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Basic definitions

Definition

The Fatou set (or stable set) is

F (f ) = {z : (f n) is equicontinuous in some neighbourhood of z}.

Definition

The Julia set (or chaotic set) is

J(f ) = C \ F (f ).

Definition

The escaping set is

I(f ) = {z : f n(z)→∞ as n→∞}.
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Examples
Exponential functions

f (z) = λez , 0 < λ < 1/e

F (f ) is an attracting basin
J(f ) is a Cantor bouquet of
curves
I(f ) ⊂ J(f )
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Examples
Wandering domains

A Fatou component U is a wandering domain if

f n(U) ∩ f m(U) = ∅ for n 6= m.

The first example of a wandering domain was given by Baker in
1975.

Theorem (Baker, 1984)

If U is a multiply connected Fatou component then
U is a wandering domain in I(f )
f n+1(U) surrounds f n(U) for large n.
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Eremenko’s conjecture (1989)

Conjecture
All components of I(f ) are unbounded.

Theorem (Rottenfusser, Rückert, Rempe and Schleicher, 2011)

I(f ) consists of curves to∞ if

f is a finite composition of functions of finite order in class B.

Theorem (Rippon and Stallard, 2005)

I(f ) is a "spider’s web" if f has a multiply connected Fatou
component.
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Baker’s Conjecture (1981)

Conjecture
If f has order less than 1/2 then f has no unbounded Fatou
components.

Definition

Let M(r) = max|z|=r |f (z)|. The order of f is

ρ = lim sup
r→∞

log log M(r)
log r

.

If f has order less than 1 then

f (z) = czp0
∏
n∈N

(
1 +

z
an

)pn

,

where pn ∈ {0,1,2, . . .} and c,an ∈ C \ {0}.
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Partial results on Baker’s Conjecture

Theorem (Zheng, 2000)

If f has order less than 1/2 then it has no unbounded periodic
Fatou components.

Theorem (Stallard (1993), Anderson and Hinkkanen (1998), ...)

If f has order less than 1/2 and "regular growth" then it has no
unbounded Fatou components.

Theorem (Rippon and Stallard, Hinkkanen and Miles (2009))

If f has very small growth then it has no unbounded Fatou
components i.e. if

log log M(r) <
log r

logm r
, for large r, some m ≥ 2.
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The link between the two conjectures

Definition

The fast escaping set is A(f ) =
⋃

L∈N f−L(AR(f )) where:

AR(f ) = {z ∈ C : |f n(z)| ≥ Mn(R) ∀ n ∈ N},

if R > 0 is such that Mn(R)→∞ as n→∞.

Theorem (Rippon and Stallard, 2011)

If AR(f ) is a spider’s web then

I(f ) is a spider’s web and so is connected;
there are no unbounded Fatou components.

All partial results on Baker’s conjecture proved by methods
which imply that AR(f ) is a spider’s web.
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New progress on the two conjectures

Hypothesis
If f has order less than 1/2 then AR(f ) is a spider’s web.

False
There exist infinite products of very small growth, with λ > 0
and an > 0, for which AR(f ) is not a spider’s web.

Theorem

Let

f (z) = czp0
∏
n∈N

(
1 +

z
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A sharp growth condition

Theorem

Let Rn = Mn(R) and εn = maxRn≤r≤Rn+1
log log M(r)

log r .

If ∑
n∈N

εn <∞,

then AR(f ) is a spider’s web.

Proof uses a new local version of the cosπρ theorem.

Theorem

Suppose that log M(r) ≤ rα, where α ∈ (0,1/2).
Then there exists t ∈ (r1−2α, r) such that

log m(t) > log M(r1−2α)− 2.
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and
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εn < 3
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n=1

δn, for large N ∈ N.



Examples

Suppose that
∑

n∈N δn =∞.
Then we can construct

f (z) = z3
∞∏

n=1

(
1 +

z
an

)2pn

such that A(f ) is not a spider’s web

and

N∑
n=1

εn < 3
N∑

n=1

δn, for large N ∈ N.



Examples

Suppose that
∑

n∈N δn =∞.
Then we can construct

f (z) = z3
∞∏

n=1

(
1 +

z
an

)2pn

such that A(f ) is not a spider’s web
and

N∑
n=1

εn < 3
N∑

n=1

δn, for large N ∈ N.


