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History

Theorem

(Krylov-Bogoliubov, 1937) In a compact phase space X of a
dynamical system f (t, p) there exists an invariant probalility measure.

Theorem

(Birkhoff, 1931) If in a phase space X there is defined an invariant
transitive measure µ with µ(X ) = 1 then for any absolutely

summable function ϕ and µ-almost all p ∈ X

lim
t→∞

1

t

∫ t

0
ϕ(f (s, p))ds =

∫
X
ϕ(v)dµ(v).

What if X is not compact in Krylov-Bogoliubov?

What if µ is not transitive in Birkhoff?

G. Lukaszewicz (UW) Invariant measures and Banach limits April, 2012 3 / 13



Context and Motivation

Our motivation comes from considerations of infinite-dimensional
dynamical systems of mathematical physics, e.g. from turbulence
studies, where the phase space is, say, a Hilbert space.

We look for the invariant measures describing statistical equilibria of
the considered system.

The main tool in the construction is the notion of a generalized Banach
limit used in the definition of time averages. It allows to avoid the
”ergodic hypothesis”, and get two formulas

LIMt→∞
1

t

∫ t

0
ϕ(S(s)p)ds =

∫
A
ϕ(v)dµp(v), A − global attractor

LIMt→∞
1

t

∫ t

0

∫
H
ϕ(S(s)p)dµ0(p)ds =

∫
A
ϕ(v)dm(v).

G. Lukaszewicz (UW) Invariant measures and Banach limits April, 2012 4 / 13



Basic notion: dynamical system

Let us consider a dissipative, infinite-dimensional dynamical system:

du

dt
= F (u)

u(0) = u0 ∈ H (H = the phase space)

2D Navier-Stokes is a dissipative dynamical system.

H is a Banach or a Hilbert space (the phace space is infinite dimensional).

We assume that the solutions are unique and global in time.

Solution: u(t) = S(t)u0, t ≥ 0, where {S(t)}t≥0 is a semigroup,
S(t) : H → H.

In general we consider {S(t)}t≥0 acting in an arbitrary metric space.
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Basic notion: global attractor

For many dissipative dynamical systems there exists a subset A
( global attractor ) in the phase space H such that:

A is compact in H.

A is invariant: S(t)A = A for t ≥ 0.

A attracts bounded sets in H: dist(S(t)B,A)→ 0 as t →∞.

Application to the 2D NS turbulent flows (our claims):

States of statistical equilibria after a long time of evolution of a
turbulent flow can be described by dynamics reduced to A, namely,
by invariant measures (= stationary statistical solutions) of the
dynamical system.
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Banach Generalized Limit. Invariant Measure

Definition

A Banach generalized limit is any linear functional, denoted
LIMT→∞, defined on the space of all bounded real-valued functions
on [0,∞) and satisfying
(i) LIMT→∞g(T ) ≥ 0 for nonnegative functions g .
(ii) LIMT→∞g(T ) = limT→∞g(T ) if the usual limit limT→∞g(T )
exists.

Definition

A measure µ on H is invariant for {S(t)}t≥0 if and only if for all
measurable sets E and t ≥ 0,

µ(S(t)−1(E )) = µ(E )
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Construction of Individual Invariant Measures

Theorem

Let X be a metric space. Assume that there exists a global attractor
A for a semigroup S(·) in X . Let a Banach generalized limit LIMt→∞
be fixed. Then for every p ∈ X there exists an invariant probability
measure µp on X which is supported on A and such that for all
ϕ ∈ C (X ),

LIMt→∞
1

t

∫ t

0
ϕ(S(s)p)ds =

∫
A
ϕ(v)dµp(v).

Basic facts:

Every time averaged measure is invariant.

Every invariant measure is supported on the global attractor.
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Construction of Individual Invariant Measures

Example

Let X be a metric space. Assume that there exists a trivial global
attractor A = {q} for a semigroup S(·) in X . Then for every p ∈ X
there exists an invariant probability measure µp = δq on X which
does not depend on p ∈ X , is supported on A, and for all ϕ ∈ C (X ),

lim
t→∞

1

t

∫ t

0
ϕ(S(s)p)ds =

∫
A
ϕ(v)dδq(v) = ϕ(q).
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Construction of any Invariant Measure

Theorem

Let H be a Hilbert space. Assume that there exists a global attractor
A for a semigroup S(·) in H. Let a Banach generalized limit LIMt→∞
be fixed. Then for any probability measure µ0 in H there exists an
invariant probability measure m on H which is supported on A and
such that for all bounded functions ϕ from C (H),

LIMt→∞
1

t

∫ t

0

∫
H
ϕ(S(s)p)dµ0(p)ds =

∫
A
ϕ(v)dm(v).

Moreover, every invariant probability measure m can be obtained as
such limit.

If µ0 is invariant then m = µ0.

Here, for H one can take any complete and separable metric
space (Chekroun, Glatt-Holtz, 2011).
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Construction of Individual Invariant Measures.

Proof.

(of the first theorem, where X is a uniformly convex Banach space). Let
K be a closed convex hull of A, and let t → P(S(t)p) be the projection
on K of the trajectory through p. The function

[0,∞) 3 t → ϕ(P(S(t)u0)) ∈ R

is continuous and bounded for ϕ ∈ C (H).
The trajectory through p approaches the attractor, so

|ϕ(S(s)p)− ϕ(P(S(s)p))| → 0 as s →∞.

Now, by a property of generalized Banach limits we conclude that

LIMt→∞
1

t

∫ t

0
ϕ(S(s)p)ds = LIMt→∞

1

t

∫ t

0
ϕ(P(S(s)p))ds.

The RHS defines a linear positive functional L(ϕ) on C (K ), K -
compact. By the the Radon-Riesz representation theorem,

L(ϕ) =

∫
K
ϕ(v)dµp(v).
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Construction of Individual Measures

Proof.

(continued)
We have thus

LIMt→∞
1

t

∫ t

0
ϕ(S(s)p)ds =

∫
K
ϕ(v)dµp(v).

As a time averaged measure, µp is invariant, and by invariance, µp is
supported on A.
We extend the measure µp by zero on ouside of A and use the Tietze
extension theorem to extend L(ϕ) to C (X ), to get

LIMt→∞
1

t

∫ t

0
ϕ(S(s)p)ds =

∫
A
ϕ(v)dµp(v)

for all ϕ ∈ C (X ).
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