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S. Banach, Théorie des opérations linéaires, PWN,

Warsaw, 1932.

C([0,1])...the set of all continuous functions : [0,1] — R equipped with
the supremum norm

Theorem (Banach-Mazur)

The Banach space C([0,1]) is universal, i.e., every real, separable Banach
space X is isometrically isomorphic to a closed subspace of C([0,1]).
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B. Levine, D. Milman, On linear sets in space C consisting
of functions of bounded variation, Comm. Inst. Sci. Math.
Méc. Univ. Kharkoff 16 (1940), 102-105.

Every infinite-dimensional closed subspace of C([0,1]) must contain a
function with infinite variation.
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V.|. Gurariy, Subspaces of differentiable functions in the

space of continuous functions, Teor. Funktsii Funktsional
Anal. i Prilozhen. 4(1967), 121-161.

Every infinite-dimensional closed subspace E of C([0,1]) must contain a
function which is not differentiable at some point of [0, 1].
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P. P. Petrushev, S.L. Troyanski, On the Banach Mazur
theorem on the universality of C([0,1]), C. R. Acad.
Bulgare Sci. 37 (1984), 283-285.

Every isometrically isomorphic copy of ¢1 in C([0,1]) contains a function
which is non-differentiable at every point of a perfect subset of [0, 1].
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L. Rodriguez-Piazza, Every separable Banach space is
isometric to a space of continuous nowhere differentiable
functions, Proc. Amer. Math. Soc. 123 (1995), 3649-3654.

Every separable Banach space is isometrically isomorphic to a space of
continuous nowhere differentiable functions.
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S. Hencl, Isometrical embeddings of separable Banach
spaces into the set of nowhere approximately differentiable
and nowhere Holder functions, Proc. Amer. Math. Soc.
128 (2000), 3505-3511.

Every separable Banach space is isometrically isomorphic to a space of

continuous nowhere approximately differentiable and nowhere Holder
functions.

Jozef Bobok (CTU in Prague)

The topological entropy of Banach spaces joint work with H. Bruin 7/ 14



J. B., H. Bruin, The topological entropy of Banach spaces,

Journal of Difference Equations and Applications
18(4)(2012), 569-578.

Let Cp(X) denote the set of all bounded continuous functions f: X — R
equipped with the supremum norm. Clearly, Cp(R) is a non-separable
Banach space. Let [a, b] be a closed finite subinterval of R. We identify
f: [a, b] — R with its extension

f(x) ifxe€]a,b;
(Exf)(x) = f(b) ifx>b;
f(a) ifx<a.

Under this identification, C([a, b]) C Cp(R). We will deal with the
topological entropy of maps from Cp(R) defined as hiop(f) := htop(f|@).
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The topological entropy of Banach spaces

In the next lemma we denote by F(X) a linear space of functions
f: X—=>R

Lemma
Given n linearly independent functions in F(X), there exist n points
X1,-..,Xn € X such that the vectors
fi(xa) fa(x1) f(x1)
fi(x2) f(x2) fa(x2)
fl(xn) f2(Xn) fn(xn)
are linearly independent in R".
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The topological entropy of Banach spaces

Definition

For a given set B C Cp(R), let
hiop(B) = sup{hwp(f) : f € B},
h;Jp(B) = inf{hwp(f): f € B, f is non-zero}.

Proposition

If a linear space B C Cp(R) has dimension n, then

hiop(B) > log(n — 1).

In particular, hi,,(B) = oo if dim(B) = .
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The topological entropy of Banach spaces, Examples

There exists an isometrically isomorphic copy E of ¢y in C([0,1]) such
that every f € E has a finite topological entropy.

Example

There is a universal Banach space A C C([—1,1]) such that h;p(f) = 00
for every non-zero f from A.

Jozef Bobok (CTU in Prague) The topological entropy of Banach spaces joint work with H. Bruin 11 /14



The topological entropy of Banach spaces, Examples
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Figure: The maps f € C([0,1]) and V(f) =g € C([-%,3]). pa

an = (%)n, n>0.
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The topological entropy of Banach spaces, Examples

Remark
Recall that f € C*(R) (f is a-Hélder on R) for some « € (0, 1) if
wp {LL2= 10,

Xy eER O0<|x—y|<1p < 0.
x =yl

For some fixed o € (0, 1), if we choose g, = p3 and f € C%([0,1]), then
V(f) is a-Holder on R. Therefore A% := W(C*([0,1])) C CF(R) is a
normed (infinite dimensional) linear space such that hy,(f) = oo for every
non-zero f from A%.

v
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The topological entropy of Banach spaces

Let A C C([0,1]) be isometrically isomorphic to ¢1. Then A contains a
function with infinite topological entropy.

The following statement shows that the entropy can behave extremely
rigidly on a one-dimensional subspace of Cp(R).

For any t € [0, 00], there exists a function f € Cp(R) such that for
B = {\f}xer satisfies hy,,(B) = h;Zp(B) =t.

Jozef Bobok (CTU in Prague) The topological entropy of Banach spaces joint work with H. Bruin 14 / 14



