On a conjecture of Baker and a conjecture of Eremenko I

Gwyneth Stallard (joint work with Phil Rippon)

The Open University

April, 2012

・ コット (雪) (小田) (コット 日)

Basic definitions

Definition

The Fatou set (or stable set) is

 $F(f) = \{z : (f^n) \text{ is equicontinuous in some neighbourhood of } z\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Basic definitions

Definition

The Fatou set (or stable set) is

 $F(f) = \{z : (f^n) \text{ is equicontinuous in some neighbourhood of } z\}.$

Definition

The Julia set (or chaotic set) is

 $J(f) = \mathbb{C} \setminus F(f).$

Basic definitions

Definition

The Fatou set (or stable set) is

 $F(f) = \{z : (f^n) \text{ is equicontinuous in some neighbourhood of } z\}.$

Definition

The Julia set (or chaotic set) is

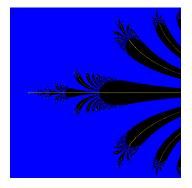
$$J(f) = \mathbb{C} \setminus F(f).$$

Definition

The escaping set is

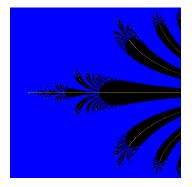
$$I(f) = \{z : f^n(z) \to \infty \text{ as } n \to \infty\}.$$

Examples Exponential functions



 $f(z) = \lambda e^{z}, 0 < \lambda < 1/e$

Examples Exponential functions



$$f(z) = \lambda e^{z}, 0 < \lambda < 1/e$$

- *F*(*f*) is an attracting basin
- *J*(*f*) is a Cantor bouquet of curves

(日)

э

• $I(f) \subset J(f)$

A Fatou component U is a wandering domain if

 $f^n(U) \cap f^m(U) = \emptyset$ for $n \neq m$.

A Fatou component U is a wandering domain if

 $f^n(U) \cap f^m(U) = \emptyset$ for $n \neq m$.

The first example of a wandering domain was given by Baker in 1975.

A Fatou component U is a wandering domain if

$$f^n(U) \cap f^m(U) = \emptyset$$
 for $n \neq m$.

The first example of a wandering domain was given by Baker in 1975.

◆□▶ ◆@▶ ◆臣▶ ◆臣▶ ─ 臣

Theorem (Baker, 1984)

If U is a multiply connected Fatou component then

- *U* is a wandering domain in *I*(*f*)
- $f^{n+1}(U)$ surrounds $f^n(U)$ for large n.

Eremenko's conjecture (1989)

Conjecture All components of I(f) are unbounded.

Eremenko's conjecture (1989)

Conjecture

All components of I(f) are unbounded.

Theorem (Rottenfusser, Rückert, Rempe and Schleicher, 2011)

I(f) consists of curves to ∞ if

f is a finite composition of functions of finite order in class \mathcal{B} .

Eremenko's conjecture (1989)

Conjecture

All components of I(f) are unbounded.

Theorem (Rottenfusser, Rückert, Rempe and Schleicher, 2011)

I(f) consists of curves to ∞ if

f is a finite composition of functions of finite order in class \mathcal{B} .

イロト 不良 とくほ とくほう 二日

Theorem (Rippon and Stallard, 2005)

I(*f*) is a "spider's web" if *f* has a multiply connected Fatou component.

Baker's Conjecture (1981)

Conjecture

If f has order less than 1/2 then f has no unbounded Fatou components.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Baker's Conjecture (1981)

Conjecture

If f has order less than 1/2 then f has no unbounded Fatou components.

Definition

Let $M(r) = \max_{|z|=r} |f(z)|$. The order of *f* is

$$\rho = \limsup_{r \to \infty} \frac{\log \log M(r)}{\log r}.$$

Baker's Conjecture (1981)

Conjecture

If f has order less than 1/2 then f has no unbounded Fatou components.

Definition

Let
$$M(r) = \max_{|z|=r} |f(z)|$$
. The order of *f* is

$$\rho = \limsup_{r \to \infty} \frac{\log \log M(r)}{\log r}.$$

If f has order less than 1 then

$$f(z) = c z^{p_0} \prod_{n \in \mathbb{N}} \left(1 + \frac{z}{a_n}\right)^{p_n},$$

where $p_n \in \{0, 1, 2, \ldots\}$ and $c, a_n \in \mathbb{C} \setminus \{0\}$, $a_n \in \mathbb{C}$

Partial results on Baker's Conjecture

Theorem (Zheng, 2000)

If f has order less than 1/2 then it has no unbounded periodic Fatou components.

・ コット (雪) (小田) (コット 日)

Partial results on Baker's Conjecture

Theorem (Zheng, 2000)

If f has order less than 1/2 then it has no unbounded periodic Fatou components.

Theorem (Stallard (1993), Anderson and Hinkkanen (1998), ...)

If f has order less than 1/2 and "regular growth" then it has no unbounded Fatou components.

イロト 不良 とくほ とくほう 二日

Partial results on Baker's Conjecture

Theorem (Zheng, 2000)

If f has order less than 1/2 then it has no unbounded periodic Fatou components.

Theorem (Stallard (1993), Anderson and Hinkkanen (1998), ...)

If f has order less than 1/2 and "regular growth" then it has no unbounded Fatou components.

Theorem (Rippon and Stallard, Hinkkanen and Miles (2009))

If f has very small growth then it has no unbounded Fatou components i.e. if

$$\log \log M(r) < \frac{\log r}{\log^m r}$$
, for large r , some $m \ge 2$.

Definition

The fast escaping set is $A(f) = \bigcup_{L \in \mathbb{N}} f^{-L}(A_R(f))$ where:

$$A_R(f) = \{z \in \mathbb{C} : |f^n(z)| \ge M^n(R) \ \forall \ n \in \mathbb{N}\},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

if R > 0 is such that $M^n(R) \to \infty$ as $n \to \infty$.

Definition

The fast escaping set is $A(f) = \bigcup_{L \in \mathbb{N}} f^{-L}(A_R(f))$ where:

$$A_R(f) = \{z \in \mathbb{C} : |f^n(z)| \ge M^n(R) \ \forall \ n \in \mathbb{N}\},$$

if R > 0 is such that $M^n(R) \to \infty$ as $n \to \infty$.

Theorem (Rippon and Stallard, 2011)

If $A_R(f)$ is a spider's web then

I(f) is a spider's web and so is connected;

Definition

The fast escaping set is $A(f) = \bigcup_{L \in \mathbb{N}} f^{-L}(A_R(f))$ where:

$$A_R(f) = \{z \in \mathbb{C} : |f^n(z)| \ge M^n(R) \ \forall \ n \in \mathbb{N}\},$$

if R > 0 is such that $M^n(R) \to \infty$ as $n \to \infty$.

Theorem (Rippon and Stallard, 2011)

If $A_R(f)$ is a spider's web then

- I(f) is a spider's web and so is connected;
- there are no unbounded Fatou components.

Definition

The fast escaping set is $A(f) = \bigcup_{L \in \mathbb{N}} f^{-L}(A_R(f))$ where:

$$A_R(f) = \{z \in \mathbb{C} : |f^n(z)| \ge M^n(R) \ \forall \ n \in \mathbb{N}\},$$

if R > 0 is such that $M^n(R) \to \infty$ as $n \to \infty$.

Theorem (Rippon and Stallard, 2011)

If $A_R(f)$ is a spider's web then

- I(f) is a spider's web and so is connected;
- there are no unbounded Fatou components.

All partial results on Baker's conjecture proved by methods which imply that $A_R(f)$ is a spider's web.

Hypothesis

If *f* has order less than 1/2 then $A_R(f)$ is a spider's web.

Hypothesis

If *f* has order less than 1/2 then $A_R(f)$ is a spider's web.

False

There exist infinite products of very small growth, with $\lambda > 0$ and $a_n > 0$, for which $A_R(f)$ is not a spider's web.

Hypothesis

If f has order less than 1/2 then $A_R(f)$ is a spider's web.

False

There exist infinite products of very small growth, with $\lambda > 0$ and $a_n > 0$, for which $A_R(f)$ is not a spider's web.

Theorem

Let

$$f(z) = c z^{p_0} \prod_{n \in \mathbb{N}} \left(1 + rac{z}{a_n}
ight)^{p_n},$$

where $p_n \in \{0, 1, 2, ...\}$, $a_n > 0$ and $c \in \mathbb{R} \setminus \{0\}$, be a function of order less than 1/2. Then

Hypothesis

If f has order less than 1/2 then $A_R(f)$ is a spider's web.

False

There exist infinite products of very small growth, with $\lambda > 0$ and $a_n > 0$, for which $A_R(f)$ is not a spider's web.

Theorem

Let

$$f(z) = c z^{p_0} \prod_{n \in \mathbb{N}} \left(1 + \frac{z}{a_n}\right)^{p_n},$$

where $p_n \in \{0, 1, 2, ...\}$, $a_n > 0$ and $c \in \mathbb{R} \setminus \{0\}$, be a function of order less than 1/2. Then

• f has no unbounded Fatou components;

Hypothesis

If f has order less than 1/2 then $A_R(f)$ is a spider's web.

False

There exist infinite products of very small growth, with $\lambda > 0$ and $a_n > 0$, for which $A_R(f)$ is not a spider's web.

Theorem

Let

$$f(z) = c z^{p_0} \prod_{n \in \mathbb{N}} \left(1 + \frac{z}{a_n}\right)^{p_n},$$

where $p_n \in \{0, 1, 2, ...\}$, $a_n > 0$ and $c \in \mathbb{R} \setminus \{0\}$, be a function of order less than 1/2. Then

- f has no unbounded Fatou components;
- I(f) is a spider's web.

Theorem

Let
$$R_n = M^n(R)$$
 and $\epsilon_n = \max_{R_n \le r \le R_{n+1}} \frac{\log \log M(r)}{\log r}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem

Let
$$R_n = M^n(R)$$
 and $\epsilon_n = \max_{R_n \le r \le R_{n+1}} \frac{\log \log M(r)}{\log r}$
If
 $\sum_{n \in \mathbb{N}} \epsilon_n < \infty$,

then $A_R(f)$ is a spider's web.

Theorem

Let
$$R_n = M^n(R)$$
 and $\epsilon_n = \max_{R_n \le r \le R_{n+1}} \frac{\log \log M(r)}{\log r}$
If $\sum_{n \in \mathbb{N}} \epsilon_n < \infty$,

then $A_R(f)$ is a spider's web.

Proof uses a new local version of the $\cos \pi \rho$ theorem.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへの

Theorem

Let
$$R_n = M^n(R)$$
 and $\epsilon_n = \max_{R_n \le r \le R_{n+1}} \frac{\log \log M(r)}{\log r}$
If
 $\sum_{n \in \mathbb{N}} \epsilon_n < \infty$,

then $A_R(f)$ is a spider's web.

Proof uses a new local version of the $\cos \pi \rho$ theorem.

Theorem

Suppose that $\log M(r) \leq r^{\alpha}$, where $\alpha \in (0, 1/2)$.

Theorem

Let
$$R_n = M^n(R)$$
 and $\epsilon_n = \max_{R_n \le r \le R_{n+1}} \frac{\log \log M(r)}{\log r}$
If
 $\sum_{n \in \mathbb{N}} \epsilon_n < \infty$,

then $A_R(f)$ is a spider's web.

Proof uses a new local version of the $\cos \pi \rho$ theorem.

Theorem

Suppose that $\log M(r) \le r^{\alpha}$, where $\alpha \in (0, 1/2)$. Then there exists $t \in (r^{1-2\alpha}, r)$ such that

 $\log m(t) > \log M(r^{1-2\alpha}) - 2.$

Suppose that $\sum_{n \in \mathbb{N}} \delta_n = \infty$.

Suppose that $\sum_{n \in \mathbb{N}} \delta_n = \infty$. Then we can construct

$$f(z) = z^3 \prod_{n=1}^{\infty} \left(1 + \frac{z}{a_n}\right)^{2p_n}$$

such that A(f) is not a spider's web

Suppose that $\sum_{n \in \mathbb{N}} \delta_n = \infty$. Then we can construct

$$f(z) = z^3 \prod_{n=1}^{\infty} \left(1 + \frac{z}{a_n}\right)^{2p_n}$$

$$\sum_{n=1}^{N} \epsilon_n < 3 \sum_{n=1}^{N} \delta_n, \text{ for large } N \in \mathbb{N}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ