Topological Dynamical Embedding and Jaworski-type Theorems

Yonatan Gutman
Institute of Mathematics
Polish Academy of Sciences y.gutman@impan.pl

Ergodic Methods in Dynamics
On the occasion of the 60th birthday of Professor Feliks Przytycki Będlewo, April 23-27, 2012

Embedding a topological space in a Euclidean cube

Consider K_{5}, the complete graph on 5 vertices.

$$
\operatorname{dim}\left(K_{5}\right)=1 \text { but } K_{5} \leftrightarrow[0,1]^{2}, K_{5} \leftrightarrow[0,1]^{3}
$$

Theorem (Menger, 1926, Nöbeling, 1930)
If X is a metric compact space with $\operatorname{dim}(X)=n$ then there exists an embedding $X \hookrightarrow[0,1]^{2 n+1}$

Embedding a topological space in a Euclidean cube

Consider K_{5}, the complete graph on 5 vertices.

$\operatorname{dim}\left(K_{5}\right)=1$ but $K_{5} \leftrightarrow[0,1]^{2}, K_{5} \leftrightarrow[0,1]^{3}$

Theorem (Menger, 1926, Nöbeling, 1930)

If X is a metric compact space with $\operatorname{dim}(X)=n$ then there exists an embedding $X \rightarrow[0,1]^{2 n+1}$

Embedding a topological space in a Euclidean cube

Consider K_{5}, the complete graph on 5 vertices.

$\operatorname{dim}\left(K_{5}\right)=1$ but $K_{5} \leftrightarrow[0,1]^{2}, K_{5} \rightarrow[0,1]^{3}$
Theorem (Menger, 1926, Nöbeling, 1930)
If X is a metric compact space with $\operatorname{dim}(X)=n$ then there exists an embedding $X \hookrightarrow[0,1]^{2 n+1}$.

Realizing a measure-preserving system as a symbolic shift

Let $A \in S L_{n}(\mathbb{Z})$ be considered as an invertible transformation of the n-torus \mathbb{T}^{n}. Assume $\left(\mathbb{T}^{n}, \mathcal{B}, \mu_{\text {haar }}, A\right)$ is ergodic.

$$
\begin{gathered}
A=\left(\begin{array}{ll}
2 & 5 \\
1 & 3
\end{array}\right) \\
h\left(\mathbb{T}^{n}, \mathcal{B}, \mu_{\text {haar }}, A\right)=\log \frac{5+\sqrt{21}}{2} \approx \log 4.79
\end{gathered}
$$

Krieger's Generator Theorem: \exists generating partition $\mathcal{P}|\mathcal{P}|=5$.

$$
\left(\mathbb{T}^{2}, \mathcal{B}, \mu_{\text {haar }}, A\right) \hookrightarrow\left(\{1,2,3,4,5\}^{\mathbb{Z}}, \text { shift }\right)
$$

Realizing a measure-preserving system as a symbolic shift

Let $A \in S L_{n}(\mathbb{Z})$ be considered as an invertible transformation of the n-torus \mathbb{T}^{n}. Assume $\left(\mathbb{T}^{n}, \mathcal{B}, \mu_{\text {haar }}, A\right)$ is ergodic. E.g.:

$$
A=\left(\begin{array}{ll}
2 & 5 \\
1 & 3
\end{array}\right)
$$

$$
h\left(\mathbb{T}^{n}, \mathcal{B}, \mu_{\text {haar }}, A\right)=\log \frac{5+\sqrt{21}}{2} \approx \log 4.79
$$

Krieger's Generator Theorem: \exists generating partition $\mathcal{P}|\mathcal{P}|=5$.

$$
\left(\mathbb{T}^{2}, \mathcal{B}, \mu_{\text {haar }}, A\right) \hookrightarrow\left(\{1,2,3,4,5\}^{\mathbb{Z}}, \text { shift }\right)
$$

Realizing a measure-preserving system as a symbolic shift

Let $A \in S L_{n}(\mathbb{Z})$ be considered as an invertible transformation of the n-torus \mathbb{T}^{n}. Assume $\left(\mathbb{T}^{n}, \mathcal{B}, \mu_{\text {haar }}, A\right)$ is ergodic. E.g.:

$$
\begin{gathered}
A=\left(\begin{array}{ll}
2 & 5 \\
1 & 3
\end{array}\right) \\
h\left(\mathbb{T}^{n}, \mathcal{B}, \mu_{\text {haar }}, A\right)=\log \frac{5+\sqrt{21}}{2} \approx \log 4.79
\end{gathered}
$$

Krieger's Generator Theorem: \exists generating partition $\mathcal{P}|\mathcal{P}|=5$.
$\left(\mathbb{T}^{2}, \mathcal{B}, \mu_{\text {haar }}, A\right) \rightarrow\left(\{1,2,3,4,5\}^{\mathbb{Z}}\right.$, shift $)$

Realizing a measure-preserving system as a symbolic shift

Let $A \in S L_{n}(\mathbb{Z})$ be considered as an invertible transformation of the n-torus \mathbb{T}^{n}. Assume ($\mathbb{T}^{n}, \mathcal{B}, \mu_{\text {haar }}, A$) is ergodic. E.g.:

$$
\begin{gathered}
A=\left(\begin{array}{ll}
2 & 5 \\
1 & 3
\end{array}\right) \\
h\left(\mathbb{T}^{n}, \mathcal{B}, \mu_{\text {haar }}, A\right)=\log \frac{5+\sqrt{21}}{2} \approx \log 4.79
\end{gathered}
$$

Krieger's Generator Theorem: \exists generating partition $\mathcal{P}|\mathcal{P}|=5$.
\Leftrightarrow

$$
\left(\mathbb{T}^{2}, \mathcal{B}, \mu_{\text {haar }}, A\right) \hookrightarrow\left(\{1,2,3,4,5\}^{\mathbb{Z}}, \text { shift }\right)
$$

Generating Functions and full topological shifts

A generating partition with m elements is equivalent to a measurable function $P: X \rightarrow\{1,2, \ldots, m\}$ so that the orbit-map $I_{P}(x)=\left(P\left(T^{k}(x)\right)\right)_{k \in \mathbb{Z}}$ a.s. separates points.
Let (X, T) (or $(\mathbb{Z}, X))$ be a topological dynamical system (t.d.s.) given by the homeomorphism $T: X \rightarrow X$.

Definition

We call a continuous $f: X \rightarrow[0,1]^{d}$ a generating function if $I_{f}(x) \triangleq\left(f\left(T^{k}(x)\right)\right)_{k \in \mathbb{Z}}$ is separating points, i.e.:

$$
I_{f}:(X, T) \hookrightarrow\left(\left([0,1]^{d}\right)^{\mathbb{Z}}, \text { shift }\right)
$$

$\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift) is referred to as the full topological shift on the alphabet $[0,1]^{d}$ or simply as the d-cubical shift.

Generating Functions and full topological shifts

A generating partition with m elements is equivalent to a measurable function $P: X \rightarrow\{1,2, \ldots, m\}$ so that the orbit-map $I_{P}(x)=\left(P\left(T^{k}(x)\right)\right)_{k \in \mathbb{Z}}$ a.s. separates points.

Definition

We call a continuous $f: X \rightarrow[0,1]^{d}$ a generating function if $I_{f}(x) \triangleq\left(f\left(T^{k}(x)\right)\right)_{k \in \mathbb{Z}}$ is separating points, i.e.:

$$
I_{f}:(X, T) \hookrightarrow\left(\left([0,1]^{d}\right)^{\mathbb{Z}}, \text { shift }\right)
$$

or simply as the d-cubical shift.

Generating Functions and full topological shifts

A generating partition with m elements is equivalent to a measurable function $P: X \rightarrow\{1,2, \ldots, m\}$ so that the orbit-map $I_{P}(x)=\left(P\left(T^{k}(x)\right)\right)_{k \in \mathbb{Z}}$ a.s. separates points. Let (X, T) (or (\mathbb{Z}, X)) be a topological dynamical system (t.d.s.) given by the homeomorphism $T: X \rightarrow X$.

Definition

Generating Functions and full topological shifts

A generating partition with m elements is equivalent to a measurable function $P: X \rightarrow\{1,2, \ldots, m\}$ so that the orbit-map $I_{P}(x)=\left(P\left(T^{k}(x)\right)\right)_{k \in \mathbb{Z}}$ a.s. separates points.
Let (X, T) (or (\mathbb{Z}, X)) be a topological dynamical system (t.d.s.) given by the homeomorphism $T: X \rightarrow X$.

Definition

We call a continuous $f: X \rightarrow[0,1]^{d}$ a generating function if $I_{f}(x) \triangleq\left(f\left(T^{k}(x)\right)\right)_{k \in \mathbb{Z}}$ is separating points, i.e.:
$\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift) is referred to as the full topological shift on the alphabet or simply as the d-cubical shift.

Generating Functions and full topological shifts

A generating partition with m elements is equivalent to a measurable function $P: X \rightarrow\{1,2, \ldots, m\}$ so that the orbit-map $I_{P}(x)=\left(P\left(T^{k}(x)\right)\right)_{k \in \mathbb{Z}}$ a.s. separates points.
Let (X, T) (or (\mathbb{Z}, X)) be a topological dynamical system (t.d.s.) given by the homeomorphism $T: X \rightarrow X$.

Definition

We call a continuous $f: X \rightarrow[0,1]^{d}$ a generating function if $I_{f}(x) \triangleq\left(f\left(T^{k}(x)\right)\right)_{k \in \mathbb{Z}}$ is separating points, i.e.:

$$
I_{f}:(X, T) \hookrightarrow\left(\left([0,1]^{d}\right)^{\mathbb{Z}}, \text { shift }\right)
$$

Generating Functions and full topological shifts

A generating partition with m elements is equivalent to a measurable function $P: X \rightarrow\{1,2, \ldots, m\}$ so that the orbit-map $I_{P}(x)=\left(P\left(T^{k}(x)\right)\right)_{k \in \mathbb{Z}}$ a.s. separates points.
Let (X, T) (or (\mathbb{Z}, X)) be a topological dynamical system (t.d.s.) given by the homeomorphism $T: X \rightarrow X$.

Definition

We call a continuous $f: X \rightarrow[0,1]^{d}$ a generating function if $I_{f}(x) \triangleq\left(f\left(T^{k}(x)\right)\right)_{k \in \mathbb{Z}}$ is separating points, i.e.:

$$
I_{f}:(X, T) \hookrightarrow\left(\left([0,1]^{d}\right)^{\mathbb{Z}}, \text { shift }\right)
$$

$\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift) is referred to as the full topological shift on the alphabet $[0,1]^{d}$ or simply as the d-cubical shift.

Canonical Embedding Spaces and Embedding Dimension

- Let X be a compact metric space.
- There is an embedding:

$$
X \hookrightarrow[0,1]^{\mathbb{N}}
$$

- Let (X, T) be a t.d.s. There is an equivariant embedding:

$$
(X, T) \hookrightarrow\left(\left([0,1]^{\mathbb{N}}\right)^{\mathbb{Z}}, \text { shift }\right)
$$

- Under which conditions is there an embedding into the d-cubical shift:

$$
(X, T) \hookrightarrow\left(\left([0,1]^{d}\right)^{\mathbb{\pi}}, \text { shift }\right)(d \in \mathbb{N}) ?
$$

- Define the embedding-dimension:

$$
\operatorname{ddim}(X, T)=\min \left\{\left.d \in \mathbb{N} \cup\{\infty\}\right|^{\prime} \exists \theta:(X, T) \hookrightarrow\left(\left([0,1]^{d}\right)^{\mathbb{Z}} \text {, shift }\right)\right\}
$$

Canonical Embedding Spaces and Embedding Dimension

- Let X be a compact metric space.
- There is an embedding:

$$
X \rightarrow[0,1]^{\mathbb{N}}
$$

- Let (X, T) be a t.d.s. There is an equivariant embedding:

$$
(X, T) \hookrightarrow\left(\left([0,1]^{\mathbb{N}}\right)^{\mathbb{Z}} \text {, shift }\right)
$$

- Under which conditions is there an embedding into the d-cubical shift:

$$
(X, T) \cdots\left(\left([0,1]^{d}\right)^{\mathbb{Z}}, \text { shift }\right)(d \in \mathbb{N}) ?
$$

- Define the embedding-dimension:

Canonical Embedding Spaces and Embedding Dimension

- Let X be a compact metric space.
- There is an embedding:

$$
X \rightarrow[0,1]^{\mathbb{N}}
$$

- Let (X, T) be a t.d.s. There is an equivariant embedding:

$$
(X, T) \hookrightarrow\left(\left([0,1]^{\mathbb{N}}\right)^{\mathbb{Z}}, \text { shift }\right)
$$

- Under which conditions is there an embedding into the d-cubical shift:

$$
(X, T) \cdots\left(\left([0,1]^{d}\right)^{\mathbb{Z}}, \text { shift }\right)(d \in \mathbb{N}) ?
$$

- Define the embedding-dimension:

Canonical Embedding Spaces and Embedding Dimension

- Let X be a compact metric space.
- There is an embedding:

$$
X \rightarrow[0,1]^{\mathbb{N}}
$$

- Let (X, T) be a t.d.s. There is an equivariant embedding:

$$
(X, T) \leftrightarrow\left(\left([0,1]^{\mathbb{N}}\right)^{\mathbb{Z}}, \text { shift }\right)
$$

- Under which conditions is there an embedding into the d-cubical shift:

$$
(X, T) \rightarrow\left(\left([0,1]^{d}\right)^{\mathbb{Z}}, \text { shift }\right)(d \in \mathbb{N}) ?
$$

- Define the embedding-dimension:
\square

Canonical Embedding Spaces and Embedding Dimension

- Let X be a compact metric space.
- There is an embedding:

$$
X \rightarrow[0,1]^{\mathbb{N}}
$$

- Let (X, T) be a t.d.s. There is an equivariant embedding:

$$
(X, T) \hookrightarrow\left(\left([0,1]^{\mathbb{N}}\right)^{\mathbb{Z}}, \text { shift }\right)
$$

- Under which conditions is there an embedding into the d-cubical shift:

$$
(X, T) \hookrightarrow\left(\left([0,1]^{d}\right)^{\mathbb{Z}}, \text { shift }\right)(d \in \mathbb{N}) ?
$$

- Define the embedding-dimension:

Canonical Embedding Spaces and Embedding Dimension

- Let X be a compact metric space.
- There is an embedding:

$$
X \rightarrow[0,1]^{\mathbb{N}}
$$

- Let (X, T) be a t.d.s. There is an equivariant embedding:

$$
(X, T) \hookrightarrow\left(\left([0,1]^{\mathbb{N}}\right)^{\mathbb{Z}}, \text { shift }\right)
$$

- Under which conditions is there an embedding into the d-cubical shift:

$$
(X, T) \hookrightarrow\left(\left([0,1]^{d}\right)^{\mathbb{Z}}, \text { shift }\right)(d \in \mathbb{N}) ?
$$

- Define the embedding-dimension:

$$
\operatorname{edim}(X, T)=\min \left\{d \in \mathbb{N} \cup\{\infty\} \mid \exists \theta:(X, T) \hookrightarrow\left(\left([0,1]^{d}\right)^{\mathbb{Z}}, \text { shift }\right)\right\}
$$

A Question

Let X be finite dimensional and (X, T) aperiodic with finite topological entropy. E.g.:

$$
X=\mathbb{T}^{n}, T: \mathbb{T}^{n} \rightarrow \mathbb{T}^{n}\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}+\beta_{1}, \ldots, x_{n}+\beta_{n}\right)
$$

Question: Does (X, T) have a generating function $f: X \rightarrow[0,1]$?

More generally, let $T_{i}: X \rightarrow X, i=1,2, \ldots$ be aperiodic homeomorphisms of X with finite topological entropy. Consider the product $\Pi X \triangleq X \times X \times \ldots$ with the (compact) Tychonoff topology and the "diagonal" homeomorphism $\prod_{i} T_{i} \triangleq T_{1} \times T_{2} \times \ldots$

Question: Does $\left(\Pi X, \Pi_{i} T_{i}\right)$ have a generating function $f: \Pi X \rightarrow[0,1]$?

A Question

Let X be finite dimensional and (X, T) aperiodic with finite topological entropy. E.g.:

$$
X=\mathbb{T}^{n}, T: \mathbb{T}^{n} \rightarrow \mathbb{T}^{n}\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}+\beta_{1}, \ldots, x_{n}+\beta_{n}\right)
$$

Question: Does (X, T) have a generating function $f: X \rightarrow[0,1]$?
More generally, let $T_{i}: X \rightarrow X, i=1,2, \ldots$ be aperiodic homeomorphisms of X with finite topological entropy. Consider the product $\Pi X \triangleq X \times X \times \ldots$ with the (compact) Tychonoff topology and the "diagonal" homeomorphism $\prod_{i} T_{i} \triangleq T_{1} \times T_{2} \times$

Question: Does $\left(\Pi X, \Pi_{i} \bar{T}_{i}\right)$ have a generating function $f: \Pi X \rightarrow[0,1]$?

A Question

Let X be finite dimensional and (X, T) aperiodic with finite topological entropy. E.g.:

$$
X=\mathbb{T}^{n}, T: \mathbb{T}^{n} \rightarrow \mathbb{T}^{n}\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}+\beta_{1}, \ldots, x_{n}+\beta_{n}\right)
$$

Question: Does (X, T) have a generating function $f: X \rightarrow[0,1]$?
More generally, let $T_{i}: X \rightarrow X, i=1,2, \ldots$ be aperiodic homeomorphisms of X with finite topological entropy. Consider the product
$\Pi X \triangleq X \times X \times \ldots$ with the (compact) Tychonoff topology and the "diagonal" homeomorphism $\Pi_{i} T_{i} \triangleq T_{1} \times T_{2} \times$

Question: Does $\left(\Pi X, \Pi_{i} T_{i}\right)$ have a generating function $f: \Pi X \rightarrow[0,1]$?

A Question

Let X be finite dimensional and (X, T) aperiodic with finite topological entropy. E.g.:

$$
X=\mathbb{T}^{n}, T: \mathbb{T}^{n} \rightarrow \mathbb{T}^{n}\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}+\beta_{1}, \ldots, x_{n}+\beta_{n}\right)
$$

Question: Does (X, T) have a generating function $f: X \rightarrow[0,1]$?
More generally, let $T_{i}: X \rightarrow X, i=1,2, \ldots$ be aperiodic homeomorphisms of X with finite topological entropy. Consider the product $\Pi X \triangleq X \times X \times \ldots$ with the (compact) Tychonoff topology and the "diagonal" homeomorphism $\prod_{i} T_{i} \triangleq T_{1} \times T_{2} \times \ldots$

Question: Does $\left(\Pi X, \Pi_{i} T_{i}\right)$ have a generating function $f: \Pi X \rightarrow[0,1]$?

Mean Dimension

- ord $(\alpha)=\max _{x \in X} \sum_{U \in \alpha} 1_{U}(x)-1$
- $D(\alpha)=\min _{\rho \times \alpha} \operatorname{ord}(\beta)$
- $\operatorname{dim}(X)=\sup _{\alpha} D(\alpha)$
- (Gromov) $\quad \operatorname{mdim}(X, T)=\sup _{\alpha} \lim _{n \rightarrow \infty} \frac{1}{2 n+1} D\left(\bigvee_{k=-n}^{k=n} T^{k} \alpha\right)$
- Compare: $h_{\text {top }}(X, T)=\sup _{\alpha} \lim _{n \rightarrow \infty} \frac{\log N l\left(\bigvee_{k=n}^{k=n} T^{k} n\right)}{2 n+1}$, $N(\alpha)=\min _{\beta c \alpha}|\beta|$

Mean Dimension

- $\operatorname{ord}(\alpha)=\max _{x \in X} \sum_{U \in \alpha} 1_{U}(x)-1$
- $D(\alpha)=\min _{\beta \succ \alpha}$ ord (β)
- $\operatorname{dim}(X)=\sup _{\alpha} D(\alpha)$
- (Gromov) $\quad m \operatorname{dim}(X, T)=\sup _{\alpha} \lim _{n \rightarrow \infty} \frac{1}{2 n+1} D\left(V_{\substack{k=-n \\ k=-n}} T^{k} \alpha\right)$
- Compare: $h_{\text {top }}(X, T)=\sup _{\alpha} \lim _{n \rightarrow \infty} \frac{\log N\left(V_{k=-n}^{k=n} T^{k} \alpha\right)}{2 n+1}$, $N(\alpha)=\min _{\beta \subset \alpha}|\beta|$

Mean Dimension

- $\operatorname{ord}(\alpha)=\max _{x \in X} \sum_{U \in \alpha} 1_{U}(x)-1$
- $D(\alpha)=\min _{\beta>\alpha} \operatorname{ord}(\beta)$
- $\operatorname{dim}(X)=\sup _{\alpha} D(\alpha)$
- (Gromov) $\quad m \operatorname{dim}(X, T)=\sup _{\alpha} \lim _{n \rightarrow \infty} \frac{1}{2 n+1} D\left(\bigvee_{k=-n}^{k=n} T^{k} \alpha\right)$
- Compare: $h_{\text {top }}(X, T)=\sup _{\alpha} \lim _{n \rightarrow \infty} \frac{\log N\left(V_{k=-n}^{k=n} T^{k} \alpha\right)}{2 n+1}$ $N(\alpha)=\min _{\beta \subset \alpha}|\beta|$

Mean Dimension

- $\operatorname{ord}(\alpha)=\max _{x \in X} \sum_{U \in \alpha} 1_{U}(x)-1$
- $D(\alpha)=\min _{\beta>\alpha} \operatorname{ord}(\beta)$
- $\operatorname{dim}(X)=\sup _{\alpha} D(\alpha)$
- (Gromov) $\quad \operatorname{mdim}(X, T)=\sup _{\alpha} \lim _{n \rightarrow \infty} \frac{1}{2 n+1} D\left(\bigvee_{k=-n}^{k=n} T^{k} \alpha\right)$
- Compare: $h_{\text {top }}(X, T)=\sup _{\alpha} \lim _{n \rightarrow \infty} \frac{\log N\left(V_{k=-n}^{k=-n} T^{k} \alpha\right)}{2 n+1}$, $N(\alpha)=\min _{\beta \subset \alpha}|\beta|$

Mean Dimension

- $\operatorname{ord}(\alpha)=\max _{x \in X} \sum_{U \in \alpha} 1_{U}(x)-1$
- $D(\alpha)=\min _{\beta>\alpha} \operatorname{ord}(\beta)$
- $\operatorname{dim}(X)=\sup _{\alpha} D(\alpha)$
- (Gromov) $\quad \operatorname{mdim}(X, T)=\sup _{\alpha} \lim _{n \rightarrow \infty} \frac{1}{2 n+1} D\left(\bigvee_{k=-n}^{k=n} T^{k} \alpha\right)$
- Compare: $h_{\text {top }}(X, T)=\sup _{\alpha} \lim _{n \rightarrow \infty} \frac{\log N\left(V_{k=-n}^{k=-n} T^{k} \alpha\right)}{2 n+1}$, $N(\alpha)=\min _{\beta \subset \alpha}|\beta|$

Mean Dimension

- $\operatorname{ord}(\alpha)=\max _{x \in X} \sum_{U \in \alpha} 1_{U}(x)-1$
- $D(\alpha)=\min _{\beta>\alpha} \operatorname{ord}(\beta)$
- $\operatorname{dim}(X)=\sup _{\alpha} D(\alpha)$
- (Gromov) $\quad \operatorname{mdim}(X, T)=\sup _{\alpha} \lim _{n \rightarrow \infty} \frac{1}{2 n+1} D\left(\bigvee_{k=-n}^{k=n} T^{k} \alpha\right)$
- Compare: $h_{\text {top }}(X, T)=\sup _{\alpha} \lim _{n \rightarrow \infty} \frac{\log N\left(\mathrm{~V}_{k=-n}^{\mathrm{k}=n} T^{k} \alpha\right)}{2 n+1}$, $N(\alpha)=\min _{\beta \subset \alpha}|\beta|$

Mean Dimension - Properties

- $h_{\text {top }}(X, T)<\infty \Rightarrow \operatorname{mdim}(X, T)=0$
- $\operatorname{dim}(X)<\infty \Rightarrow \operatorname{dim}(X, T)=0$
- mdim $\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift $)=d$
- If $Y \subset X$ is closed and T-invariant then $m \operatorname{dim}(Y, T) \leq m \operatorname{dim}(X, T)$
- $\operatorname{edim}(X, T) \geq m \operatorname{dim}(X, T)$.

Mean Dimension - Properties

- $h_{\text {top }}(X, T)<\infty \Rightarrow \operatorname{mdim}(X, T)=0$
- $\operatorname{dim}(X)<\infty \Rightarrow \operatorname{mdim}(X, T)=0$
- $\operatorname{mdim}\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift $)=d$
- If $Y \subset X$ is closed and T-invariant then $m \operatorname{dim}(Y, T) \leq m \operatorname{dim}(X, T)$
- $\operatorname{edim}(X, T) \geq m \operatorname{dim}(X, T)$.

Mean Dimension - Properties

- $h_{\text {top }}(X, T)<\infty \Rightarrow \operatorname{mdim}(X, T)=0$
- $\operatorname{dim}(X)<\infty \Rightarrow m \operatorname{dim}(X, T)=0$
- $\operatorname{mdim}\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift $)=d$
- If $Y \subset X$ is closed and T-invariant then $m \operatorname{dim}(Y, T) \leq m \operatorname{dim}(X, T)$
- $\operatorname{edim}(X, T) \geq m \operatorname{dim}(X, T)$.

Mean Dimension - Properties

- $h_{\text {top }}(X, T)<\infty \Rightarrow \operatorname{mdim}(X, T)=0$
- $\operatorname{dim}(X)<\infty \Rightarrow m \operatorname{dim}(X, T)=0$
- $\operatorname{mdim}\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift $)=d$
- If $Y \subset X$ is closed and T-invariant then $m \operatorname{dim}(Y, T) \leq m \operatorname{dim}(X, T)$
- $\operatorname{edim}(X, T) \geq m \operatorname{dim}(X, T)$.

Mean Dimension - Properties

- $h_{\text {top }}(X, T)<\infty \Rightarrow \operatorname{mdim}(X, T)=0$
- $\operatorname{dim}(X)<\infty \Rightarrow m \operatorname{dim}(X, T)=0$
- $\operatorname{mdim}\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift $)=d$
- If $Y \subset X$ is closed and T-invariant then $m \operatorname{dim}(Y, T) \leq m \operatorname{dim}(X, T)$
- $\operatorname{edim}(X, T) \geq \operatorname{mdim}(X, T)$.

Mean Dimension - Properties

- $h_{\text {top }}(X, T)<\infty \Rightarrow \operatorname{mdim}(X, T)=0$
- $\operatorname{dim}(X)<\infty \Rightarrow m \operatorname{dim}(X, T)=0$
- $\operatorname{mdim}\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift $)=d$
- If $Y \subset X$ is closed and T-invariant then $m \operatorname{dim}(Y, T) \leq m \operatorname{dim}(X, T)$
- $\operatorname{edim}(X, T) \geq m \operatorname{dim}(X, T)$.

Periodic Points Obstruction

Let $P_{n}=\left\{x \in X \mid \exists 1 \leq m \leq n T^{m} x=x\right\}$, be the set of periodic points of period $\leq n$ of X. Define:

$$
\operatorname{perdim}(X, T)=\sup _{n \in \mathbb{N}} \frac{\operatorname{dim}\left(P_{n}\right)}{n}
$$

- perdim $\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift $)=d$.
- $\operatorname{edim}(X, T) \geq \operatorname{perdim}(X, T)$.

Periodic Points Obstruction

Let $P_{n}=\left\{x \in X \mid \exists 1 \leq m \leq n T^{m} x=x\right\}$, be the set of periodic points of period $\leq n$ of X. Define:

- perdim $\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift $)=d$.
- $\operatorname{edim}(X, T) \geq \operatorname{perdim}(X, T)$.

Periodic Points Obstruction

Let $P_{n}=\left\{x \in X \mid \exists 1 \leq m \leq n T^{m} x=x\right\}$, be the set of periodic points of period $\leq n$ of X. Define:

$$
\operatorname{perdim}(X, T)=\sup _{n \in \mathbb{N}} \frac{\operatorname{dim}\left(P_{n}\right)}{n}
$$

- perdim $\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift $)=d$.
- $\operatorname{edim}(X, T) \geq \operatorname{perdim}(X, T)$.

Periodic Points Obstruction

Let $P_{n}=\left\{x \in X \mid \exists 1 \leq m \leq n T^{m} x=x\right\}$, be the set of periodic points of period $\leq n$ of X. Define:

$$
\operatorname{perdim}(X, T)=\sup _{n \in \mathbb{N}} \frac{\operatorname{dim}\left(P_{n}\right)}{n}
$$

- perdim $\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift $)=d$.
- $\operatorname{edim}(X, T) \geq \operatorname{perdim}(X, T)$.

Periodic Points Obstruction

Let $P_{n}=\left\{x \in X \mid \exists 1 \leq m \leq n T^{m} x=x\right\}$, be the set of periodic points of period $\leq n$ of X. Define:

$$
\operatorname{perdim}(X, T)=\sup _{n \in \mathbb{N}} \frac{\operatorname{dim}\left(P_{n}\right)}{n}
$$

- $\operatorname{perdim}\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift $)=d$.
- $\operatorname{edim}(X, T) \geq \operatorname{perdim}(X, T)$.

When is it possible to embed in a cubical shift?

Conjecture (Lindenstrauss)

Let $d \in \mathbb{N}$ be such that:

then there is an equivariant embedding

$$
(X, T) \leftrightarrows\left(\left(\left[0,11^{d}\right)^{Z}\right) \text {, shift }\right)
$$

When is it possible to embed in a cubical shift?

Conjecture (Lindenstrauss)

Let $d \in \mathbb{N}$ be such that:

$$
\begin{aligned}
& \operatorname{perdim}(X, T)<\frac{d}{2} \\
& m \operatorname{dim}(X, T)<\frac{d}{2}
\end{aligned}
$$

then there is an equivariant embedding

$$
\left.(X, T) \rightarrow\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right), \text { shift }\right)
$$

What is new I?

Theorem (Jaworski, 1974)

If $\operatorname{dim}(X)=n$ and $P_{(4 n+3)^{2}}=\varnothing$, then (X, T) can be equivariantly embedded in $(([0,1]) \mathbb{Z}$, shift $)$.

Theorem (G)

If $\operatorname{dim}(X)=n$ and $P(2 n+2)^{2}=\varnothing$, then (X, T) can be equivariantly embedded in $\left(([0,1])^{\mathbb{Z}}\right.$, shift $)$.

What is new I?

```
Theorem (Jaworski, 1974)
If dim}(X)=n\mathrm{ and }\mp@subsup{P}{(4n+3\mp@subsup{)}{}{2}}{}=\varnothing\mathrm{ , then (X,T) can be equivariantly embedded in \(\left(([0,1])^{\mathbb{Z}}\right.\), shift \()\).
```


Theorem (G)

If $\operatorname{dim}(X)=n$ and $P_{(2 n+2)^{2}}=\varnothing$, then (X, T) can be equivariantly

embedded in $\left(([0,1])^{\mathbb{Z}}\right.$, shift $)$

What is new I?

```
Theorem (Jaworski, 1974)
If dim}(X)=n\mathrm{ and }\mp@subsup{P}{(4n+3\mp@subsup{)}{}{2}}{=\varnothing}\mathrm{ , then (X,T) can be equivariantly embedded in \(\left(([0,1])^{\mathbb{Z}}\right.\), shift \()\).
```


Theorem (G)

If $\operatorname{dim}(X)=n$ and $P_{(2 n+2)^{2}}=\varnothing$, then (X, T) can be equivariantly embedded in $\left(([0,1])^{\mathbb{Z}}\right.$, shift $)$.

What is new II?

Theorem (Lindenstrauss, 1999)
If (X, T) is an extension of a non trivial minimal t.d.s and$m \operatorname{dim}(X, T)<\frac{d}{36}$, then (X, T) can be equivariantly embedded in$\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift $)$
Theorem (G)
If (X, T) is an extension of an aperiodicminimal subsystems and $\operatorname{mdim}(X, T)<\frac{d}{36}$, then (X, T) can beequivariantly embedded in $\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift $)$.

What is new II?

Theorem (Lindenstrauss, 1999)

If (X, T) is an extension of a non trivial minimal t.d.s and $m \operatorname{dim}(X, T)<\frac{d}{36}$, then (X, T) can be equivariantly embedded in $\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift $)$

Theorem (G)

If (X, T) is an extension of an aperiodic $t . d . s$ with a countable number of minimal subsystems and $m \operatorname{dim}(X, T)<\frac{d}{36}$, then (X, T) can be equivariantly embedded in $\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift $)$.

What is new III?

Theorem (Jaworski as stated in Auslander 1988)

If X is finite-dimensional and (X, T) is aperiodic, then (X, T) can be equivariantly embedded in $\left(([0,1])^{\mathbb{Z}}\right.$, shift $)$.

What is new III?

Theorem (Jaworski as stated in Auslander 1988)

If X is finite-dimensional and (X, T) is aperiodic, then (X, T) can be equivariantly embedded in $\left(([0,1])^{\mathbb{Z}}\right.$, shift $)$.

Theorem (G)

If (X, T) is an extension of a finite-dimensional aperiodic t.d.s and $m \operatorname{dim}(X, T)<\frac{d}{36}$, then (X, T) can be equivariantly embedded in $\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift $)$.

Theorem (G 2011)

There exist constants $C(k)=\frac{3\left(\frac{k}{2}\right)!200^{k}}{k}$
\square
then $\left(\mathbb{Z}^{k}, X\right)$ can be equivariantly embedded in $\left(\left([0,1]^{d}\right)^{\mathbb{Z}^{k}}, \mathbb{Z}^{k}-\right.$ shift $)$

What is new III?

Theorem (Jaworski as stated in Auslander 1988)

If X is finite-dimensional and (X, T) is aperiodic, then (X, T) can be equivariantly embedded in $\left(([0,1])^{\mathbb{Z}}\right.$, shift $)$.

Theorem (G)

If (X, T) is an extension of a finite-dimensional aperiodic t.d.s and $m \operatorname{dim}(X, T)<\frac{d}{36}$, then (X, T) can be equivariantly embedded in $\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift $)$.

Theorem (G 2011)

There exist constants $C(k)=\frac{3\left(\frac{k}{2}\right)!200^{k}}{\pi^{\frac{k}{2}}}, k=1,2, \ldots$ so that if $\left(\mathbb{Z}^{k}, X\right)$ is an extension of an aperiodic zero-dimensional t.d.s and $m \operatorname{dim}\left(\mathbb{Z}^{k}, X\right)<\frac{d}{C(k)}$, then $\left(\mathbb{Z}^{k}, X\right)$ can be equivariantly embedded in $\left(\left([0,1]^{d}\right)^{\mathbb{Z}^{k}}, \mathbb{Z}^{k}-\right.$ shift $)$.

