Renormalization for multimodal maps

Daniel Smania

ICMC-USP Brazil
www.icmc.usp.br/~smania

Renormalization for multimodal maps

Renormalization for multimodal maps

Renormalization for multimodal maps

Renormalization for multimodal maps

$\mathcal{R} f$

Cycles of intervals

$J_{0}, \ldots J_{p-1}$ is a cycle of intervals for f if
-Interiors of $\boldsymbol{J}_{\boldsymbol{i}}$ are pairwise disjoint.
$-f\left(\boldsymbol{J}_{\boldsymbol{i}}\right) \subset \boldsymbol{J}_{i+1} \bmod p$
$-f\left(\partial J_{i}\right) \subset \partial J_{i+1} \bmod p$
-All critical points of \boldsymbol{f} belong to $\cup_{i} \boldsymbol{J}_{\boldsymbol{i}}$.
p is the period of the cycle.

Infinitely renormalizable maps

\boldsymbol{f} is infinitely renormalizable if there exists a sequence of cycles

$$
J_{0}^{n}, \ldots, J_{p_{n}}^{n}
$$

with $\boldsymbol{p}_{\boldsymbol{n}}<\boldsymbol{p}_{\boldsymbol{n + 1}}$ and

$$
\bigcup_{i} J_{i}^{n+1} \subset \bigcup_{i} J_{i}^{n}
$$

\boldsymbol{f} has \boldsymbol{B}-bounded combinatorics if moreover

$$
\sup _{n} \frac{p_{n+1}}{p_{n}} \leq B
$$

Main Theorem

Let $\boldsymbol{f}_{\boldsymbol{\lambda}}$ be a finite-dimensional smooth family of real analytic multimodal maps and let $\boldsymbol{\Lambda}_{\boldsymbol{B}}$ be the subset of parameters $\boldsymbol{\lambda}$ such that $\boldsymbol{f}_{\boldsymbol{\lambda}}$ is infinitely renormalizable with \boldsymbol{B}-bounded combinatorics.

For a generic finite-dimensional family f_{t} the set Λ_{B} has zero Lebesgue measure.

The meaning of generic

For a generic finite-dimensional family f_{t} the set Λ_{B} has zero Lebesgue measure.
$\boldsymbol{f} \in \boldsymbol{B}_{\mathbb{R}}(\boldsymbol{U})$ iff $\quad-\boldsymbol{f}$ is continuous in $\overline{\boldsymbol{U}}$,

- \boldsymbol{f} is complex analytic in \boldsymbol{U} and
$-f(\bar{z})=\overline{f(z)}$.
We mean generic $C^{\boldsymbol{k}}$ families $t \in[0,1]^{n} \rightarrow B_{\mathbb{R}}(U), \boldsymbol{k}>1$. and also generic \boldsymbol{C}^{ω} families $\boldsymbol{t} \in \overline{\mathbb{D}}^{\boldsymbol{n}} \rightarrow \boldsymbol{B}_{\mathbb{C}}(\boldsymbol{U})$, real in real parameters

Facts on the renormalization operator

Unimodal (Douady\&Hubbard, Sullivan, McMullen, Lyubich) and multimodal (Hu, S. $(2001,2005)$, + stuff in progress)
(Complex bounds) If \boldsymbol{f} is infinitely renormalizable then $\left\{\boldsymbol{R}^{\boldsymbol{n}} \boldsymbol{f}\right\}_{\boldsymbol{n}}$ is precompact. (Universality) The Omega-limit set Ω of \boldsymbol{R} is a compact set. The dynamics of \boldsymbol{R} on Ω is conjugate with a full shift with finitely many symbols.
There exists $\boldsymbol{\lambda} \in(\mathbf{0}, \mathbf{1})$ s.t. if \boldsymbol{f} is infinitely renormalizable then there exists $\boldsymbol{f}_{\star} \in \Omega$ such that

$$
\left|\boldsymbol{R}^{n} f-R^{n} \boldsymbol{f}_{\star}\right| \leq C_{f} \lambda^{n}
$$

Steps of the proof

Complexification of R (Complex bounds).

The Omega limit set Ω of R is hyperbolic.

3)If a family f_{t} is transversal to the stable lamination $\mathrm{W}^{\mathrm{s}}(\Omega)$ then Λ has zero Lebesgue measure.
(easy) adaptation of results by Bowen and Ruelle (1975) for the finite-dimensional case.

The result for generic families follows from step 3 using...Fubini's Theorem!!

Steps of the proof

Complexification of R (Complex bounds).

The Omega limit set Ω of R is hyperbolic.
If a family f_{t} is transversal to the stable lamination $\mathrm{W}^{\mathrm{s}}(\Omega)$ then Λ has zero Lebesgue measure.
(easy) adaptation of results by Bowen and Ruelle (1975) for the finite-dimensional case.

The result for generic families follows from step 3 using...Fubini's Theorem!!

If a family f_{t} is transversal to the stable lamination $W^{s}(\Omega)$ then Λ has zero Lebesgue measure.

(Bowen and Ruelle) Let Ω be a \boldsymbol{C}^{2} hyperbolic set in a finite-dimensional manifold. Then $\boldsymbol{m}\left(\boldsymbol{W}^{\boldsymbol{s}}(\Omega)\right)=\mathbf{0}$ if and only if Ω is not an attractor.

If a family f_{t} is transversal to the stable lamination $\mathrm{W}^{\mathrm{s}}(\Omega)$ then Λ has zero Lebesgue measure.

Suppose that Ω lives in a infinite-dimensional Banach space but the unstable direction has finite dimension \boldsymbol{d}.
Let $\boldsymbol{t} \in \boldsymbol{U} \subset \mathbb{R}^{\boldsymbol{d}} \mapsto \boldsymbol{f}_{\boldsymbol{t}}$ be a \boldsymbol{C}^{2} smooth family such that $\boldsymbol{f}_{\boldsymbol{t}} \pitchfork \boldsymbol{W}^{\boldsymbol{s}}(\Omega)$. Then $\boldsymbol{m}\left(\left\{\boldsymbol{t} \in \boldsymbol{U}: \boldsymbol{f}_{\boldsymbol{t}} \in \boldsymbol{W}^{\boldsymbol{s}}(\Omega)\right\}\right)=\mathbf{0}$.

If a family f_{t} is transversal to the stable lamination $W^{s}(\Omega)$ then Λ has zero Lebesgue measure.

Suppose that Ω lives in a infinite-dimensional Banach space but the unstable direction has finite dimension \boldsymbol{d}.

Let $\boldsymbol{t} \in \boldsymbol{U} \subset \mathbb{R}^{\boldsymbol{d}} \mapsto \boldsymbol{f}_{\boldsymbol{t}}$ be a \boldsymbol{C}^{2} smooth family such that $\boldsymbol{f}_{\boldsymbol{t}} \pitchfork \boldsymbol{W}^{\boldsymbol{s}}(\Omega)$. Then $\boldsymbol{m}\left(\left\{t \in \boldsymbol{U}: \boldsymbol{f}_{\boldsymbol{t}} \in \boldsymbol{W}^{\boldsymbol{s}}(\Omega)\right\}\right)=\mathbf{0}$.

Ω

measure.

If a family f_{t} is transversal to the stable lamination $W^{s}(\Omega)$ then Λ has zero Lebesgue

Suppose that Ω lives in a infinite-dimensional Banach space but the unstable direction has finite dimension \boldsymbol{d}.

Let $\boldsymbol{t} \in \boldsymbol{U} \subset \mathbb{R}^{\boldsymbol{d}} \mapsto \boldsymbol{f}_{\boldsymbol{t}}$ be a \boldsymbol{C}^{2} smooth family such that $\boldsymbol{f}_{\boldsymbol{t}} \pitchfork \boldsymbol{W}^{\boldsymbol{s}}(\Omega)$. Then $\boldsymbol{m}\left(\left\{\boldsymbol{t} \in \boldsymbol{U}: \boldsymbol{f}_{\boldsymbol{t}} \in \boldsymbol{W}^{\boldsymbol{s}}(\Omega)\right\}\right)=\mathbf{0}$.

measure.

If a family f_{t} is transversal to the stable lamination $\mathrm{W}^{s}(\Omega)$ then Λ has zero Lebesgue

Suppose that Ω lives in a infinite-dimensional Banach space but the unstable direction has finite dimension \boldsymbol{d}.

Let $\boldsymbol{t} \in \boldsymbol{U} \subset \mathbb{R}^{\boldsymbol{d}} \mapsto \boldsymbol{f}_{\boldsymbol{t}}$ be a \boldsymbol{C}^{2} smooth family such that $\boldsymbol{f}_{\boldsymbol{t}} \pitchfork \boldsymbol{W}^{\boldsymbol{s}}(\Omega)$. Then $\boldsymbol{m}\left(\left\{t \in \boldsymbol{U}: \boldsymbol{f}_{\boldsymbol{t}} \in \boldsymbol{W}^{\boldsymbol{s}}(\Omega)\right\}\right)=\mathbf{0}$.

If a family f_{t} is transversal to the stable lamination $\mathrm{W}^{s}(\Omega)$ then Λ has zero Lebesgue measure.

Suppose that Ω lives in a infinite-dimensional Banach space but the unstable direction has finite dimension \boldsymbol{d}.
Let $\boldsymbol{t} \in \boldsymbol{U} \subset \mathbb{R}^{\boldsymbol{d}} \mapsto \boldsymbol{f}_{\boldsymbol{t}}$ be a \boldsymbol{C}^{2} smooth family such that $\boldsymbol{f}_{\boldsymbol{t}} \pitchfork \boldsymbol{W}^{\boldsymbol{s}}(\Omega)$. Then $\boldsymbol{m}\left(\left\{t \in \boldsymbol{U}: \boldsymbol{f}_{\boldsymbol{t}} \in \boldsymbol{W}^{s}(\Omega)\right\}\right)=\mathbf{0}$.

Ergodic Methods!! So my talk fits in the conference:-) !!

The result for generic families follows from step 3 using...Fubini's Theorem!!

The result for generic families follows from step 3 using...Fubini's Theorem!!

U

The result for generic families follows from step 3 using...Fubini's Theorem!!

$$
f(t, \lambda)=f_{t}+\lambda v
$$

The result for generic families follows from step 3 using...Fubini's Theorem!!

The result for generic families follows from step 3 using...Fubini's Theorem!!

The result for generic families follows from step 3 using...Fubini's Theorem!!

The result for generic families follows from step 3 using...Fubini's Theorem!!

Quasiconformal vector fields

The vector field $\alpha: \mathbb{C} \rightarrow \mathbb{C}$ is quasiconformal if it has distributional derivatives in $L_{l o c}^{2}$ and

$$
|\bar{\partial} \alpha|_{\infty}<\infty
$$

$$
\begin{gathered}
\alpha(x+i y)=u(x, y)+i \cdot v(x, y) \\
\bar{\partial} \alpha=\frac{u_{x}-v_{y}}{2}+i \cdot \frac{v_{x}+u_{y}}{2}
\end{gathered}
$$

Horizontal directions (Lyubich, 1999)

$\boldsymbol{f}: \boldsymbol{U} \rightarrow \boldsymbol{V}$ polynomial-like map. $\boldsymbol{v}: \boldsymbol{U} \rightarrow \boldsymbol{V}$ is horizontal if there exists a quasiconformal vector field α, defined in a neighborhood of $K(f)$ such that

$$
v(x)=\alpha \circ f(x)-D f(x) \cdot \alpha(x)
$$

Moreover $\bar{\partial} \alpha=\mathbf{0}$ on the filled-in Julia set $\boldsymbol{K}(\boldsymbol{f})$.

$$
E_{f}^{h}:=\{v: v \text { is horizontal for } f\}
$$

Horizontal directions (Lyubich, 1999)

$\boldsymbol{f}: \boldsymbol{U} \rightarrow \boldsymbol{V}$ polynomial-like map. $\boldsymbol{v}: \boldsymbol{U} \rightarrow \boldsymbol{V}$ is horizontal if there exists a quasiconformal vector field α, defined in a neighborhood of $K(f)$ such that

$$
v(x)=\alpha \circ f(x)-D f(x) \cdot \alpha(x)
$$

Moreove $\bar{\partial} \alpha=0$) the filled-in Julia set $\boldsymbol{K}(\boldsymbol{f})$.
automatic in our setting (no invariant line fields on $J(f)$), so don't pay too much attention to this...

$$
E_{f}^{h}:=\{v: v \text { is horizontal for } f\}
$$

Facts on horizontal directions

Unimodal(Lyubich, 1999) and multimodal(S., in progress)
(Continuity) The codimension of E_{f}^{h} is finite and it depends only on the number of unimodal components. Moreover $\boldsymbol{f} \rightarrow E_{f}^{h}$ is continuous.
(Invariant vector bundle) if $v \in E^{h}$ then $D R_{f} \cdot v \in E_{\mathcal{R} f}^{h}$.
(Contraction) $\left|D R_{f}^{n} \cdot v\right| \leq C \lambda^{n}, \lambda<1$.

Detecting hyperbolicity Autonomous case

Detecting hyperbolicity Autonomous case

\boldsymbol{T} is hyperbolic if and only if

$$
B=\left\{v \in \mathbb{R}^{n}: \sup _{i \in \mathbb{Z}}\left|T^{i} v\right|<\infty\right\}=\{0\}
$$

Detecting hyperbolicity

Non-autonomous case (Sacker \& Sell, 1974)
X compact metric space.
$\boldsymbol{f}: \boldsymbol{X} \rightarrow \boldsymbol{X}$ homeomorphism such that the minimal sets are dense in X.
$A: X \rightarrow G L(n, \mathbb{R})$ continuous.
Let $T: X \times \mathbb{R}^{n} \rightarrow X \times \mathbb{R}^{\boldsymbol{n}}$ be the linear cocycle defined by

$$
T(x, v)=(f(x), A(x) \cdot v)
$$

Detecting hyperbolicity

Non-autonomous case (Sacker \& Sell, 1974)
X compact metric space.
$f: X \rightarrow X$ homeomorphism such that the minimal sets are dense in X.
$A: X \rightarrow G L(n, \mathbb{R})$ continuous.
Let $T: X \times \mathbb{R}^{n} \rightarrow X \times \mathbb{R}^{n}$ be the linear cocycle defined by

$$
T(x, v)=(f(x), A(x) \cdot v)
$$

Detecting hyperbolicity

Non-autonomous case (Sacker \& Sell, 1974)
X compact metric space.
$f: X \rightarrow X$ homeomorphism such that the minimal sets are dense in X.
$A: X \rightarrow G L(n, \mathbb{R})$ continuous.
Let $T: X \times \mathbb{R}^{n} \rightarrow X \times \mathbb{R}^{\boldsymbol{n}}$ be the linear cocycle defined by

$$
T(x, v)=(f(x), A(x) \cdot v)
$$

Define

$$
B=\left\{(x, v) \text { s.t. } \sup \left|\pi_{2}\left(T^{i}(x, v)\right)\right|<\infty\right\}
$$ $i \in \mathbb{Z}$

Detecting hyperbolicity

Non-autonomous case (Sacker \& Sell, 1974)
X compact metric space.
$f: X \rightarrow X$ homeomorphism such that the minimal sets are dense in X.
$A: X \rightarrow G L(n, \mathbb{R})$ continuous.
Let $T: X \times \mathbb{R}^{n} \rightarrow X \times \mathbb{R}^{n}$ be the linear cocycle defined by

$$
T(x, v)=(f(x), A(x) \cdot v)
$$

Define

$$
B=\left\{(x, v) \text { s.t. } \sup \left|\pi_{2}\left(T^{i}(x, v)\right)\right|<\infty\right\}
$$

$$
i \in \dot{\mathbb{Z}}
$$

T is a hyperbolic cocycle if and only if $B=X \times\{0\}$.
PS: Same result for vector bundles with same assumption on the base X

Back to renormalization

Considering the finite-dimensional vector bundle defined by

$$
f \in \Omega \rightarrow \mathbb{B} / E_{f}^{h}
$$

and the cocycle

$$
\tilde{D}_{f}[v]=\left[D \mathcal{R}_{f} \cdot v\right]
$$

and using Sacker \& Sell Theorem we can get:

If

$$
B_{f}^{+}=\left\{(f, v) \in \Omega \times \mathbb{B} \text { s.t. } \sup _{i \geq 0}\left|D \mathcal{R}_{f}^{i} \cdot v\right|<\infty\right\} \subset E_{f}^{h}
$$

for every $f \in \Omega$ then the renormalization operator is hyperbolic on Ω with $E_{f}^{s}=E_{f}^{h}$.

Key Lemma

If $\boldsymbol{f} \in \Omega$ and

$$
\left|D \mathcal{R}_{f}^{i} \cdot v\right| \leq C
$$

for every $i \geq 0$ then there exists a quasiconformal vector field α defined in a neighborhood of $K(f)=J(f)$ such that

$$
v(x)=\alpha \circ f(x)-D f(x) \cdot \alpha(x)
$$

Infinitesimal pullback argument (Avila, Lyubich and de Melo, 2003)

Infinitesimal pullback argument (Avila, Lyubich and de Melo, 2003)

 vector field solution to the t.c.e. we just need to find a quasiconformal vector field which is the solution on the boundary of the domain and the postcritical set.

Easy case: Conformal iterated function systems (no critical points)
$f: \boldsymbol{U}^{\mathbf{1}} \cup \boldsymbol{U}^{\mathbf{2}} \rightarrow \boldsymbol{V}$
$f: \boldsymbol{U}^{\boldsymbol{i}} \rightarrow \boldsymbol{V}$ conformal and onto, $\boldsymbol{i}=\mathbf{1 , 2}$.

Problem: Given

$$
v: U^{1} \cup \boldsymbol{U}^{2} \rightarrow \mathbb{C}
$$

find a quasiconformal vector field

$$
\alpha: V \rightarrow \mathbb{C}
$$

such that

$$
v(x)=\alpha(f(x))-D f(x) \cdot \alpha(x)
$$

Easy case of Infinitesimal pullback argument : Conformal iterated function systems

Easy case of Infinitesimal pullback argument : Conformal iterated function systems
$\square \alpha$ is defined.

Easy case of Infinitesimal pullback argument :

 Conformal iterated function systems

$$
\alpha(x)=\frac{-v(x)}{D f(x)}
$$

$\square \alpha$ is defined.

Easy case of Infinitesimal pullback argument :

 Conformal iterated function systems

Easy case of Infinitesimal pullback argument :

 Conformal iterated function systems

Easy case of Infinitesimal pullback argument :

 Conformal iterated function systems

$$
\alpha(y):=\frac{v(y)-\alpha(f(y))}{D f(y)}
$$

$\square \alpha$ is defined.

Easy case of Infinitesimal pullback argument :

 Conformal iterated function systems

$$
\alpha(y):=\frac{v(y)-\alpha(f(y))}{D f(y)}
$$

$\square \alpha$ is defined.

Easy case of infinitesimal pullback argument :

 Conformal iterated function systems

$$
\alpha(y):=\frac{v(y)-\alpha(f(y))}{D f(y)}
$$

$\square \alpha$ is defined.

Period-doubling case: induced map

Period-doubling case: induced map

Period-doubling case: induced map

Period-doubling case: induced map

Period-doubling case: Complex induced map

Period-doubling case: Complex induced map

Period-doubling case: Complex induced map

Period-doubling case: Complex induced map

Period-doubling case: Complex induced map

Period-doubling case: Complex induced map

Period-doubling case: Complex induced map

Period-doubling case: Complex induced map

 (reducing the domain a little bit)

Induced Problem

Finding a quasiconformal vector field $\boldsymbol{\alpha}$ such that

$$
\left.\partial_{t}(f+t v)^{2^{n-1}}\right|_{t=0}(x)=\alpha\left(f^{2^{n-1}}(x)\right)-D f^{2^{n-1}}(x) \cdot \alpha(x)
$$

for every $\boldsymbol{x} \in \partial \boldsymbol{U}_{\boldsymbol{n}}$ and for all \boldsymbol{n}.

Induced Problem

Finding a quasiconformal vector field $\boldsymbol{\alpha}$ such that

$$
\left.\partial_{t}(f+t v)^{2^{n-1}}\right|_{t=0}(x)=\alpha\left(f^{2^{n-1}}(x)\right)-D f^{2^{n-1}}(x) \cdot \alpha(x)
$$

for every $\boldsymbol{x} \in \partial \boldsymbol{U}_{\boldsymbol{n}}$ and for all \boldsymbol{n}.

More information on $\left.\partial_{t}(f+t v)^{2^{n}}\right|_{t=0}(y)$

$$
\left.\partial_{t}(f+t v)^{2^{n}}\right|_{t=0}(y)=p_{n, 0} \cdot\left(D \mathcal{R}_{t}^{n} \cdot v\right)\left(\frac{y}{p_{n, 0}}\right)
$$

$$
+\partial_{x} f^{2^{n}}(y) \cdot \beta_{n}(y)-\beta_{n}\left(f^{2^{n}}(y)\right)
$$

More information on $\partial_{t}(f+t v)^{2} \mid t=0(y)$

$$
\left.\partial_{t}(f+t v)^{n^{n}}\right|_{t=0}(y)=p_{n, 0} \cdot\left(D \mathcal{R}_{t}^{n} \cdot v\right)\left(\frac{y}{p_{n, 0}}\right)
$$

nice!! since $\left|\boldsymbol{D R} \boldsymbol{R}^{\boldsymbol{n}} \cdot \boldsymbol{v}\right| \leq \boldsymbol{C}$ for every $\boldsymbol{n}!$!

$$
+\partial_{x} f^{2^{n}}(y) \cdot \beta_{n}(y)-\beta_{n}\left(f^{2^{n}}(y)\right)
$$

More information on $\left.\partial_{t}(f+t v)^{2^{n}}\right|_{t=0}(y)$

$$
\left.\partial_{t}(f+t v)^{2^{n}}\right|_{t=0}(y)=p_{n, 0} \cdot\left(D \mathcal{R}_{t}^{n} \cdot v\right)\left(\frac{y}{p_{n, 0}}\right)
$$

nice!! since $\left|D \mathcal{R}^{n} \cdot v\right| \leq C$ for every $n!!$

$$
\beta_{x} x^{2^{2^{1}}}(y) \cdot \beta_{n}(y)-\beta_{n}\left(f^{2^{\prime}}(y)\right)
$$

where $\beta_{n}(y)=\frac{\partial_{t} p_{n, t}}{p_{n, t}} \boldsymbol{y}$
W2

Solution of induced problem for w_{1}

Solution of induced problem for w_{1}

Solution of induced problem for w_{1}

Solution of induced problem for w_{2}

$$
\begin{gathered}
w_{2}(x)=D f^{2^{n}}(x) \cdot \beta_{n}(x)-\beta_{n}\left(f^{2^{n}}(x)\right) \\
\beta_{n}(x)=\frac{\partial p_{n, t}}{p_{n, 0}} \cdot x=c_{n} \cdot x
\end{gathered}
$$

Because $\left|\boldsymbol{D} \boldsymbol{R}_{\boldsymbol{f}}^{\boldsymbol{n}} \cdot \boldsymbol{v}\right|<\boldsymbol{C}$ it follows that

$$
\left|c_{n+1}-c_{n}\right|<C
$$

Define $\alpha_{2}(\boldsymbol{x})=\boldsymbol{\psi}(|\boldsymbol{x}|) \cdot \boldsymbol{x}$

Solution of induced problem for w_{2}

Solution of induced problem for w_{2}

is a quasiconformal vector field!!

Solution of induced problem for w_{2}

is a quasiconformal vector field!!

Solution of induced problem for w_{2}

$$
\begin{aligned}
& \alpha_{2}(x)=\psi(|x|) \cdot x \\
& \left|\bar{\partial} \alpha_{2}(z)\right|=\frac{\left|z \psi^{\prime}(|z|)\right|}{2}<C
\end{aligned}
$$

Motivation: If $\psi(|\boldsymbol{z}|)=\ln |\boldsymbol{z}|$. then $\left|\bar{\partial} \alpha_{\mathbf{2}}\right|=\mathbf{1 / 2}$

