REGULARITY THEORY AND ASYMPTOTIC BEHAVIORS IN INTEGRO-DIFFERENTIAL OPERATORS

KI-AHM LEE

In this talk, we consider the asymptotic behavior of nonlocal flows $u_t + (-\Delta)^{\frac{1}{2}}u = 0$ to find the geometric property of the solutions in nonlinear eigenvalue problem:

$$(-\triangle)^{\frac{1}{2}}\varphi = \lambda\varphi$$

posed in a strictly convex domain $\Omega \subset \mathbb{R}^n$ with $\varphi > 0$ in Ω and $\varphi = 0$ on $\mathbb{R}^n \setminus \Omega$. This corresponds to an eigenvalue problem for Cauchy process. The concavity of φ is well known for the dimension n = 1. In this talk, we will show $\varphi^{-\frac{2}{n+1}}$ is convex. Moreover, the eventual power-convexity of the parabolic flows is also proved. We extend geometric results to Cauchy problem for the fractional heat operator.

References

- Sunghoon Kim, Ki-Ahm Lee Hölder estimates for singular non-local parabolic equations, J. Functional Analysis 261 (2011) 3482-3518
- [2] Sunghoon Kim, Ki-Ahm Lee Geometric property of the Ground State Eigenfunction for Cauchy Process, http://arxiv.org/abs/1105.3283

DEPARTMENT OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY, SEOUL 151-747, KOREA *E-mail address*: klee@math.snu.ac.kr