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Let A ≤ G be a subgroup of a group G. A factorization A-form of G

is a subgroup H of G such that G = AH and A ∩ H = {1}. Let F(A,G)

be the category of all factorization A-forms of G and F sk(A,G) its skeleton.

The bicrossed descent problem asks for the description and classification of

all factorization A-forms of G. We shall give the full answer to this problem

in three steps. Let H be a given factorization A-form of G and (., /) the

canonical left/right actions associated to the factorization G = AH. In the

first step H is deformed to a new A-form of G, denoted by Hr, using a certain

map r : H → A called a descent map of the matched pair (A,H, ., /). Then

the description of all forms is given: H is an A-form of G if and only if

H is isomorphic to Hr, for some descent map r : H → A. Finally, the

classification of forms proves that there exists a bijection between F sk(A,G)

and a combinatorial object D (H,A | (., /)). Let Sn be the symmetric group

and Cn the cyclic group of order n. By applying the bicrossed descent theory

for the factorization Sn = Sn−1Cn we obtain the following: (1) any group

H of order n is isomorphic to (Cn)r, the r-deformation of the cyclic group

Cn for some descent map r : Cn → Sn−1 of the canonical matched pair

(Sn−1, Cn, ., /) and (2) the number of types of isomorphisms of all groups of

order n is equal to | D(Cn, Sn−1 | (., /)) |.
Joint work with G. Militaru.
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Let A be a finite algebraic structure with at least one binary operation

like as ′′·′′. Then, one may ask: What is the probability that two (randomly

chosen) elements of A commute (with respect to the operation ′′·′′)? A formal

answer is Pr(A) = |{(x,y)∈A2|xy=yx}|
|A2| . For a finite group A it is proved that

Pr(A) = k(A)
|A| , where, k(A) is the number of conjugacy classes of A (see [3,

5, 4] for example). The computational results on Pr(A) are mainly due to

Gustafson [3] who shows that Pr(A) 6 5
8

for a finite non-abelian group A,

and MacHale [5] who proves this inequality for a finite non-abelian ring.

Also, the speaker of this talk and his colleagues have shown in [1] that the 5
8

is not an upper bound for Pr(A), where A is a finite non-abelian semigroup

and/or monoid.

Now, let M be a finite non-abelian Moufang loop. In this talk, I will ask

the same question for M and try to give a best upper bound for Pr(M).

Also, I will obtain some results related to the Pr(M) and ask the similar

questions raised in group theory about the relations of nilpotency of a finite

group and its commutativity degree in finite Moufang loops.

Mathematics Subject Classification (2010): 20N05, 20B05, 20P05.
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On simplicity of Lie ring of derivations in

associative rings
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An additive map d : R → R is called a derivation of an associative ring

R if d(ab) = d(a)b+ ad(b) for all a, b ∈ R. The set DerR of all derivations of

R is a Lie ring under the operations of pointwise addition and pointwise Lie

multiplication.

The various aspects of a simplicity of derivations has been studied many

times: N. Jacobson (1937), I.N. Herstein (1955), S.A. Amitsur (1957), R.E. Block

(1969), D.A. Jordan (2000) and others.

Our aim is to present results on associative rings R with simple Lie rings

DerR of derivations.



A construction of almost morally self-similar

groups

Elisabeth Fink
University of Oxford

Oxford, United Kingdom

I will give a construction of automorphism groups acting on rooted trees

that are almost morally self-similar. This means that they contain a subgroup

that is morally self-similar, i.e. they contain a direct product of a group that

is generated using the same pattern but with different constants. It will

be shown that these groups are not just-infinite but every proper normal

subgroup is finitely generated. Using that they are branch groups it can be

seen that every proper quotient is soluble. This will yield that groups of this

type are not large. An argument using the non-solubility of the Grigorchuk

group in fact shows that they do not contain any subgroups that map onto

the free group of rank 2. Quoting technical results about the abelianisation

of these groups I will prove that they have infinite virtual first Betti number.

This addresses a conjecture coming from 3-manifolds stating that for finitely

presented groups largeness is equivalent to infinite virtual first Betti number.

Branch Groups

Alejandra Garrido
University of Oxford

Branch groups are a class of infinite groups that are becoming increasingly

important. Although they were only defined in the 1990’s, they made their

first appearance in the 1970’s and 1980’s as groups providing answers to

a variety of questions such as Burnside’s problem, questions on growth of

groups and largeness of groups. Branch groups have remarkable properties

and are related to many other areas of mathematics. For instance, many

of them possess self-similarity or fractal properties linking them with fractal

geometry, dynamical systems and probability. Branch groups are also of

great importance in the study of infinite groups because they are one of the

three classes (two in the profinite case) in which just infinite groups split.



This talk will provide an introduction to branch groups, motivating their

study and showing some interesting results obtained in different areas of the

subject.

Commutator width in infinite dimensional

linear groups

Waldemar Ho lubowski
Institute of Mathematics, Silesian University of Technology

Gliwice, Poland

w.holubowski@polsl.pl

We describe a commutator subgroup of Vershik-Kerov group over an in-

finite field and the bound for its commutator width. This gives a partial

solution of the problem posed by V. Sushchanskii in 2010. We also describe

the lower central series of the group of infinite upper triangular matrices over

an infinite field and the bound for its commutator width. We give a survey

of similar results for other infinite dimensional groups.

Unit Group of Group Algebra

Manju Khan
Department of Mathematics, Indian

Institute of Technology Ropar

Let F2 be the fnite field with 2 elements and D2p be the dihedral group of

order 2p, where p is an odd prime such that order of 2 mod p is Φ(p). Here, the

structure of the unit group U(F2D2p) and the unitary subgroup U∗(F2D2p)

with respect to classical involution of the group algebra F2D2p have been

obtained. We also prove that the group generated by bicyclic units of the

group algebra F2D2p is isomorphic to SL2(F2l), where p = 2l + 1.



On lattices of radicals

in the class of all finite groups

Jan Krempa
Institute of Mathematics, University of Warsaw

Only radicals in the sense of Kurosh and Amistur will be considered here.

The investigation of lattices of radicals in some classes of rings was initiated

by R.L. Snider and was continued by many authors. However, there were no

papers on lattices of radicals in classes of groups.

During the talk I’m going to consider the lattice L of all radicals in the

class F of all finite groups, the lattice Lh of all hereditary radicals in F and

the lattice Lch of all cohereditary radicals in F. They are true, complete,

algebraic lattices in the sense of algebra, being sets of cardinality 2ℵ0 .

Theorem 1. For the lattice L we have:

(1) L is atomic and coatomic.

(2) L is neither atomistic nor coatomistic.

(3) Hereditary radicals and cohereditary radicals are distributive elements

in L.

(4) L is complemented and strongly balanced, but is not modular.

Theorem 2. The lattices Lh and Lch are isomorphic to the Boolean algebra

B of all classes of simple groups. Moreover, Lh ∩ Lch = {(1),F}.

For needed terminology and results one can consult the references below.

The above mentioned and further results of this talk are taken from the paper

[4], prepared with Izabela A. Malinowska.
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We use the following notations: K is a field of characteristic p, K∗ is

the multiplicative group of K; S = K[[X]] is the ring of formal power series

in the indeterminate X with coefficients in K, S∗ is the unit group of S,

(S∗)l = {al : a ∈ S∗}, T is the quotient field of S; G = Gp × B is a finite

group, where Gp is a Sylow p-subgroup and |Gp| > 1, |B| > 1.

Every cocycle λ ∈ Z2(G,S∗) is cohomologous to µ × ν, where µ is the

restriction of λ to Gp × Gp and ν is the restriction of λ to B × B. Each

cocycle τ ∈ Z2(B, S∗) is cohomologous to a cocycle ν ∈ Z2(B,K∗). We

assume that if Gp is non-abelian, then [K(ξ) : K] is not divisible by p, where

ξ is a primitive (expB)th root of 1. A twisted group ring SλG is of OTP

representation type, if any indecomposable SλG-module is isomorphic to the

outer tensor product V#W of an indecomposable SµGp-module V and an

irreducible SνB-module W . We prove the following theorems.

Theorem 1. Let p 6= 2, G = Gp × B, Ω be the subgroup of S∗ generated by

K∗ and (S∗)p, µ ∈ Z2(Gp,Ω), ν ∈ Z2(B,K∗) and λ = µ× ν. The ring SλG

is of OTP representation type if and only if one of the following conditions

is satisfied:

(i) Gp is abelian and T µGp is a field;

(ii) K is a splitting field for KνB.

Theorem 2. Let p = 2, G = G2 × B, |G′2| 6= 2; Ω be the subgroup of S∗

generated by K∗ and (S∗)4; µ ∈ Z2(G2,Ω), ν ∈ Z2(B,K∗) and λ = µ × ν.

The ring SλG is of OTP representation type if and only if one of the following

conditions is satisfied:



(i) G2 is abelian and dimT (T µG2/ radT µG2) ≥ |G2|
2

;

(ii) K is a splitting field for KνB.

Similar results we obtain also in the case when Ω is a subgroup of S∗ gen-

erated by K∗ and f(X), where f(X) ≡ 1(modX) and f(X) 6≡ 1(modX2).

We note that derived theorems are generalizations of corresponding re-

sults in [1], where µ ∈ Z2(Gp, K
∗).
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Automorphisms of a metacyclic minimal

nonabelian p-group, p odd

János Kurdics
College of Nýıregyháza, Hungary

We describe the automorphism group of a metacyclic minimal nonabelian

finite p-group with p > 2. This is part of the solution to a problem posed by

Yakov Berkovich and Zvonimir Janko (2009).

(Outer) automorphism groups of

crystallographic groups

Rafa l Lutowski
University of Gdańsk, Poland

A crystallographic group of dimension n is a discrete and cocomapct sub-

group of the group of isometries of the euclidean space Rn. In 1973 Charlap

and Vasquez proved, that for every crystallographic group Γ there exists so

called basic diagram, which gives us information about automorphism and

outer automorphism group of the group Γ (Aut(Γ) and Out(Γ) respectively).



In the talk an algorithmic approach for constructing basic diagrams will

be presented, with restriction that we are dealing with crystallographic groups

Γ for which Out(Γ) is finite.

Groups with finite number of conjugacy

classes

Olga Macedońska
Institute of Mathematics, Silesian University of Technology

Gliwice, Poland

Many authors considered groups with some restrictions on conjugacy

classes. Groups with conjugacy classes of finite size, known as FC-groups, are

well described. We consider the groups in some sense dual to FC-groups, that

is groups with a Finite Number of Conjugacy Classes (FNCC-groups). In

1949 G. Higman, B. H. Neumann and H. Neumann proved that each torsion-

free group can be embedded into a group with two conjugacy classes. By

D. V. Osin (2010), any countable group with only finitely many orders of el-

ements can be embedded into a 2-generator group where many two elements

of the same order are conjugate. This allows to construct finitely generated

infinite FNCC-groups with quite arbitrary number of conjugacy classes. By

S. V. Ivanov, some of the Olshanskii-Tarski monsters of exponent p have p

conjugacy classes. The class of the FNCC-groups is closed for honomorphic

images and finite direct products. Every finitely generated locally graded

FNCC-group is finite. Some problems concerning the FNCC-groups will

be discussed.



On the influence of subgroups on structure of

finite groups

Izabela Agata Malinowska
Institute of Mathematics, University of Bia lystok

Bia lystok, Poland

A number of authors studied the structure of a finite group G under the

assumption that some of its subgroups are well located in G (see [1, 2, 3]).

We are going to remind some history of this topic. Let G be a finite group.

Recall that subgroups A and B of G permute if AB = BA. A subgroup H

is said to be an s-permutable subgroup of G if H permutes with every Sylow

subgroup of G; a subgroup H of G is s-permutably embedded in G if for each

prime p dividing |H|, a Sylow p-subgroup of H is also a Sylow p-subgroup of

some s-permutable subgroup of G.

We will generalize the notion of s-permutable and s-permutably embed-

ded subgroups and we will show some new criterions of p-nilpotency and

supersolubility of groups. We also are going to generalize some other known

results. For more deatils see [4, 5] and references there.
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Extending structures: the level of groups
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Let H be a group and E a set such that H ⊆ E. We shall describe

and classify up to an isomorphism of groups that stabilizes H the set of all

group structures · that can be defined on E such that H is a subgroup of

(E, ·). Thus we solve at the level of groups what we have called the extending

structures problem. A general product, which we call the unified product, is

constructed such that both the crossed product and the Takeuchi’s bicrossed

product of two groups are special cases of it. It is associated to H and to a

system
(
(S, 1S, ∗), /, ., f

)
called a group extending structure and we denote

it by HnS. There exists a group structure · on E containing H as a subgroup

if and only if there exists an isomorphism of groups (E, ·) ∼= H nS, for some

group extending structure
(
(S, 1S, ∗), /, ., f

)
. All such group structures ·

on E are classified up to an isomorphism of groups that stabilizes H by a

cohomological type set K2
n(H, (S, 1S)). A general Schreier theorem is proved

and an answer to a question of Kuperberg is given, both being special cases

of our classification result.

Joint work with A.L. Agore.

On isometry groups of finitary wreath

products of Hamming spaces

Bogdana Oliynyk
National University “Kyiv-Mohyla Academy”

Kyiv, Ukraine

bogd@ukma.kiev.ua

We consider finitary wreath products of metric spaces and characterize

their isometry groups. Especially the properties of isometry groups of finitary

wreath products of Hamming spaces are studied. In particular, we prove

the following result. Let (m1,m2, . . .) be an infinite increasing sequence of



natural numbers. It is shown that any countable residually finite group G

is isomorphic to some subgroup of the isometry group of finitary wreath

product of Hamming spaces Hm1 , Hm2 , . . ..

Alexander Olshanskii
Vanderbilt U, USA

The talk will be based on a recent joint work with D.V.Osin. We show

that every group H of at most exponential growth with respect to a length

function can be embedded into a finitely generated group G such that (1) the

length in H becomes, up to equivalence, the restriction of the word length in

G and (2)G is solvable (respectively, satisfies a non-trivial identity, amenable,

elementary amenable, of finite decomposition complexity, etc.) whenever H

is. Some applications to asymptotic group theory will be discussed (distortion

functions, Folner functions, compression functions, decomposition complex-

ity of elementary amenable groups).

Polynomial sequences applied to unsolved

problems in linear group theory

Piotr S lanina
Institute of Mathematics, Silesian University of Technology

Gliwice, Poland

A general question ”when a set of given matrices generates a free group”

appears in many problems, for example 15.83 and 15.84 in the Kourovka

Notebook.

We define some families of polynomials which are generalizations of well

known recursive polynomials (for example, Fibonacci or Lucas polynomials)

and apply them to the problems above. One of the presented results is



Theorem 1. Let x be a nonzero complex number,

W0(x) = 1, W1[a1](x) = a1x, W2[a1, a2](x) = a2a1x
2 + 1,

Wn+1[a1, ..., an, an+1](x) = an+1xWn[a1, ..., an](x) +Wn−1[a1, ..., an−1](x),

Aa =

[
1 a

0 1

]
, Bb =

[
1 0

b 1

]
.

Then

(i) A group gp(Ax, Bx) is the free group if and only if for every natural k

and nonzero integers n1, ..., nk,

W [n1, ..., nk](x) 6= 0.

(ii) A semigroup sgp(Ax, Bx) is free if and only if for every naturals k, l,

n1, ..., nl and k ≤ l,

W [n1, ..., nk,−nk+1, ...,−nl](x) 6= 0.

Structure of Chevalley groups over rings via

universal localization

Alexei Stepanov

Beginning from works of Suslin and Quillen on Serre’s conjecture, local-

ization methods proved their importance in the theory of algebraic groups

over rings. I shall talk on a new version of a localization mehtod. The idea is

to use localization in a “universal” ring U , e. g. the affine algebra of a groups

G, get a result in G(U), and then project it to G(R) for an arbitrary ring R.

Clearly, the results obtained in this way does not depend on R. For example,

we obtain the following theorem.

Theorem 1. Let G be a Chevalley–Demazure group scheme with a root sys-

tem Φ of rank ≥ 2, and let E be its elemetary subgroup subfunctor. Then

there exists a constant L = L(G) such that for any ring R and any elements

a ∈ G(R) and b ∈ E(R) the commutator [a, b] is a product of at most L

elementary root unipotent elements.



Let me explain the importance of this result. Width of a group H with

respect to a generating set S is the smallest integer L (or infinity) such that

any element of H decomposes in a product of at most L generators. The

width of the linear elementary group En(R) with repect to elementary gen-

erators or the set of all commutators was studied by Carter, Keller, Dennis,

Vaserstein, van der Kallen and others. It is concerned with computing of

the Kazhdan constatant. For example, the width of E(R) is finite if R is

semilocal (by Gauss decomposition) or R = Z (Carter, Keller), but is infinite

for R = C[x] (van der Kallen). The answer is unknown already for R = F [x],

where F is a finite field.

Van der Kallen noticed that the group En(R)∞/En(R∞) is an obstruction

for the finitness of width of En(R), where infinite power means the direct

product of countably many copies of a ring or a group. The theorem above is

equivalent to the fact that this group is central in K1(R
∞), so one can study

it using homological algebra.

During the proof we obtain the standard commutator formulas with an

estimate of width of conjugates with elementary root unipotents and com-

mutators. The proof can be applied to establish the nilpotent structure of

K1.

The proof bases on Gauss decomposition, elementary calculations and

easy splitting arguments. This gives a hope to extend main structure the-

orems for Chevalley groups over rings (commutator formulas, normal struc-

ture, niloptent structure of K1, width of commutators) to nonsplit isotropic

reductive groups and generalized congruence subgroups, e. g. generalized

unitary groups of A. Bak.

On subnormal subgroups and series of

normalizators in groups

Andrzej Strojnowski
Institute of Mathematics, Uniwersytet Warszawski

Warsaw, Poland

Let H be a subgroup of a group G. We shall investigate a necessary and

sufficient conditions for H to be a subnormal subgroup. With a pair H ⊂ G

we can connect two sequences of intermediate groups:



The lower sequence defined by induction G0 = G

andGi =< g−1hg | g ∈ Gi−1, h ∈ H > a subgroup generated by conjugacy

for i > 0.

The upper sequence N0 = H and Ni = NG(Ni−1) for i > 0.

The main results are:

Theorem 1. There exist subnormal groups, that has sequences of normaliz-

ers stabilizing on proper subgroup.

To prove it we need the following description on selfnormalizing sub-

groups.

Theorem 2. Let A1 ∪ A2 ∪ ... ∪ At be partition of a set {1, 2, ..., n}. Let

H = S(A1)× S(A2)× ...× S(At) ba a subgroup Sn.

Then H is selfnormalizing if and only if every subsets Ai has different

number of elements.

Theorem 3. Let F be a field, and H be a subgroup of block matrices
K1 0 · · · 0

0 K2 · · · 0
...

...
. . .

...

0 0 · · · Ks

 ∈ Gl(n, F ), where consecutive blocks has following

sizes n1, n2, ...ns. Then H is selfnormalizing if and only if every blocks has

different sizes.

Simplicial nonpositive curvature and some

exotic infinite discrete groups

Jacek Swiatkowski

Simplicial nonpositive curvature (shortly SNPC) is an easily checkable

purely combinatorial condition for a simplicial complex that succesfully mim-

icks the geometric concept of nonpositive curvature. Unlike the small cancel-

lation concept, SNPC works for complexes of arbitrary dimension. A systolic

grup is a group that acts geometrically (i.e. properly, cocompactly, by sim-

plicial automorphisms) on an SNPC simplicial complex. Examples of such



groups do exist in arbitrary cohomological dimension. In the talk I will ex-

plain the concept of SNPC, relate it to more classical curvature concepts,

sketch the construction of systolic groups in arbitrary dimension, describe

various exotic properties of high dimensional systolic groups, and comment

on other consequences or applications of the developed concepts and ideas.

Symmetric operations in groups and

Marczewski-P lonka problem

Witold Tomaszewski
Institute of Mathematics, Silesian University of Technology

Gliwice, Poland

Let G be an arbitrary group. For a word w(x1, . . . , xn) from the free

group on n variables, we define an operation f : Gn → G, f(g1, . . . , gn) =

w(g1, . . . , gn). We say that this operation is symmetric if for every permuta-

tion σ ∈ Sn and every n-tuple (g1, . . . , gn) ∈ Gn we have f(gσ(1), . . . , gσ(n)) =

f(g1, . . . , gn). We consider a class K of groups in which group operation xy

can be represented as a composition of symmetric operations (such composi-

tion need not be symmetric). It is clear that abelian groups belong to K. In

1967 Edward Marczewski asked whether K consists only of abelian groups.

In 1970 Ernest P lonka show the example of nonabelian group in K and posed

a question: which groups are in K? This problem is still open. We will call

it the Marczewski-P lonka problem. Many authors has showed, that different

classes of groups do not belong to K. In this talk we will present the history

and prospects of the Marczewski-P lonka problem.



Finitely presented soluble groups,

polynomials and polyhedra

John S. Wilson
University of Oxford

Oxford, United Kingdom

Finitely presented soluble groups have been studied seriously for about

40 years. In this lecture old and very new results will be described, together

with some of the remarkably diverse methods from algebra, number theory

and geometry used in establishing them.

On some topological generation of infinitely

iterated wreath products of Abelian groups

Adam Woryna
Institute of Mathematics, Silesian University of Technology

Gliwice, Poland

We provide some construction of a topological generating set for profinite

groups which are infinitely iterated wreath productsW = . . . oA2 oA1 of finite

Abelian groups. By using the language of automorphisms of a rooted tree we

introduce the notions of a homogeneous automorphism, a mutually coprime

automorphism and a crack of an automorphism. We show the following

Theorem 1. The union of any set S of homogeneous mutually coprime au-

tomorphisms with transitive Abelian vertex-groups and a set Š of arbitrary

cracks of elements from S topologically generates an infinitely iterated wreath

product of finite Abelian groups.

Conversely, a given sequence (Ai)i≥1 of finite Abelian groups we construct

a topological generating set S ∪ Š for the group W which is a disjoint union

of some ρ-element set S of homogeneous mutually coprime automorphisms

and a ρ-element set Š of the corresponding cracks such that both the group

generated by S and the group generated by Š are isomorphic with a free

Abelian group of rank ρ, where ρ is the topological rank of the profinite

Abelian group A1 × A2 × . . .. We present some properties of the group

G = 〈S ∪ Š〉.
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