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The convergence of the Newton method for stochastic di�erential equations was proved
by Kawabata and Yamada [3]. In [1] Amano formulates equivalent problem and gives
a direct way to estimate the approximation error. In [2] he proposes a probabilistic
second-order error estimate. Our goal is to obtain similar results in the case of stochastic
functional di�erential equations:{

dXt = b(t,Xt+ ·)dt+ σ(t,Xt+ ·)dBt for t ∈ [0, T ]

Xt = ϕt for t ∈ [−τ, 0],

where Xt+ · is the L
2(Ω)-valued Hale-type operator.

The existence and uniqueness of solutions to stochastic functional di�erential equations
has been discussed in a large number of papers ([4]). The �rst part of the present paper
deals with the �rst-order convergence. We formulate a Gronwall type inequality which
plays an important role in the proof of the convergence theorem. In the second part the
probabilistic second-order convergence is considered.
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