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Some notation

I B(X ) – the family of Borel subsets of a Polish space X ;

I M – the σ-ideal of meager sets in R;

I N – the σ-ideal of Lebesgue null sets in R;

I for A ⊆ X 2 and x ∈ X , let A(x) = {y ∈ X : (x , y) ∈ A}, this
is x-section of A;

I for two σ-ideals I, J ⊆ P(X ), define

I⊗J := {A ⊆ X 2 : (∃B ∈ B(X 2))(A ⊆ B and {x : B(x) /∈ J} ∈ I)},

this σ-ideal is called the Fubini product of I and J.
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In particular,

I M⊗M is the σ-ideal of meager sets in R2;

I N ⊗N is the σ-ideal of Lebesgue null sets in R2.

We will talk about the mixed product σ-ideals M⊗N and N ⊗M.
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Some facts

I M and N are orthogonal, i.e. there are disjoint sets A ∈M

and B ∈ N such that A ∪ B = R [well known];

I M⊗N and N ⊗M are orthogonal [Mendez [1976]];

I (M⊗M) ∩ (N ⊗N) and (M⊗N) ∩ (N ⊗M) are orthogonal
[Mendez [1976]];

I M⊗N and N ⊗M satisfy ccc, i.e. every disjoint family of
Borel subsets of R2 that are not in the σ-ideal is countable
[Fremlin (1987)];

I some asymmetry of cardinal coeficients:

cof(N ⊗M) = cof(N), add(N ⊗M) = add(N),

cof(M⊗N) = cof([R]≤ω) = c, add(M⊗N) = add([R]≤ω) = ω1

[Cichoń, Pawlikowski (1986), Fremlin (1991)];
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I M⊗N and N ⊗M are not invariant under nonzero rotations
[M.B.+Sz. G la̧b (2010)]; this answers a question of Natkaniec.
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Structural properties

Again some notation:

I 4 – the operation of symmetric difference;

I for E, I ⊆ P(X ), let E ∗ I = {B 4 A : B ∈ E, A ∈ I};
I denote Fσ t Gδ = {A ∪ B : A ∈ Fσ, B ∈ Gδ A,B ⊆ X}.
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Theorem (Fremlin (1991), M.B. (1992))

Let I ∈ {N ⊗M,M⊗N}. Then each set from I is contained in a
set from I of class Fσ t Gδ. Additionally,

I for I = N ⊗M we have B ∗ I = Fσ ∗ I;

I for I = M⊗N we have B ∗ I = (Fσ t Gδ) ∗ I.
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Application 1: Borel functions of two variables

Theorem (M.B.+Sz. G la̧b (2010))

Let f : R2 → R be a Borel function. Then

(a) there exists a set D ∈ N ⊗M such that h = f |(R2 \ D) is
Borel measurable of class 1 with N-almost all sections hx

continuous;

(b) there exists a set D ∈M⊗N such that h = f |(R2 \ D) is
Borel measurable of class 1.
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Application 2: monotone hull operations

Consider a triple (X , S, I) where S ⊆ P(X ) is a σ-algebra and I ⊆ S

is a σ-ideal.

Fix two families A ⊆ P(X ) and H ⊆ S. We say that:

I H ∈ H is an H-hull of A ⊆ X if A ⊆ H and for every G ∈ H

with A ⊆ G we have H \ G ∈ I;

I ϕ : A→ H is an H-hull operation on A if for each A ∈ A,
ϕ(A) is an H-hull of A;

I an H-hull operation on A is monotone if for all A,B ∈ A with
A ⊆ B we have ϕ(A) ⊆ ϕ(B).

Elekes and Máthé (2009) answered the following question:
Does there exist a monotone Borel-hull operation on the σ-algebra
of Lebesgue measurable sets?
One can pose similar questions for the Baire category case and for
σ-algebras associated with M⊗N and N ⊗M.
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We have two series of independence-type results.

Theorem

(a) In a model obtained by adding ω2 Cohen reals to a model
satifying CH there is no monotone Borel hull on N. [Elekes
and Máthé (2009)]

(b) In a model obtained by adding ω2 random reals to a model
satifying CH there is no monotone Borel hull on N. [M.B.+T.
Filipczak (2011)]

(c) Let I ∈ {M⊗N,N ⊗M}. Consider a model obtained by
adding either ω2 Cohen reals or ω2 random reals to a model
satisfying CH. Then there is no monotone Borel hull on I.
[M.B.+T. Filipczak (2011)]

Proof.
Statement (c) follows from (a), (b) and the equalities

non(M⊗N) = max{non(M), non(N)} = non(N ⊗M).
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Theorem (CH)

(a) There exists a monotone Fσδσ-hull operation on B(R) ∗N.
[Elekes and Máthé (2009)]

(b) There exists a monotone Gδσ-hull operation on B(R) ∗M.
[M.B.+T. Filipczak (2011)]

(c) Let I ∈ {M⊗N,N⊗M}. There exists a monotone Gδσδσ-hull
operation on B(R2) ∗ I. [M.B.+T. Filipczak (2011)]

Moreover, in all these cases, the respective monotone hull
operations exist on the whole power set P(R) or P(R2).
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(b) There exists a monotone Gδσ-hull operation on B(R) ∗M.
[M.B.+T. Filipczak (2011)]

(c) Let I ∈ {M⊗N,N⊗M}. There exists a monotone Gδσδσ-hull
operation on B(R2) ∗ I. [M.B.+T. Filipczak (2011)]

Moreover, in all these cases, the respective monotone hull
operations exist on the whole power set P(R) or P(R2).

Marek Balcerzak Selected results on measure-category products of ideals



Theorem (CH)

(a) There exists a monotone Fσδσ-hull operation on B(R) ∗N.
[Elekes and Máthé (2009)]
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Application 3: density-type topologies

Definition
We say that x ∈ R is a density point of a measurable set A ⊆ R if

lim
h→0+

λ(A ∩ [x − h, x + h])

2h
= 1

where λ is Lebesgue measure of linear sets.

Proposition

[Wilczyński (1984/85)] For a measurable set A ⊆ R, the following
conditions are equivalent:

I x is a density point of A;

I each increasing sequence (nm)m∈N has subsequence (nmk
)k∈N

such that
[−1, 1] \ lim inf

k→∞
(nmk

(A− x)) ∈ N.
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Here nA := {na : a ∈ A} and A− x := {a− x : a ∈ A}.
This definition was used by Wilczyński (1984/85) to create the
category analogue of density topology.

A similar scheme leads to
density-type topologies generated by M⊗N and N ⊗M.

Definition
[M.B+J. Hejduk (1994/95)] (0, 0) is called an M⊗N-density
point of A ∈ B ∗ (M⊗N) if for each increasing sequence (nm)m∈N
there are a subsequence (nmk

)k∈N and a set E ∈M such that

[−1, 1] \ lim inf
k→∞

(nmk
A(t/nmk

)) ∈ N for each t ∈ [−1, 1] \ E .

I In the standard way, we extend this definition from the case of
(0, 0) to the case of an arbitrary (x , y) ∈ R2.

I The definition of an N ⊗M-density point is analogous.
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Method of construction of a density-type topology from a
notion of density point

I Fix a σ-algebra S ⊆ P(Rk) and a σ-ideal I ⊆ S that are
invariant under translations and dilations.

I Assume that we have a notion of an I-density point. For
A ∈ S let

Φ(A) = the set of I-density points of A.

I Assume that Φ: S→ P(Rk) is a lower density operator, that
is
(1) Φ(A) ∈ S for each A ∈ S;
(2) Φ(∅) = ∅, Φ(Rk) = Rk ;
(3) Φ(A ∩ B) = Φ(A) ∩ Φ(B) for all A,B ∈ S;
(4) for all A,B ∈ S, if A4 B ∈ I then Φ(A) = Φ(B);
(5) Φ(A)4 A ∈ I for each A ∈ S (Lebesgue condition).

I Then τI := {A ∈ S : A ⊆ Φ(A)} forms a topology.
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For I ∈ {M⊗N,N⊗M} and S := B(R2) ∗ I, all conditions except
for (5) can be checked by usual methods.

The fulfillment of (5) is a nontrivial result [M.B+J. Hejduk
(1994/95)].
This leads to topologies τM⊗N and τN⊗M.

Question (still open)

Are these topologies homeomorphic?
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