Daniel Smania
ICMC-USP
Brazil
www.icmc.usp.br/~smania

Cycles of intervals

 $J_0, \dots J_{p-1}$ is a cycle of intervals for f if

- -Interiors of J_i are pairwise disjoint.
- $-f(J_i) \subset J_{i+1} \mod p$
- $-f(\partial J_i) \subset \partial J_{i+1} \mod p$
- -All critical points of f belong to $\cup_i J_i$.
 - p is the period of the cycle.

Infinitely renormalizable maps

f is infinitely renormalizable if there exists a sequence of cycles

$$J_0^n, ..., J_{p_n}^n$$

with $p_n < p_{n+1}$ and

$$\bigcup_{i} J_{i}^{n+1} \subset \bigcup_{i} J_{i}^{n}$$

f has B-bounded combinatorics if moreover

$$\sup_n \frac{p_{n+1}}{p_n} \leq B$$

Main Theorem

Let f_{λ} be a finite-dimensional smooth family of real analytic multimodal maps and let Λ_B be the subset of parameters λ such that f_{λ} is infinitely renormalizable with B-bounded combinatorics.

For a generic finite-dimensional family f_t the set Λ_B has zero Lebesgue measure.

The meaning of generic

For a generic finite-dimensional family f_t the set Λ_B has zero Lebesgue measure.

$$f \in B_{\mathbb{R}}(U)$$
 iff

- $f \in B_{\mathbb{R}}(U)$ iff f is continuous in U,
 - f is complex analytic in U and
 - $-f(\overline{z})=f(z).$

We mean generic C^k families $t \in [0, 1]^n \to B_{\mathbb{R}}(U), k > 1$. and also generic C^{ω} families $t \in \overline{\mathbb{D}}^n \to B_{\mathbb{C}}(U)$, real in real parameters

Facts on the renormalization operator

Unimodal (Douady&Hubbard, Sullivan, McMullen, Lyubich) and multimodal (Hu, S. (2001,2005), + stuff in progress)

(Complex bounds) If f is infinitely renormalizable then $\{R^n f\}_n$ is precompact.

(Universality) The Omega-limit set Ω of R is a compact set. The dynamics of R on Ω is conjugate with a full shift with finitely many symbols.

There exists $\lambda \in (0,1)$ s.t. if f is infinitely renormalizable then there exists $f_{\star} \in \Omega$ such that

$$|R^n f - R^n f_{\star}| < C_f \lambda^n$$
.

Steps of the proof

- 1 Complexification of R (Complex bounds).
- The Omega limit set Ω of R is hyperbolic.
- If a family f_t is transversal to the stable lamination $W^s(\Omega)$ then Λ has zero Lebesgue measure.

(easy) adaptation of results by Bowen and Ruelle (1975) for the finite-dimensional case.

Steps of the proof

- Complexification of R (Complex bounds).
- f Z The Omega limit set Ω of R is hyperbolic.
- If a family f_t is transversal to the stable lamination $W^s(\Omega)$ then Λ has zero Lebesgue measure.

(easy) adaptation of results by Bowen and Ruelle (1975) for the finite-dimensional case.

(Bowen and Ruelle) Let Ω be a C^2 hyperbolic set in a finite-dimensional manifold. Then $m(W^s(\Omega)) = 0$ if and only if Ω is not an attractor.

Suppose that Ω lives in a infinite-dimensional Banach space **but** the unstable direction has finite dimension d.

Suppose that Ω lives in a infinite-dimensional Banach space **but** the unstable direction has finite dimension d.

Suppose that Ω lives in a infinite-dimensional Banach space **but** the unstable direction has finite dimension d.

Suppose that Ω lives in a infinite-dimensional Banach space **but** the unstable direction has finite dimension d.

Suppose that Ω lives in a infinite-dimensional Banach space **but** the unstable direction has finite dimension d.

Let $t \in U \subset \mathbb{R}^d \mapsto f_t$ be a C^2 smooth family such that $f_t \pitchfork W^s(\Omega)$. Then $m(\{t \in U : f_t \in W^s(\Omega)\}) = 0$.

Ergodic Methods!! So my talk fits in the conference:-)!!

$$f(t,\lambda)=f_t+\lambda V$$

Quasiconformal vector fields

The vector field $\alpha:\mathbb{C}\to\mathbb{C}$ is **quasiconformal** if it has distributional derivatives in L^2_{loc} and

$$|\overline{\partial}\alpha|_{\infty}<\infty$$

$$\alpha(\mathbf{X} + i\mathbf{y}) = \mathbf{u}(\mathbf{X}, \mathbf{y}) + i \cdot \mathbf{v}(\mathbf{X}, \mathbf{y})$$

$$\overline{\partial}\alpha = \frac{u_x - v_y}{2} + i \cdot \frac{v_x + u_y}{2}$$

Horizontal directions (Lyubich, 1999)

 $f: U \to V$ polynomial-like map. $v: U \to V$ is **horizontal** if there exists a quasiconformal vector field α , defined in a neighborhood of K(f) such that

$$v(x) = \alpha \circ f(x) - Df(x) \cdot \alpha(x)$$

Moreover $\overline{\partial}\alpha = \mathbf{0}$ on the filled-in Julia set K(f).

$$E_f^h := \{v : v \text{ is horizontal for } f\}$$

Horizontal directions (Lyubich, 1999)

 $f: U \to V$ polynomial-like map. $v: U \to V$ is **horizontal** if there exists a quasiconformal vector field α , defined in a neighborhood of K(f) such that

$$v(x) = \alpha \circ f(x) - Df(x) \cdot \alpha(x)$$

Moreover
$$\overline{\partial}\alpha = \mathbf{0}$$
 on the filled-in Julia set $K(f)$.

automatic in our setting (no invariant line fields on J(f)), so don't pay too much attention to this...

$$E_f^h := \{v : v \text{ is horizontal for } f\}$$

Facts on horizontal directions

Unimodal(Lyubich, 1999) and multimodal(S., in progress)

(Continuity) The codimension of E_f^h is finite and it depends only on the number of unimodal components. Moreover $f \to E_f^h$ is continuous.

(Invariant vector bundle) if $v \in E^h$ then $DR_f \cdot v \in E^h_{\mathcal{R}^f}$.

(Contraction) $|DR_f^n \cdot v| \leq C\lambda^n$, $\lambda < 1$.

Autonomous case

Autonomous case

Autonomous case

T is hyperbolic if and only if

$$B = \{ v \in \mathbb{R}^n : \sup_{i \in \mathbb{Z}} |T^i v| < \infty \} = \{0\}$$

Non-autonomous case (Sacker & Sell, 1974)

X compact metric space.

 $f: X \longrightarrow X$ homeomorphism such that the minimal sets are dense in X.

 $A: X \to GL(n, \mathbb{R})$ continuous.

Let $T: X \times \mathbb{R}^n \to X \times \mathbb{R}^n$ be the linear cocycle defined by

$$T(x, v) = (f(x), A(x) \cdot v)$$

Non-autonomous case (Sacker & Sell, 1974)

X compact metric space.

 $f: X \longrightarrow X$ homeomorphism such that the minimal sets are dense in X.

 $A: X \to GL(n, \mathbb{R})$ continuous.

Let $T: X \times \mathbb{R}^n \to X \times \mathbb{R}^n$ be the linear cocycle defined by

$$T(x, v) = (f(x), A(x) \cdot v)$$

Non-autonomous case (Sacker & Sell, 1974)

X compact metric space.

 $f: X \longrightarrow X$ homeomorphism such that the minimal sets are dense in X.

 $A: X \to GL(n, \mathbb{R})$ continuous.

Let $T: X \times \mathbb{R}^n \to X \times \mathbb{R}^n$ be the linear cocycle defined by

$$T(x, v) = (f(x), A(x) \cdot v)$$

Define

$$B = \{(x, v) \text{ s.t. } \sup_{i \in \mathbb{Z}} |\pi_2(T^i(x, v))| < \infty\}$$

Non-autonomous case (Sacker & Sell, 1974)

X compact metric space.

 $f: X \longrightarrow X$ homeomorphism such that the minimal sets are dense in X.

 $A: X \to GL(n, \mathbb{R})$ continuous.

Let $T: X \times \mathbb{R}^n \to X \times \mathbb{R}^n$ be the linear cocycle defined by

$$T(x, v) = (f(x), A(x) \cdot v)$$

Define

$$B = \{(x, v) \text{ s.t. } \sup_{i \in \mathbb{Z}} |\pi_2(T^i(x, v))| < \infty\}$$

T is a hyperbolic cocycle if and only if $B = X \times \{0\}$.

PS: Same result for vector bundles with same assumption on the base X

Back to renormalization

Considering the finite-dimensional vector bundle defined by

$$f \in \Omega o \mathbb{B}/oldsymbol{\mathcal{E}_f^h}$$

and the cocycle

$$\tilde{D}_f[v] = [D\mathcal{R}_f \cdot v]$$

and using Sacker & Sell Theorem we can get:

If

$$B_f^+ = \{(f, v) \in \Omega \times \mathbb{B} \text{ s.t. } \sup_{i \geq 0} |D\mathcal{R}_f^i \cdot v| < \infty\} \subset E_f^h$$

for every $f \in \Omega$ then the renormalization operator is hyperbolic on Ω with $E_f^s = E_f^h$.

Key Lemma

If $f \in \Omega$ and

$$|D\mathcal{R}_f^i \cdot \mathbf{v}| \leq C$$

for every $i \ge 0$ then there exists a quasiconformal vector field α defined in a neighborhood of K(f) = J(f) such that

$$v(x) = \alpha \circ f(x) - Df(x) \cdot \alpha(x).$$

Infinitesimal pullback argument

(Avila, Lyubich and de Melo, 2003)

Infinitesimal pullback argument

(Avila, Lyubich and de Melo, 2003)

To find a quasiconformal vector field solution to the t.c.e. we just need to find a quasiconformal vector field which is the solution on the boundary of the domain and the postcritical set.

Easy case: Conformal iterated function systems (no critical points)

$$f: U^1 \cup U^2 \rightarrow V$$

 $f: U^i \rightarrow V$ conformal and onto, i = 1, 2.

Problem: Given

$$v: U^1 \cup U^2 \rightarrow \mathbb{C},$$

find a quasiconformal vector field

$$\alpha \colon V \to \mathbb{C}$$

such that

$$v(x) = \alpha(f(x)) - Df(x) \cdot \alpha(x)$$

lpha is defined.

lacksquare α is defined.

lacksquare α is defined.

 α is defined.

lacksquare α is defined.

lacksquare α is defined.

Period-doubling case: Complex induced map

(reducing the domain a little bit)

Induced Problem

Finding a quasiconformal vector field lpha such that

$$\partial_t (f + tv)^{2^{n-1}}|_{t=0}(x) = \alpha(f^{2^{n-1}}(x)) - Df^{2^{n-1}}(x) \cdot \alpha(x)$$

for every $x \in \partial U_n$ and for all n.

Induced Problem

Finding a quasiconformal vector field lpha such that

$$\partial_t (f + tv)^{2^{n-1}}|_{t=0}(x) = \alpha(f^{2^{n-1}}(x)) - Df^{2^{n-1}}(x) \cdot \alpha(x)$$

for every $\mathbf{x} \in \partial U_n$ and for all n.

More information on $\partial_t (f + tv)^{2^n}|_{t=0}(y)$

$$\partial_t (f + tv)^{2^n}|_{t=0}(y)$$

$$\partial_t (f + tv)^{2^n}|_{t=0}(y) = p_{n,0} \cdot (D\mathcal{R}_t^n \cdot v)(\frac{y}{p_{n,0}})$$

$$+\partial_X f^{2^n}(y) \cdot \beta_n(y) - \beta_n(f^{2^n}(y))$$

More information on

$$\partial_t (f + tv)^{2^n}|_{t=0}(y)$$

$$\partial_t (f+tv)^{2^n}|_{t=0}(y) = p_{n,0} \cdot (D\mathcal{R}_t^n \cdot v)(\frac{y}{p_{n,0}})$$

nice!! since $|D\mathcal{R}^n \cdot \mathbf{v}| \leq \mathbf{C}$ for every \mathbf{n} !!

$$+\partial_X f^{2^n}(y) \cdot \beta_n(y) - \beta_n(f^{2^n}(y))$$

More information on

$$\partial_t (f + tv)^{2^n}|_{t=0}(y)$$

$$\partial_t (f+tv)^{2^n}|_{t=0}(y)=p_{n,0}\cdot (D\mathcal{R}_t^n\cdot v)(\frac{y}{p_{n,0}})$$

nice!! since $|D\mathcal{R}^n \cdot v| \leq C$ for every n!!

$$\partial_x f^{2^n}(y) \cdot \beta_n(y) - \beta_n(f^{2^n}(y))$$

W2

where
$$\beta_n(y) = \frac{\partial_t p_{n,t}}{p_{n,t}} y$$

$$\alpha_1(x) = 0$$

$$\alpha_1(x) = -\frac{w_1(x)}{Df^{2^n}(x)}$$

$$W_1(x) = \alpha_1(f^{2^n}(x)) - Df^{2^n}(x) \cdot \alpha_1(x)$$

$$w_1(x) = \alpha_1(f^{2^n}(x)) - Df^{2^n}(x) \cdot \alpha_1(x)$$

$$w_1(x) = \alpha_1(f^{2^n}(x)) - Df^{2^n}(x) \cdot \alpha_1(x)$$

$$W_2(x) = Df^{2^n}(x) \cdot \beta_n(x) - \beta_n(f^{2^n}(x))$$
$$\beta_n(x) = \frac{\partial p_{n,t}}{p_{n,0}} \cdot x = c_n \cdot x$$

Because $|D\mathcal{R}_f^n \cdot v| < C$ it follows that

$$|c_{n+1}-c_n|< C$$

Define
$$\alpha_2(x) = \psi(|x|) \cdot x$$

$$\psi(|x|)=c_{n+1}$$

 $\psi(|x|)=c_{n+1}$

Linear interpolation

$$\alpha_2(\mathbf{X}) = \psi(|\mathbf{X}|) \cdot \mathbf{X}$$

$$|\overline{\partial}\alpha_2(z)| = \frac{|z\psi'(|z|)|}{2} < C$$

Motivation: If $\psi(|z|) = \ln |z|$. then $|\overline{\partial}\alpha_2| = 1/2$

