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Local entropy averages

Let Qk,x be the dyadic cube of generation k containing x ∈ Rd.
For a measure µ on Rd and a ∈ N, write:

Ha(µ,Qk,x) =
∑

Q is a generation k+a

dyadic subcube of Qk,x

µ(Q)
µ(Qk,x)

log µ(Qk,x)
µ(Q) .
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Conical densities

Let m ∈ {1, . . . , d}, x ∈ Rd, 0 < α < 1, and V ∈ G(d,m). Write

C(x, V, α) = {y ∈ Rd : dist(y − x, V ) < α|y − x|}.

Theorem
Let 0 < m < s < d, m ∈ N, and 0 < α < 1. Then there exist
p > 0 and c > 0 such that for any measure µ on Rd:
• for µ-a.e. x with dimloc(µ, x) > s, we have for all large

enough N ∈ N that

inf
V ∈G(d,m)

µ(B(x, r) ∩ C(x, V, α))
µ(B(x, r))

> c

for at least pN dyadic scales r ∈ {2−1, 2−2, . . . , 2−N}.
• for µ-a.e. x with dimloc(µ, x) > s this holds for infinitely

many N ∈ N.
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