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Covering model

{ξn} is a sequence of i.i.d. random variables uniformly distributed on
the circle T := R/Z (ξn : Ω→ T, P ◦ ξ−1n = L)

{ln} is a decreasing sequence of positive numbers
(0 < ln < 1, ln ↓ 0)

Random intervals : In(ω) = ξn(ω) + (0, ln)

Random covering set

E(ω) := {t ∈ T : t ∈ In(ω) infinitely often}
= lim sup

n→∞
In(ω)

Another writing as random series

E(ω) = {t ∈ T :

∞∑
n=1

χ(0,ln)(t− ξn(ω)) = +∞}
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Sizes of covering sets

the roles of the two measures
P : measures the randomness of the initial points of the random
intervals
L : measures the lengths of the random intervals

General model :
T −→ any space
{ξn} −→ a stochastic process or the orbit of the dynamical system
L −→ other measure

Questions : How can we describe the covering set E(ω) ?

Kahane (1985)
E is almost surely dense on T and is of second category.

Borel-Cantelli Lemma implies almost surely

L(E(ω)) =

{
0 if

∑∞
n=1 ln <∞

1 if
∑∞
n=1 ln =∞.
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Hitting probability of covering set

Fan and Wu (2004), Durand (2010)

dimH(E) = α := inf

{
s > 0 :

∞∑
n=1

lsn <∞
}

Question :
Given a sequence {ln} with

∑∞
n=1 ln < +∞, under what conditions

on measurable set G, we have

P
(
E ∩G 6= ∅

)
> 0?
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Hitting probability of covering set

It can be shown that

lim sup
k→∞

log2 nk
k

= α,

where

nk = #
{
n ∈ N : ln ∈ [2−k+1, 2−k+2)

}
(k ≥ 2).

Condition (C) : There exists an increasing sequence of positive
integers {ki} such that

lim
i→∞

ki+1

ki
= 1 and lim

i→∞

log2 nki
ki

= α < 1.

Examples : ln = a
nγ , a > 0, γ > 1 ; ln = 1

βn , β > 1.
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Hitting probability of covering set

Theorem

Let E be the random covering set associated with the sequence {ln}. If
the condition (C) holds, then for every measurable set G ⊂ T, we have

P
(
E ∩G 6= ∅

)
=

{
0 if dimP(G) < 1− α,
1 if dimP(G) > 1− α.

Remark

The conclusion dimP(G) < 1− α implies P(E ∩G 6= ∅) = 0 holds even
without the condition (C).
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Hitting probability of covering set

Theorem

Let E be the random covering set associated with the sequence {ln}
which satisfies the condition (C). If dimP(G) > 1− α, then

dimP(E ∩G) = dimP(G) a.s.

and

dimH(G)− (1− α) ≤ dimH(E ∩G) ≤ dimP(G)− (1− α) a.s.

In particular, if dimH(G) = dimP(G), then

dimH(E ∩G) = dimH(G)− (1− α) a.s.
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Limsup random fractal

dyadic intervals

Dk =

{
[
i

2k
,
i+ 1

2k
] : i ∈ N

}

random variables (n ≥ 1, J ∈ Dk)

Zk(J) =

{
1 if J is picked,

0 otherwise.

k-th level
A(k) =

⋃
J∈Dk,Zk(J)=1

Jo

limsup random fractal (see Khoshnevisan, Peres, and Xiao, 2000)

A = lim sup
k→∞

A(k)
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Construction of subset

dimp(G) > 1− α =⇒ P
(
E ∩G 6= ∅

)
= 1

Tk = {n ∈ N : ln ∈ [2−k+1, 2−k+2)}

For every J ∈ Dk, define

Zk(J) =

{
1 if ∃ n ∈ Tk such that J ⊂ In = (ξn, ξn + ln),

0 otherwise.

A(k) =
⋃
J∈Dk
Zk(J)=1

J ⊂
⋃
n∈Tk

In

E∗ := lim sup
k→∞

A(k)

E∗ ⊂ E
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Thanks for your attention !

Ergodic methods in dynamics Hitting Probabilities of the Random Covering Sets


	Random covering problem on the circle
	Construction of limsup random fractal subset

