ζ)ν(h(ζ))| = C3|h′1(ζ)|.
Indeed, if % is a defining function for D in the neighbourhood of f(ζ) then

|f ′(ζ)ν(f(ζ))| = |(% ◦ f)′(ζ)|
|∇%(f(ζ))|

and analogously

|h′(ζ)ν(h(ζ))| = |(% ◦ Φ−1 ◦ h)′(ζ)|
|∇(% ◦ Φ−1)(h(ζ))|

=

=
|(% ◦ f)′(ζ)|

|∇%(f(ζ))(Φ−1)′(Φ(f(ζ)))|
≥ |(% ◦ f)′(ζ)|
|∇%(f(ζ))|

1

c
√
n
.

The lower estimate is related to a lemma of E. Hopf. Note that for small ε > 0 the
function

%(w) := − log(ε+ dist(w, ∂D)) + log ε, w ∈ Dε,

where Dε is an ε-envelope of D i.e. the set {w ∈ Cn : dist(w,D) < ε}, is plurisubharmonic
and defining for D. Indeed, we have

− log(ε+ dist(w, ∂D)) = − log(dist(w, ∂Dε)), w ∈ Dε

and for sufficiently small ε the domain Dε is pseudoconvex.
Let us define a non-positive subharmonic function v := % ◦ f : D −→ R. Since
|f(λ)− z| < c for λ ∈ D, we have

|f(λ)− z| < 1

2c
if |λ| ≤ 1

2c2
.

Therefore, for fixed ζ ∈ ∂D

Mζ(x) := max
t∈[0,2π]

v(ζex+it) ≤ − log

(
1 +

1

2cε

)
=: −C4 if x ≤ − log(2c2).

Since Mζ is convex for x ≤ 0 and Mζ(0) = 0 we get

Mζ(x) ≤ C4x

log(2c2)
for − log(2c2) ≤ x ≤ 0.

Hence
C4

log(2c2)
≤ d

dx
v(ζex)

∣∣∣∣
x=0

= ζf ′(ζ)ν(f(ζ))|∇%(f(ζ))|.

Easy calculations give
∂%

∂ν
(f(ζ)) =

1

ε
thus

|∇%(f(ζ))| = ∇%(f(ζ))
∇%(f(ζ))

|∇%(f(ζ))|
= ∇%(f(ζ))ν(f(ζ)) =

1

ε
. �
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Proposition 4.4. Let f : D→ D be an E-mapping. Then

|f(ζ1)− f(ζ2)| ≤ C(|ζ1 − ζ2|)1/2, ζ1, ζ2 ∈ D,
where C is uniform if (D, z) ∈ D(c).

Lemma 4.5. Let g : D→ B(z0, R) be a holomorphic mapping such that |g(0)− z0| = r.
Then

|g′(0)| ≤ (R2 − r2)1/2.

Proof. Assume that z0 = 0 and R = 1. When r = 0 proof is similar to a proof of
classical Schwarz Lemma. Assume r 6= 0 and choose an automorphism ϕ of Bn such that
ϕ(g(0)) = 0. From the explicite formula for ϕ′(g(0)) we get that |ϕ′(g(0))| ≤ 1+

√
1−r2

1−r2
(i.e. see [5] Theorem 2.2.2 p. 26). From thesis for r = 0 we get that |(ϕ(g(0)))′| ≤ 1, so
|g′(0)| ≤

√
1− r2.

Proof of general case, when B(z0, R) is a ball with center at z0 and radius R, is similar.
�

Theorem 4.6 (Littlewood, see [3] Theorem 3 p. 397). Let f : D → D be regular on D
and continuous on D. Then for 0 < α ≤ 1 following properties are equivalent:

|f(eiθ)− f(eiθ
′
)| ≤ K|θ − θ′|α(5)

|f ′(ζ)| ≤M(1− |ζ|)α−1, ζ ∈ D(6)

Theorem 4.7 (Hardy, Littlewood, see [3] Theorem 4 p. 399). Let f : D→ D be regular
on D and continuous on D such that |f(eiθ)− f(eiθ

′
)| ≤ K|θ − θ′|α, 0 < α ≤ 1. Then

|f(ζ)− f(ζ ′)| ≤ K|ζ − ζ ′|α, ζ ∈ D.

Proof of Proposition 4.4. Fix ζ0 ∈ D. Let Z denote point in ∂D such that dist(f(ζ0), ∂D) =
|f(z0) − Z| and let B(Z0, R) denote a smallest ball tangent to ∂D at Z containing D.
Define

h(ζ) = f

(
ζ0 − ζ
1− ζ0ζ

)
.

Then h is holomorphic, h(D) ⊂ B(Z0, R) and h(0) = f(ζ0). Using Lemma 4.5 we get

|h′(0)| ≤
√
|Z0 − Z|2 − |f(ζ0)− Z0|2 ≤ C1

√
|f(ζ0)− Z|

where C1 depends only on diameter of D.
From the formula for h′(ζ) we get h′(0) = f ′(ζ0)(ζ0ζ0 − 1) and

|f ′(ζ0)| =
1

1− |ζ0|2
|h′(0)| ≤ C1

√
dist(f(ζ0), ∂D)

1− |ζ0|2
.

From Proposition 4.2

|f ′(ζ0)| ≤ C2

√
1− |ζ0|

1− |ζ0|2
≤ C3

1√
1− |ζ0|

.

Since this inequality is true for every ζ ∈ D we get the thesis using Theorems 4.6 and
4.7 with α = 1/2.

�

Proposition 4.8. Let f : D→ D be an E-mapping. Then

|p(ζ1)− p(ζ2)| ≤ C(|ζ1 − ζ2|)1/2, ζ1, ζ2 ∈ ∂D,
where C is uniform if (D, z) ∈ D(c).
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Proof. Assume that there exists C1 > 0 such that proposition is true for ζ1, ζ2 ∈ ∂D
such that |ζ1 − ζ2| ≤ C1. The general case follows immediately: there exists a finite
N depending only on C1, such that for every ζ1, ζ2 ∈ ∂D, |ζ1 − ζ2| > C1 there exists
{ηj}Nj=1 ⊂ ∂D, η1 = ζ1, ηN = ζ2, |ηj − ηk| ≤ C1 for j, k ∈ {1, . . . , N}. Then

|p(ζ1)− p(ζ2)| ≤ |p(η1)− p(η2)|+ . . .+ |p(ηN−1)− p(ηN)|

≤ C(
√
|η1 − η2|+ . . .+

√
|ηN−1 − ηN |) ≤ CN

√
C1 < CN(|ζ1 − ζ2|)1/2.

So it is sufficient to prove, that such C1 really exists.
Fix ζ1 ∈ ∂D. Without loss of generality we may assume that ν1(f(ζ1)) = 1. Choose C1

such that |ν1(f(ζ))− 1| < 1/2 for |ζ − ζ1| ≤ 2C1. Such C1 exists because of continuity of
function ν ◦ f .

Construct new function ϕ : ∂D→ C such that:

• ϕ(ζ) = ν1(f(ζ)) for |ζ − ζ1| ≤ 2C1,
• |ϕ(ζ)− 1| < 1/2 for all ζ ∈ ∂D,
• ϕ ∈ C1/2(∂D) and ‖ν ◦ f‖C1/2(∂D) = ‖ϕ‖C1/2(∂D)

Let r : ∂D→ R be such that r+iIm logϕ extends to function holomorphic on D. Because
ϕ is 1/2-Hölder continuous, logϕ has the same property and using Privaloff’s theorem
we can show, that r is also 1/2-Hölder continuous and it’s norm is uniformly bounded.
Define q := r−Re logϕ, which from the definition is 1/2-Hölder continuous with constant
C2, depending on C1. Function q+ logϕ = r+ iImϕ extends to h : D→ C, holomorphic
in D, continuous at D. Because on the boundary h = q, which is 1/2-Hölder continuous,
from Theorem 4.7 we get 1/2-Hölder continuity of h in D.

Define functions g(ζ) := f̃1(ζ)e−h(ζ) and G(ζ) = g(ζ)/ζ. Then g is defined on D,
holomorphic in D, G is defined on D \ {0}, holomorphic in D \ {0}. For ζ ∈ ∂D we have
that

g(ζ) = ζp(ζ)ν1(f(ζ))e−r(ζ)eiIm logϕ(ζ)

which, combined with unform boundness of r and equality ‖ν ◦ f‖C1/2(∂D) = ‖ϕ‖C1/2(∂D),
gives uniform boundness of g. Define

U1 := {ζ ∈ C : |ζ − ζ1| < 2C1}.

Then G is uniformly bounded on D ∩ U1. Moreover, for ζ ∈ ∂D ∩ U1 we have

G(ζ) =
g(ζ)

ζ
= p(ζ)ν1(f(ζ))e−q(ζ)e− logϕ(ζ) = p(ζ)e−r(ζ)eRe logϕ(ζ) ∈ R.

Because we can extend G holomorphically through ∂D ∩ U1 to a function bounded on
U1, G is 1/2-Hölder continuous on connected components of U1 ∩ D, in particular for
every |ζ1 − ζ2| < C1

|G(ζ1)−G(ζ2)| ≤ |ζ1 − ζ2|.
Now, since p(ζ) = (G(ζ)eh)/(ν1(f(ζ))) and for |ζ1−ζ2| < C1 all functions G, h and ν1 ◦f
are 1/2-Hölder continuous, we get the thesis. �

Proposition 4.9. Let f : D→ D be an E-mapping. Then

|f̃(ζ1)− f̃(ζ2)| ≤ C(|ζ1 − ζ2|)1/2, ζ1, ζ2 ∈ D,

where C is uniform if (D, z) ∈ D(c).

Proof. Using Propositions 4.4 and 4.8 we have desired inequality for ζ1, ζ2 ∈ ∂D. Appli-
cation of Theorem 4.7 with α = 1/2 finishes the proof. �
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5. Perturbation of the domain

We will describe what happens to E-mapping if the domain D is perturbed a little.

Proposition 5.1. Let f : D −→ D be an E-mapping. Then there is a biholomorpihism
Φ : D −→ G such that

(1) g(ζ) := Φ(f(ζ)) = (ζ, 0, . . . , 0), ζ ∈ D;
(2) ν(g(ζ)) = (ζ, 0, . . . , 0), ζ ∈ ∂D;
(3) for any ζ ∈ ∂D the point g(ζ) is a point of strict linear convexity of ∂G, i.e. for

w ∈ TC(g(ζ)) near g(ζ) and positive constant c the inequality

dist(w,G) ≥ c|w − g(ζ)|2

holds.

Proof. After performing, if necessary, a linear change of coordinates one can assume that
f̃1, f̃2 do not have common zeroes in D. Then there are holomorphic maps h1, h2 : D −→ C
such that h1f̃1 + h2f̃2 ≡ 1. Indeed, let f̃j = FjPj, j = 1, 2, where Fj are holomorphic
and non-zero in D and Pj are polynomials with all zeroes in D (recall that f̃j extend
analytically through ∂D). Then Pj are relatively prime, so there are polynomials Qj,
j = 1, 2 such that

Q1P1 +Q2P2 ≡ 1.

Hence
Q1

F1

f̃1 +
Q2

F2

f̃2 ≡ 1

and hj := Qj/Fj, j = 1, 2 extend analytically through ∂D.
Consider the mapping Ψ : D× Cn−1 −→ Cn defined as

(7) Ψ1(Z) := f1(Z1)− Z2f̃2(Z1)− h1(Z1)
n∑
j=3

Zj f̃j(Z1),

(8) Ψ2(Z) := f2(Z1) + Z2f̃1(Z1)− h2(Z1)
n∑
j=3

Zj f̃j(Z1),

(9) Ψj(Z) := fj(Z1) + Zj, j = 3, . . . , n.

We claim that Ψ is biholomorphic on G := Ψ−1(D). It suffices to show that if Ψ(Z) =
Ψ(W ) = z ∈ D then Z = W .

By direct computation both ζ = Z1 and ζ = W1 solve the equation

f̃(ζ)(z − f(ζ)) = 0.

It was demonstrated in the proof of Proposition 2.1 that it has exactly one solution.
Hence Z1 = W1. By (9) we have Zj = Wj for j = 3, . . . , n. Finally Z2 = W2 follows from
one of the equations (7), (8).

It is clear that Ψ extends to a neighbourhood of D×Cn−1 and Ψ is biholomorphic also
on a neighbourhood of Ψ−1(D). The map Φ := Ψ−1 has desired properties. �

Proposition 5.2. Let W : ∂D → GL(m,C) be a matrix valued Cω mapping such that
W (ζ) is self-adjoint for every ζ ∈ ∂D. Then there exists a holomorphic mapping H :
D→ GL(m,C) such that HH∗ = W on ∂D.

11



Let D0 ⊂ Cn be a strictly linearly convex domain with a real analytic boundary.
Then there exists an open neighbourhood V0 of ∂D and a real analytic defining function
r0 : V0 → R such that dr0 6= 0 and D0 ∩ V0 = {z ∈ V0 : r0(z) < 0}. It is sraightforward
that r0 extends to a holomorphic function on an open neighbourhood V ⊂ Cn of V0 in
the complexification of R2n ∼= Cn. Without losing generality we may assume that r0 is
bounded on V. Let

X := {r ∈ O(V ) s.t. r(V0) ⊂ R and r is bounded},

which equipped with the sup−norm is a Banach space. If r ∈ X is near to r0 (w.r.t.
the sup−norm), then {z ∈ V0 : r(z) = 0} is a compact real analytic hypersurface which
bounds a bounded domain, say Dr.

Definition 5.3. We say that a domain D is near to D0 if its defining function r can be
taken from X, near to r0.

Proposition 5.4. Let f0 : D→ D0 be an E−mapping. Then there exist an open neigh-
bourhood U of the point (r0, f

′
0(0)) in the space X × Cn and a real analytic mapping

Γ : U → C1/2(D) such that Γ(r0, f
′
0(0)) = f0 and for any (r, v) ∈ U the mapping

f := Γ(r, v) is an E−mapping into Dr such that f(0) = f0(0) and f ′0(0) = λv, λ > 0.
Furthermore, let ξ ∈ (0, 1). Then there exist an open neighbourhood W of (r0, f0(ξ)) in
X × D0 and two real analytic mappings Λ : W → C1/2(D), Ω : W → (0, 1) such that
Λ(r0, f0(ξ)) = f0,Ω(r0, f0(ξ)) = ξ, and for any (r, v) ∈ W the mapping f := Λ(r, v) is an
E−mapping into Dr satisfying f(0) = f0(0) and f(Ω(r, v)) = v.

Proof. We shall prove the first statement. The proof of the second one is similar.
Consider the Sobolev space W 2,2(T) of functions on T whose first two derivatives are

in L2(T). It is known that we have the following characterization:

W 2,2(T) = {f ∈ L2(T) :
∞∑

k=−∞

(1 + k2 + k4)|f̂k|2 <∞},

where f̂k’s are the Fourier coefficients of f. Note we have W 2,2 ⊂ C1/2 ⊂ C. To see the
first inclusion take z1, z2 ∈ T and compute:

|
∞∑

k=−∞

f̂kz
k
1 −

∞∑
k=−∞

f̂kz
k
2 | ≤

∞∑
k=−∞

|f̂k||zk1 − zk2 | ≤

≤
∞∑

k=−∞

|f̂k||z1 − z2||zk−1
1 + zk−2

1 z+
2 . . .+ zk−1

2 | ≤
∞∑

k=−∞

k|f̂k||z1 − z2| ≤

≤
√

2
∞∑

k=−∞

k|f̂k|
√
|z1 − z2|,

and it is an easy observation that the series
∞∑

k=−∞
k|f̂k| is convergent. Moreover, both

inclusions are continuous, which also implies their real analyticity. Put

Q := W 2,2(T,R), Q0 := Q ∩ {q : q(1) = 0}, A := W 2,2(T,Cn),

B := A ∩ {g : g extends holomorphically to D and the extension is 0 at the origin},

B := {g : g ∈ B}.
12



Introduce a bounded projection

π : A 3
∞∑

k=−∞

ake
ikt 7→

−1∑
k=−∞

ake
ikt ∈ B.

Observe that g ∈ A admits a holomorphic extension to D if and only if π(g) = 0.
Using Proposition 5.1 we may assume without losing generality that f0(ζ) = (ζ, 0, . . . , 0),

ν(f0(ζ)) = r0z(f0(ζ)) = (ζ, 0, . . . , 0) and that for any ζ ∈ T, f0(ζ) is a point of strict linear
convexity of D0. Observe that the latter means that for any nonzero v ∈ Cn−1 there is

n∑
i,j=2

r0zizj (f0(ζ))vivj > |
n∑

i,j=2

r0zizj (f0(ζ))vivj|.(10)

Consider the mapping Φ : X × Cn ×B ×Q0 × R→ Q×B × Cn defined by

Φ(r, v, f, q, λ) := (r ◦ f, π((1 + q)ζ(rz ◦ f)), f ′(0)− λv),

where ζ is just the identity function on the unit circle. From now on we shall identify
f ∈ B with its extension to D1.

We shall show that there exist an open neighbourhood U of (r0, f
′
0(0)) in X ×Cn and

a real analytic mapping Ψ : U → B × Q0 × R such that for any (r, v) ∈ U there is
Φ(r, v,Ψ(r, v)) = 0, which will finish the proof.

Indeed, suppose we have such U and Ψ. Observe first that for (r, f ′(0)) sufficiently close
to (r0, f

′
0(0)), f is an E−mapping into Dr such that f(0) = 0 and f ′(0) = λv iff there

exists a q ∈ Q0 such that q > −1 and Φ(r, v, f, q, λ) = 0. The only problem here is to prove
the fourth condition from the definition of an E−mapping in the backward implication.
This fourth condition follows from the fact that for (r, f ′(0)) near to (r0, f

′
0(0)), f and f0

are uniformly close and then the respective winding numbers are equal.
In this situation taking Γ as the composition of Ψ with the projection πB : B×Q0×R→

B and the inclusion W 2,2 ⊂ C1/2 does the job.
To this end observe that Φ is real analytic, hence the existence of such U,Ψ would be

a direct consequence of the implicit function theorem if only the partial derivative

Φ(f,q,λ)(r0, f
′
0(0), f0, 0, 1) : B ×Q0 × R→ Q×B × Cn2

is invertible. It is an easy computation to show that for a fixed (f̃ , q̃, λ̃) ∈ B × Q0 × R
the following equality holds:

Φ(f,q,λ)(r0, f
′
0(0), f0, 0, 1)(f̃ , q̃, λ̃) :=

d

dt

∣∣∣
t=0

Φ(r0, f
′
0(0), f0 + tf̃ , tq̃, 1 + tλ̃) =

= ((r0z ◦ f0)f̃ + (r0z ◦ f0)f̃ , π(q̃ζr0z ◦ f0 + ζ(r0zz ◦ f0)f̃ + ζ(r0zz ◦ f0)f̃), f̃ ′(0)− λ̃f ′0(0)).

From now on we will consider r0z, r0z as row vectors, f̃ , f̃ as column vectors and
r0zz = ( ∂2r0

∂zi∂zj
), r0zz = ( ∂2r0

∂zi∂zj
) as n× n matrices.

We have to show that for fixed η ∈ Q,ϕ ∈ B, v ∈ Cn there exist exactly one element
(f̃ , q̃, λ̃) ∈ B ×Q0 × R satisfying

(r0z ◦ f0)f̃ + (r0z ◦ f0)f̃ = η,(11)

π(q̃ζr0z ◦ f0 + ζ(r0zz ◦ f0)f̃ + ζ(r0zz ◦ f0)f̃) = ϕ,(12)

1Hence we are able to consider f(0) and f ′(0).
2Observe that we have q0 = 0, λ0 = 1.
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f̃ ′(0)− λ̃f ′0(0) = v.(13)

Observe that in view of our assumption (11) turns out to be

ζf̃1 + ζf̃1 = η

or

Re(̃f1/ζ) = η/2.(14)

Since f̃1(0) = 0, the function f̃1/ζ is holomorphic and then (14) determines f̃1/ζ ∈
W 2,2(T) up to an imaginary additive constant, which may be computed using (13).

Indeed, let f̃1/ζ = r/2+ is(r/2)+ ic, where s(r/2) is an adjoint function to r/2 and c is
our imaginary additive constant we have to compute. Observe that r/2(0) + is(r/2)(0) +

ic = f̃ ′1(0) and

r/2(0) + is(r/2)(0) + ic− λ̃Ref0
′
1(0)− iImf0

′
1(0) = Rev1 + iImv1,

r/2(0)− λ̃Ref0
′
1(0) = Rev1,

which yields λ̃ and then c. Observe that having λ̃, once again using (13), we can easily
find f̃ ′2(0), . . . , f̃ ′n(0).

Consider (12), which in fact is a system of n equations with unknowns q̃, f̃2, . . . , f̃n.
Observe that q̃ appears only in the first of the equations and the remaining n−1 equations
mean exactly that the mapping

ζ(r0ẑẑ ◦ f0)
̂̃
f + ζ(r0ẑẑ ◦ f0)

̂̃
f − ψ3(15)

extends to a holomorphic mapping from D into Cn−1, where ψ ∈ W 2,2(T,Cn−1) may be
obtained from ϕ and f̃1.

Indeed, to see this, write (12) in the form:

π(M1 + ζM2 + ζM3) = M4,

where M1 is a column vector having q̃ on the first place and zero’s on the remaining n−1

places, M2 = (Ai)
n
i=1 is a column vector such that Ai =

n∑
j=1

( ∂2r0
∂zi∂zj

◦ f0)f̃j, M3 = (Bi)
n
i=1 is

a column vector such that Bi =
n∑
j=1

( ∂2r0
∂zi∂zj

◦ f0)f̃j, and M4 is a column vector with ϕi on

i−th place. This implies as follows:

q̃ + ζA1 + ζB1 − ϕ1

admits a holomorphic extension to D and for i = 2, . . . , n,

ζAi + ζBi − ϕi
extends holomorphically to D and

ψ = ((
∂2r0
∂z2∂z1

◦ f0)f̃1 + (
∂2r0
∂z2∂z1

◦ f0)f̃1−ϕ2, . . . , (
∂2r0
∂zn∂z1

◦ f0)f̃1 + (
∂2r0
∂zn∂z1

◦ f0)f̃1−ϕn),

which derives (15). Put

g(ζ) :=
̂̃
f(ζ)/ζ, α(ζ) := ζ2r0ẑẑ(f0(ζ)), β(ζ) := r0ẑẑ(f0(ζ)).
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Observe that α, β are (n− 1)× (n− 1) matrices depending analytically on ζ and g is
a column vector in Cn−1. This allows us to reduce our task to the following: we need to
find a g ∈ W 2,2(T,Cn−1) such that g extends holomorphically to D and

αg + βg − ψ extends holomorphically to D.(16)

Observe that we necessarily have g(0) =
̂̃
f ′(0). Moreover, in view of (10) it is an easy

observation that for any z ∈ Cn−1 \ {0} there is

|zTαz| < zTβz.(17)

Note that β(ζ) is self−adjoint, hence using the Proposition 5.2 we get the existence of
a holomorphic mapping H : D → GL(n − 1,C) satisfying HH? = β. In this situation,
(16) is equivalent to

H−1αg +H?g −H−1ψ extends holomorphically to D,(18)

or, if we denote h := HTg, γ := H−1α(HT )−1,

γh+ h−H−1ψ extends holomorphically to D.(19)

Using (17) and the results of [6] we get for any ζ ∈ T the norm of the symmetric matrix
γ(ζ) is less than 1. In fact, take a z ∈ Cn−1 : ||z|| = 1. Then

|zTγz| = |zTH−1α(HT )−1z| < zTH−1β(HT )−1z = zTH−1HH?(HT )−1z = ||z||2.
We have to prove that there is an unique solution h ∈ W 2,2(T) of (19), holomorphic

on D and such that h(0) = a with certain a.
Define the operator

P : W 2,2(T,Cn−1) 3
∞∑

k=−∞

ake
ikt 7→

−1∑
k=−∞

akeikt ∈ W 2,2(T,Cn−1).

We shall show that a mapping h ∈ W 2,2(T,Cn−1) ∩ O(D,Cn−1) satisfies (19) and is
such that h(0) = a if and only if it is a fixed point of the mapping

K : W 2,2(T,Cn−1) 3 h 7→ P (H−1ψ − γh) + a ∈ W 2,2(T,Cn−1).

Indeed, take an h ∈ W 2,2(T,Cn−1) ∩ O(D,Cn−1) and suppose h(0) = a and γh + h −
H−1ψ extends holomorphically to D. We then have

h = a+
∞∑
k=1

ake
ikt, h = a+

∞∑
k=1

ake
−ikt =

−1∑
k=−∞

a−ke
ikt + a,

P (h) = 0, P (h) =
∞∑
k=1

ake
ikt = h− a

and
P (γh+ h−H−1ψ) = 0,

which implies
P (H−1ψ − γh) = h− a

and finally K(h) = h. Conversely, suppose K(h) = h. Then

P (H−1ψ − γh) = h− a =
∞∑
k=1

ake
ikt + a1 + a, P (h) = 0
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and

P (h) =
−1∑

k=−∞

a−ke
ikt =

∞∑
k=1

ake
ikt = h− a1,

from which follows

P (γh+ h−H−1ψ) = P (h)− P (H−1ψ − γh) = a− a1

and
P (γh+ h−H−1ψ) = 0 if only a = a1.

Observe that K(h)(0) = h(0) = P (H−1ψ − γh)(0) + a = a and we are done.
Thus it is enough to use the Banach fixed poit theorem. Yet, we have first to show

that K is a contraction. To do this, consider in W 2,2(T) the following norm

||h||ε = ||h||L2(T) + ε||h′||L2(T) + ε2||h′′||L2(T),

with positive ε. We shall show that for ε sufficiently small, K is a contraction with respect
to the norm || · ||ε.

Indeed, for each pair h1, h2 ∈ W 2,2(T) there is

(20) ||K(h1)− k(h2)||L2(T) = ||P (γ(h2 − h1))||L2(T) ≤
≤ ||γ(h2 − h1)||L2(T) < Λ||h2 − h1||L2(T)

with Λ := ||γ|| < 1. Moreover,

(21) ||K(h1)
′ −K(h2)

′||L2(T) = ||P (γh2)
′ − P (γh1)

′||L2(T) ≤
≤ ||(γh2)

′ − (γh1)
′||L2(T) = ||γ′(h2 − h1) + γ(h′2 − h′1)||L2(T),

in view of the equality P (h)′ = P (h′) Furthermore,

(22) ||K(h1)
′′ = K(h2)

′′||L2(T) ≤ ||γ′′(h2 − h1) + 2γ′(h′2 − h′1) + γ(h′′1 − h′′2)||L2(T),

because of the formula P (h′′) = −P (h)′′. Using now the finiteness of the norms ||γ′||, ||γ′′||,
the fact that ||P || ≤ 1 and piecing together (20), (21), (22), we see there exists an ε > 0
such that K is a contraction with respect to the norm || · ||ε.

So far we have found f̃ and λ̃ such that (11),(13) and the last n − 1 equations from
(12) are satisfied. To the end, it has to be shown that there exists an unique q̃ ∈ Q0 such
that

q̃ + ζA1 + ζB1 − ϕ1

admits a holomorphic extension to D.
It is not hard to see that if

π(ζA1 + ζB1 − ϕ1) =
−1∑

k=−∞

ake
ikt,

then q̃ should be taken as follows:

q̃ = −
−1∑

k=−∞

ake
ikt −

∞∑
k=0

ake
ikt,

with a real b0 and bk = ak for k = 1, 2, . . . �
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6. Proof of Theorem 1.5.

Here we prove the main result, i.e. Theorem 1.5. First, from Proposition 2.2, we know
that E−mappings are (unique) extremals. So it is sufficient to prove that if we have
z, w ∈ D (resp z ∈ D and v ∈ Cn) then there is a E−mapping f : D → D such that
f(0) = z, f(ζ) = w, with 1 > ζ > 0 (resp. f(0) = z and f ′(0) = λv for λ > 0). Then any
extremal mapping for (z, w) (resp. for (z, v)) must be equal to f (since they are unique
extremal).

First we consider the case, when D is strictly convex and we prove that there is a
E−mapping for (z, w) ∈ D ×D (resp. for (z, v) ∈ D × Cn). Without loos of generality
we may assume that D ⊂ Bn, where Bn is a open unit ball in Cn. For t ∈ [0, 1] consider
the domains Dt := tD + (1− t)Bn. It is easy to see that Dt are strictly convex (since D
and Bn are) and D ⊂ Dt for all t ∈ [0, 1]. Let T be a subset of [0, 1] such that for all
t ∈ T there is a E−mapping ft : D→ Dt for (z, v) ∈ D ×Cn (resp. for (z, w) ∈ D ×D).
It is easy to see that 0 ∈ T . To prove that 1 ∈ T , we need to know that (Dt, z) ∈ D(c) for
some c > 0 independent of t. Since for t = 0 there is E−mapping, then from Proposition
?? there is a neighborhood T0 of 0 in [0, 1] and

• there are an E−mappings ft : D → Dt and ξt ∈ (0, 1) such that for all t ∈ T0

we have ft : D → Dt, ft(0) = f(0), and ft(ξt) = f(ξ) (in the case of Lempert
function);
• there are an E−mappings ft : D→ Dt and λt > 0 such that for all t ∈ T0 we have
ft(0) = f(0), and f ′t(0) = λtv (in the case of Kobayashi-Royden pseudometric).

It means that T is open in [0, 1].
Now we prove that T is closed in [0, 1]. Let us take (tn) ⊂ T such that tn → t. We

prove that t ∈ T . From Proposition 4.4, 4.8 and 4.9 we have that ftn and f̃tn are equicon-
tinuous in C1/2(D). From Arzela-Ascoli theorem there is a subsequence (sn) ⊂ (tn) such
that fsn → g and f̃sn → G uniformly. It is easy to see that g : D→ Dt is an E−mapping.
So T is closed subset of [0, 1]. This ends the proof in the case strict convexity of D.

Let us back to general situation. Let D be a strictly linearly convex domain and let
(z, w) ∈ D ×D (resp. (z, v) ∈ D × Cn). Take µ ∈ ∂D such that dist(z, ∂D) = ||z − µ||.
Since D is strictly linearly convex then µ is a point of strict convexity. There exist a
neighborhood V0 of µ in Cn such that V0 ∩ D is strictly convex. From previous part of
proof there exist an E−mapping g : D → V0 ∩D for (g(0), g(ξ)) (resp. for (g(0), g′(0)))
such that g(∂D) ⊂ V0 ∩ ∂D, so g is an E−mapping in D. Let Z := g(0) and W := g(ξ)
(resp. Z := g(0) and V := g′(0)). If Z = z and W = w (resp. Z = z and V = v) then
we are done. In opposite situation we take a curves zt : [0.1]→ D, wt : [0, 1]→ D (resp.
zt : [0.1]→ D, vt : [0.1]→ Cn) which joint z and Z, w and W (resp. z and Z, v and V ).
Again let T be a subset of [0, 1] such that for t ∈ T there is an E−mapping gt in D such
that (gt(0), gt(ξt)) = (zt, wt) for some ξt ∈ (0, 1) (resp. (gt(0), g′t(0)) = (zt, λtvt) for some
λt > 0). The same argumentation as above leads to T = [0, 1]. In particular there exist
an E−mapping f : D→ D for (z, w) (resp. (z, v)).
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