Selected results on measure-category products of ideals

Marek Balcerzak

Institute of Mathematics, Technical University of Łódź, ul. Wólczańska 215, 93-005 Łódź, Poland

• $\mathcal{B}(X)$ – the family of Borel subsets of a Polish space X;

・ロト ・回ト ・ヨト ・ヨト

æ

- $\mathcal{B}(X)$ the family of Borel subsets of a Polish space X;
- \mathcal{M} the σ -ideal of meager sets in \mathbb{R} ;

・ 同 ト ・ ヨ ト ・ ヨ ト

- $\mathcal{B}(X)$ the family of Borel subsets of a Polish space X;
- \mathcal{M} the σ -ideal of meager sets in \mathbb{R} ;
- \mathcal{N} the σ -ideal of Lebesgue null sets in \mathbb{R} ;

・回 と くほ と く ほ と

- $\mathcal{B}(X)$ the family of Borel subsets of a Polish space X;
- \mathcal{M} the σ -ideal of meager sets in \mathbb{R} ;
- \mathcal{N} the σ -ideal of Lebesgue null sets in \mathbb{R} ;
- for $A \subseteq X^2$ and $x \in X$, let

- $\mathcal{B}(X)$ the family of Borel subsets of a Polish space X;
- \mathcal{M} the σ -ideal of meager sets in \mathbb{R} ;
- \mathcal{N} the σ -ideal of Lebesgue null sets in \mathbb{R} ;
- For A ⊆ X² and x ∈ X, let A(x) = {y ∈ X : (x, y) ∈ A}, this is x-section of A;

- $\mathcal{B}(X)$ the family of Borel subsets of a Polish space X;
- \mathcal{M} the σ -ideal of meager sets in \mathbb{R} ;
- \mathcal{N} the σ -ideal of Lebesgue null sets in \mathbb{R} ;
- For A ⊆ X² and x ∈ X, let A(x) = {y ∈ X : (x, y) ∈ A}, this is x-section of A;
- for two σ -ideals $\mathfrak{I}, \mathfrak{J} \subseteq \mathfrak{P}(X)$,

- $\mathcal{B}(X)$ the family of Borel subsets of a Polish space X;
- \mathcal{M} the σ -ideal of meager sets in \mathbb{R} ;
- \mathcal{N} the σ -ideal of Lebesgue null sets in \mathbb{R} ;
- For A ⊆ X² and x ∈ X, let A(x) = {y ∈ X : (x, y) ∈ A}, this is x-section of A;
- for two σ -ideals $\mathfrak{I}, \mathfrak{J} \subseteq \mathfrak{P}(X)$, define

 $\mathbb{I} \otimes \mathcal{J} := \{A \subseteq X^2 \colon (\exists B \in \mathbb{B}(X^2)) (A \subseteq B \text{ and } \{x \colon B(x) \notin \mathcal{J}\} \in \mathbb{J})\},$

- $\mathcal{B}(X)$ the family of Borel subsets of a Polish space X;
- \mathcal{M} the σ -ideal of meager sets in \mathbb{R} ;
- \mathcal{N} the σ -ideal of Lebesgue null sets in \mathbb{R} ;
- For A ⊆ X² and x ∈ X, let A(x) = {y ∈ X : (x, y) ∈ A}, this is x-section of A;
- for two σ -ideals $\mathfrak{I}, \mathfrak{J} \subseteq \mathfrak{P}(X)$, define

 $\mathbb{I} \otimes \mathcal{J} := \{ A \subseteq X^2 \colon (\exists B \in \mathfrak{B}(X^2)) (A \subseteq B \text{ and } \{x \colon B(x) \notin \mathcal{J}\} \in \mathfrak{I}) \},$

this σ -ideal is called the **Fubini product** of \mathcal{I} and \mathcal{J} .

In particular,

• $\mathcal{M} \otimes \mathcal{M}$ is the σ -ideal of meager sets in \mathbb{R}^2 ;

A B K A B K

In particular,

- $\mathcal{M} \otimes \mathcal{M}$ is the σ -ideal of meager sets in \mathbb{R}^2 ;
- $\mathcal{N} \otimes \mathcal{N}$ is the σ -ideal of Lebesgue null sets in \mathbb{R}^2 .

• 3 >

In particular,

- $\mathcal{M} \otimes \mathcal{M}$ is the σ -ideal of meager sets in \mathbb{R}^2 ;
- $\mathcal{N} \otimes \mathcal{N}$ is the σ -ideal of Lebesgue null sets in \mathbb{R}^2 .

We will talk about the mixed product σ -ideals $\mathcal{M} \otimes \mathcal{N}$ and $\mathcal{N} \otimes \mathcal{M}$.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ● ●

 M and N are orthogonal, i.e. there are disjoint sets A ∈ M and B ∈ N such that A ∪ B = ℝ [well known];

- M and N are orthogonal, i.e. there are disjoint sets A ∈ M and B ∈ N such that A ∪ B = ℝ [well known];
- $\mathcal{M} \otimes \mathcal{N}$ and $\mathcal{N} \otimes \mathcal{M}$ are orthogonal [Mendez [1976]];

- M and N are orthogonal, i.e. there are disjoint sets A ∈ M and B ∈ N such that A ∪ B = ℝ [well known];
- $\mathcal{M} \otimes \mathcal{N}$ and $\mathcal{N} \otimes \mathcal{M}$ are orthogonal [Mendez [1976]];
- $(\mathcal{M} \otimes \mathcal{M}) \cap (\mathcal{N} \otimes \mathcal{N})$ and $(\mathcal{M} \otimes \mathcal{N}) \cap (\mathcal{N} \otimes \mathcal{M})$ are orthogonal [Mendez [1976]];

(日本)

- M and N are orthogonal, i.e. there are disjoint sets A ∈ M and B ∈ N such that A ∪ B = ℝ [well known];
- $\mathcal{M} \otimes \mathcal{N}$ and $\mathcal{N} \otimes \mathcal{M}$ are orthogonal [Mendez [1976]];
- $(\mathcal{M} \otimes \mathcal{M}) \cap (\mathcal{N} \otimes \mathcal{N})$ and $(\mathcal{M} \otimes \mathcal{N}) \cap (\mathcal{N} \otimes \mathcal{M})$ are orthogonal [Mendez [1976]];
- M ⊗ N and N ⊗ M satisfy ccc, i.e. every disjoint family of Borel subsets of ℝ² that are not in the σ-ideal is countable [Fremlin (1987)];

- M and N are orthogonal, i.e. there are disjoint sets A ∈ M and B ∈ N such that A ∪ B = ℝ [well known];
- $\mathcal{M} \otimes \mathcal{N}$ and $\mathcal{N} \otimes \mathcal{M}$ are orthogonal [Mendez [1976]];
- $(\mathcal{M} \otimes \mathcal{M}) \cap (\mathcal{N} \otimes \mathcal{N})$ and $(\mathcal{M} \otimes \mathcal{N}) \cap (\mathcal{N} \otimes \mathcal{M})$ are orthogonal [Mendez [1976]];
- M ⊗ N and N ⊗ M satisfy ccc, i.e. every disjoint family of Borel subsets of ℝ² that are not in the σ-ideal is countable [Fremlin (1987)];
- some asymmetry of cardinal coeficients:

- M and N are orthogonal, i.e. there are disjoint sets A ∈ M and B ∈ N such that A ∪ B = ℝ [well known];
- $\mathcal{M} \otimes \mathcal{N}$ and $\mathcal{N} \otimes \mathcal{M}$ are orthogonal [Mendez [1976]];
- $(\mathcal{M} \otimes \mathcal{M}) \cap (\mathcal{N} \otimes \mathcal{N})$ and $(\mathcal{M} \otimes \mathcal{N}) \cap (\mathcal{N} \otimes \mathcal{M})$ are orthogonal [Mendez [1976]];
- M ⊗ N and N ⊗ M satisfy ccc, i.e. every disjoint family of Borel subsets of ℝ² that are not in the σ-ideal is countable [Fremlin (1987)];
- some asymmetry of cardinal coeficients:

$$\operatorname{cof}(\mathcal{N}\otimes\mathcal{M})=\operatorname{cof}(\mathcal{N}),\quad\operatorname{add}(\mathcal{N}\otimes\mathcal{M})=\operatorname{add}(\mathcal{N}),$$

- M and N are orthogonal, i.e. there are disjoint sets A ∈ M and B ∈ N such that A ∪ B = ℝ [well known];
- $\mathcal{M} \otimes \mathcal{N}$ and $\mathcal{N} \otimes \mathcal{M}$ are orthogonal [Mendez [1976]];
- $(\mathcal{M} \otimes \mathcal{M}) \cap (\mathcal{N} \otimes \mathcal{N})$ and $(\mathcal{M} \otimes \mathcal{N}) \cap (\mathcal{N} \otimes \mathcal{M})$ are orthogonal [Mendez [1976]];
- M ⊗ N and N ⊗ M satisfy ccc, i.e. every disjoint family of Borel subsets of ℝ² that are not in the σ-ideal is countable [Fremlin (1987)];
- some asymmetry of cardinal coeficients:

$$\operatorname{cof}(\mathcal{N}\otimes\mathcal{M})=\operatorname{cof}(\mathcal{N}),\quad\operatorname{add}(\mathcal{N}\otimes\mathcal{M})=\operatorname{add}(\mathcal{N}),$$

 $\operatorname{cof}(\mathcal{M}\otimes\mathcal{N}) = \operatorname{cof}([\mathbb{R}]^{\leq\omega}) = \mathfrak{c}, \quad \operatorname{add}(\mathcal{M}\otimes\mathcal{N}) = \operatorname{add}([\mathbb{R}]^{\leq\omega}) = \omega_1$ [Cichoń, Pawlikowski (1986), Fremlin (1991)]; M ⊗ N and N ⊗ M are not invariant under nonzero rotations [M.B.+Sz. Głąb (2010)]; this answers a question of Natkaniec.

伺 とう ヨン うちょう

æ

• \triangle – the operation of symmetric difference;

- \triangle the operation of symmetric difference;
- for $\mathcal{E}, \mathcal{I} \subseteq \mathcal{P}(X)$, let $\mathcal{E} * \mathcal{I} = \{B \bigtriangleup A : B \in \mathcal{E}, A \in \mathcal{I}\};$

伺 とう ヨン うちょう

- \triangle the operation of symmetric difference;
- for $\mathcal{E}, \mathcal{I} \subseteq \mathcal{P}(X)$, let $\mathcal{E} * \mathcal{I} = \{B \bigtriangleup A : B \in \mathcal{E}, A \in \mathcal{I}\};$
- denote $\mathfrak{F}_{\sigma} \sqcup \mathfrak{G}_{\delta} = \{ A \cup B \colon A \in \mathfrak{F}_{\sigma}, \ B \in \mathfrak{G}_{\delta} \ A, B \subseteq X \}.$

向下 イヨト イヨト

Theorem (Fremlin (1991), M.B. (1992))

• 3 >

I ∃ →

```
Theorem (Fremlin (1991), M.B. (1992))
Let \mathcal{I} \in \{\mathcal{N} \otimes \mathcal{M}, \mathcal{M} \otimes \mathcal{N}\}.
```

• 3 >

Image: A image: A

Theorem (Fremlin (1991), M.B. (1992)) Let $J \in \{N \otimes M, M \otimes N\}$. Then each set from J is contained in a set from J of class $\mathcal{F}_{\sigma} \sqcup \mathcal{G}_{\delta}$. Additionally,

Theorem (Fremlin (1991), M.B. (1992)) Let $J \in \{N \otimes M, M \otimes N\}$. Then each set from J is contained in a set from J of class $\mathcal{F}_{\sigma} \sqcup \mathcal{G}_{\delta}$. Additionally,

• for $\mathfrak{I} = \mathfrak{N} \otimes \mathfrak{M}$ we have $\mathfrak{B} * \mathfrak{I} = \mathfrak{F}_{\sigma} * \mathfrak{I}$;

高 とう ヨン うまと

Theorem (Fremlin (1991), M.B. (1992)) Let $J \in \{N \otimes M, M \otimes N\}$. Then each set from J is contained in a set from J of class $\mathcal{F}_{\sigma} \sqcup \mathcal{G}_{\delta}$. Additionally,

- for $\mathfrak{I} = \mathfrak{N} \otimes \mathfrak{M}$ we have $\mathfrak{B} * \mathfrak{I} = \mathfrak{F}_{\sigma} * \mathfrak{I}$;
- for $\mathfrak{I} = \mathfrak{M} \otimes \mathfrak{N}$ we have $\mathfrak{B} * \mathfrak{I} = (\mathfrak{F}_{\sigma} \sqcup \mathfrak{G}_{\delta}) * \mathfrak{I}$.

マボン イラン イラン 一日

Theorem (M.B.+Sz. Głąb (2010)) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a Borel function. Then

- Theorem (M.B.+Sz. Głąb (2010))
- Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a Borel function. Then
- (a) there exists a set $D \in \mathbb{N} \otimes \mathbb{M}$ such that $h = f|(\mathbb{R}^2 \setminus D)$ is Borel measurable of class 1

- Theorem (M.B.+Sz. Głąb (2010))
- Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a Borel function. Then
- (a) there exists a set $D \in \mathbb{N} \otimes \mathbb{M}$ such that $h = f|(\mathbb{R}^2 \setminus D)$ is Borel measurable of class 1 with \mathbb{N} -almost all sections h_x continuous;

Theorem (M.B.+Sz. Głąb (2010))

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a Borel function. Then

- (a) there exists a set $D \in \mathbb{N} \otimes \mathbb{M}$ such that $h = f|(\mathbb{R}^2 \setminus D)$ is Borel measurable of class 1 with \mathbb{N} -almost all sections h_x continuous;
- (b) there exists a set $D \in \mathcal{M} \otimes \mathcal{N}$ such that $h = f|(\mathbb{R}^2 \setminus D)$ is Borel measurable of class 1.

Application 2: monotone hull operations

Consider a triple (X, S, J) where $S \subseteq \mathcal{P}(X)$ is a σ -algebra and $J \subseteq S$ is a σ -ideal.

伺 とう ヨン うちょう

Consider a triple (X, S, J) where $S \subseteq \mathcal{P}(X)$ is a σ -algebra and $J \subseteq S$ is a σ -ideal. Fix two families $\mathcal{A} \subseteq \mathcal{P}(X)$ and $\mathcal{H} \subseteq S$.

伺 とう ヨン うちょう
Consider a triple (X, S, J) where $S \subseteq \mathcal{P}(X)$ is a σ -algebra and $J \subseteq S$ is a σ -ideal. Fix two families $\mathcal{A} \subseteq \mathcal{P}(X)$ and $\mathcal{H} \subseteq S$. We say that:

ヨット イヨット イヨッ

Consider a triple (X, S, J) where $S \subseteq \mathcal{P}(X)$ is a σ -algebra and $J \subseteq S$ is a σ -ideal. Fix two families $\mathcal{A} \subseteq \mathcal{P}(X)$ and $\mathcal{H} \subseteq S$. We say that:

▶ $H \in \mathcal{H}$ is an \mathcal{H} -hull of $A \subseteq X$ if $A \subseteq H$ and for every $G \in \mathcal{H}$ with $A \subseteq G$ we have $H \setminus G \in \mathcal{I}$;

向下 イヨト イヨト

Consider a triple (X, S, J) where $S \subseteq \mathcal{P}(X)$ is a σ -algebra and $J \subseteq S$ is a σ -ideal. Fix two families $\mathcal{A} \subseteq \mathcal{P}(X)$ and $\mathcal{H} \subseteq S$. We say that:

- ▶ $H \in \mathcal{H}$ is an \mathcal{H} -hull of $A \subseteq X$ if $A \subseteq H$ and for every $G \in \mathcal{H}$ with $A \subseteq G$ we have $H \setminus G \in \mathcal{I}$;
- $\varphi: \mathcal{A} \to \mathcal{H}$ is an \mathcal{H} -hull operation on \mathcal{A} if for each $A \in \mathcal{A}$, $\varphi(A)$ is an \mathcal{H} -hull of A;

マボン イラン イラン 一日

Consider a triple (X, S, J) where $S \subseteq \mathcal{P}(X)$ is a σ -algebra and $J \subseteq S$ is a σ -ideal. Fix two families $\mathcal{A} \subseteq \mathcal{P}(X)$ and $\mathcal{H} \subseteq S$. We say that:

- ▶ $H \in \mathcal{H}$ is an \mathcal{H} -hull of $A \subseteq X$ if $A \subseteq H$ and for every $G \in \mathcal{H}$ with $A \subseteq G$ we have $H \setminus G \in \mathcal{I}$;
- $\varphi: \mathcal{A} \to \mathcal{H}$ is an \mathcal{H} -hull operation on \mathcal{A} if for each $A \in \mathcal{A}$, $\varphi(A)$ is an \mathcal{H} -hull of A;
- ▶ an \mathcal{H} -hull operation on \mathcal{A} is *monotone* if for all $A, B \in \mathcal{A}$ with $A \subseteq B$ we have $\varphi(A) \subseteq \varphi(B)$.

- イボト イヨト - ヨ

Consider a triple (X, S, J) where $S \subseteq \mathcal{P}(X)$ is a σ -algebra and $J \subseteq S$ is a σ -ideal. Fix two families $\mathcal{A} \subseteq \mathcal{P}(X)$ and $\mathcal{H} \subseteq S$. We say that:

- ▶ $H \in \mathcal{H}$ is an \mathcal{H} -hull of $A \subseteq X$ if $A \subseteq H$ and for every $G \in \mathcal{H}$ with $A \subseteq G$ we have $H \setminus G \in \mathcal{I}$;
- $\varphi: \mathcal{A} \to \mathcal{H}$ is an \mathcal{H} -hull operation on \mathcal{A} if for each $A \in \mathcal{A}$, $\varphi(A)$ is an \mathcal{H} -hull of A;
- ▶ an \mathcal{H} -hull operation on \mathcal{A} is *monotone* if for all $A, B \in \mathcal{A}$ with $A \subseteq B$ we have $\varphi(A) \subseteq \varphi(B)$.

Elekes and Máthé (2009) answered the following question: Does there exist a monotone Borel-hull operation on the σ -algebra of Lebesgue measurable sets?

Consider a triple (X, S, J) where $S \subseteq \mathcal{P}(X)$ is a σ -algebra and $J \subseteq S$ is a σ -ideal. Fix two families $\mathcal{A} \subseteq \mathcal{P}(X)$ and $\mathcal{H} \subseteq S$. We say that:

- ▶ $H \in \mathcal{H}$ is an \mathcal{H} -hull of $A \subseteq X$ if $A \subseteq H$ and for every $G \in \mathcal{H}$ with $A \subseteq G$ we have $H \setminus G \in \mathcal{I}$;
- $\varphi: \mathcal{A} \to \mathcal{H}$ is an \mathcal{H} -hull operation on \mathcal{A} if for each $A \in \mathcal{A}$, $\varphi(A)$ is an \mathcal{H} -hull of A;
- ▶ an \mathcal{H} -hull operation on \mathcal{A} is *monotone* if for all $A, B \in \mathcal{A}$ with $A \subseteq B$ we have $\varphi(A) \subseteq \varphi(B)$.

Elekes and Máthé (2009) answered the following question: Does there exist a monotone Borel-hull operation on the σ -algebra of Lebesgue measurable sets?

One can pose similar questions for the Baire category case and for σ -algebras associated with $\mathcal{M} \otimes \mathcal{N}$ and $\mathcal{N} \otimes \mathcal{M}$.

Theorem

(a) In a model obtained by adding ω_2 Cohen reals to a model satifying CH there is no monotone Borel hull on \mathcal{N} . [Elekes and Máthé (2009)]

Theorem

- (a) In a model obtained by adding ω_2 Cohen reals to a model satifying CH there is no monotone Borel hull on \mathcal{N} . [Elekes and Máthé (2009)]
- (b) In a model obtained by adding ω_2 random reals to a model satifying CH there is no monotone Borel hull on \mathcal{N} . [M.B.+T. Filipczak (2011)]

Theorem

- (a) In a model obtained by adding ω_2 Cohen reals to a model satifying CH there is no monotone Borel hull on \mathcal{N} . [Elekes and Máthé (2009)]
- (b) In a model obtained by adding ω_2 random reals to a model satifying CH there is no monotone Borel hull on \mathcal{N} . [M.B.+T. Filipczak (2011)]
- (c) Let $\mathfrak{I} \in {\mathfrak{M} \otimes \mathfrak{N}, \mathfrak{N} \otimes \mathfrak{M}}$. Consider a model obtained by adding either ω_2 Cohen reals or ω_2 random reals to a model satisfying CH. Then there is no monotone Borel hull on \mathfrak{I} . [M.B.+T. Filipczak (2011)]

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem

- (a) In a model obtained by adding ω_2 Cohen reals to a model satifying CH there is no monotone Borel hull on \mathcal{N} . [Elekes and Máthé (2009)]
- (b) In a model obtained by adding ω_2 random reals to a model satifying CH there is no monotone Borel hull on \mathcal{N} . [M.B.+T. Filipczak (2011)]
- (c) Let J ∈ {M ⊗ N, N ⊗ M}. Consider a model obtained by adding either ω₂ Cohen reals or ω₂ random reals to a model satisfying CH. Then there is no monotone Borel hull on J. [M.B.+T. Filipczak (2011)]

Proof.

Statement (c) follows from (a), (b) and the equalities

 $\mathsf{non}(\mathfrak{M}\otimes\mathfrak{N})=\mathsf{max}\{\mathsf{non}(\mathfrak{M}),\mathsf{non}(\mathfrak{N})\}=\mathsf{non}(\mathfrak{N}\otimes\mathfrak{M}).$

通 とう ほう とう マン・

(a) There exists a monotone $\mathcal{F}_{\sigma\delta\sigma}$ -hull operation on $\mathcal{B}(\mathbb{R}) * \mathcal{N}$. [Elekes and Máthé (2009)]

伺 と く き と く き と

- (a) There exists a monotone $\mathcal{F}_{\sigma\delta\sigma}$ -hull operation on $\mathcal{B}(\mathbb{R}) * \mathcal{N}$. [Elekes and Máthé (2009)]
- (b) There exists a monotone G_{δσ}-hull operation on B(ℝ) * M. [M.B.+T. Filipczak (2011)]

向下 イヨト イヨト

- (a) There exists a monotone $\mathcal{F}_{\sigma\delta\sigma}$ -hull operation on $\mathcal{B}(\mathbb{R}) * \mathcal{N}$. [Elekes and Máthé (2009)]
- (b) There exists a monotone $\mathfrak{G}_{\delta\sigma}$ -hull operation on $\mathfrak{B}(\mathbb{R}) * \mathfrak{M}$. [M.B.+T. Filipczak (2011)]
- (c) Let $\mathcal{I} \in {\mathcal{M} \otimes \mathcal{N}, \mathcal{N} \otimes \mathcal{M}}$. There exists a monotone $\mathcal{G}_{\delta\sigma\delta\sigma}$ -hull operation on $\mathcal{B}(\mathbb{R}^2) * \mathcal{I}$. [M.B.+T. Filipczak (2011)]

伺 と く ヨ と く ヨ と

- (a) There exists a monotone $\mathcal{F}_{\sigma\delta\sigma}$ -hull operation on $\mathcal{B}(\mathbb{R}) * \mathcal{N}$. [Elekes and Máthé (2009)]
- (b) There exists a monotone G_{δσ}-hull operation on B(ℝ) * M. [M.B.+T. Filipczak (2011)]
- (c) Let $\mathcal{J} \in {\mathcal{M} \otimes \mathcal{N}, \mathcal{N} \otimes \mathcal{M}}$. There exists a monotone $\mathcal{G}_{\delta\sigma\delta\sigma}$ -hull operation on $\mathcal{B}(\mathbb{R}^2) * \mathcal{J}$. [M.B.+T. Filipczak (2011)]

Moreover, in all these cases, the respective monotone hull operations exist on the whole power set $\mathcal{P}(\mathbb{R})$ or $\mathcal{P}(\mathbb{R}^2)$.

We say that $x \in \mathbb{R}$ is a *density point* of a measurable set $A \subseteq \mathbb{R}$ if

$$\lim_{h\to 0^+} \frac{\lambda(A\cap [x-h,x+h])}{2h} = 1$$

where λ is Lebesgue measure of linear sets.

A 3 1 A 3 1

We say that $x \in \mathbb{R}$ is a *density point* of a measurable set $A \subseteq \mathbb{R}$ if

$$\lim_{h\to 0^+} \frac{\lambda(A\cap [x-h,x+h])}{2h} = 1$$

where λ is Lebesgue measure of linear sets.

Proposition

[Wilczyński (1984/85)] For a measurable set $A \subseteq \mathbb{R}$, the following conditions are equivalent:

We say that $x \in \mathbb{R}$ is a *density point* of a measurable set $A \subseteq \mathbb{R}$ if

$$\lim_{h\to 0^+} \frac{\lambda(A\cap [x-h,x+h])}{2h} = 1$$

where λ is Lebesgue measure of linear sets.

Proposition

[Wilczyński (1984/85)] For a measurable set $A \subseteq \mathbb{R}$, the following conditions are equivalent:

x is a density point of A;

We say that $x \in \mathbb{R}$ is a *density point* of a measurable set $A \subseteq \mathbb{R}$ if

$$\lim_{h\to 0^+} \frac{\lambda(A\cap [x-h,x+h])}{2h} = 1$$

where λ is Lebesgue measure of linear sets.

Proposition

[Wilczyński (1984/85)] For a measurable set $A \subseteq \mathbb{R}$, the following conditions are equivalent:

- x is a density point of A;
- ► each increasing sequence (n_m)_{m∈N} has subsequence (n_{m_k})_{k∈N} such that

$$[-1,1] \setminus \liminf_{k\to\infty} (n_{m_k}(A-x)) \in \mathbb{N}.$$

Here $nA := \{na : a \in A\}$ and $A - x := \{a - x : a \in A\}$. This definition was used by Wilczyński (1984/85) to create the category analogue of density topology.

向下 イヨト イヨト

伺い イヨト イヨト

Definition

[M.B+J. Hejduk (1994/95)] (0,0) is called an $\mathcal{M} \otimes \mathcal{N}$ -density point of $A \in \mathcal{B} * (\mathcal{M} \otimes \mathcal{N})$ if

Definition

[M.B+J. Hejduk (1994/95)] (0,0) is called an $\mathcal{M} \otimes \mathcal{N}$ -density point of $A \in \mathcal{B} * (\mathcal{M} \otimes \mathcal{N})$ if for each increasing sequence $(n_m)_{m \in \mathbb{N}}$ there are a subsequence $(n_{m_k})_{k \in \mathbb{N}}$ and a set $E \in \mathcal{M}$ such that

 $[-1,1] \setminus \liminf_{k \to \infty} (n_{m_k} \mathcal{A}(t/n_{m_k})) \in \mathbb{N}$ for each $t \in [-1,1] \setminus E$.

Definition

[M.B+J. Hejduk (1994/95)] (0,0) is called an $\mathcal{M} \otimes \mathcal{N}$ -density point of $A \in \mathcal{B} * (\mathcal{M} \otimes \mathcal{N})$ if for each increasing sequence $(n_m)_{m \in \mathbb{N}}$ there are a subsequence $(n_{m_k})_{k \in \mathbb{N}}$ and a set $E \in \mathcal{M}$ such that

 $[-1,1] \setminus \liminf_{k \to \infty} (n_{m_k} \mathcal{A}(t/n_{m_k})) \in \mathbb{N}$ for each $t \in [-1,1] \setminus E$.

In the standard way, we extend this definition from the case of (0,0) to the case of an arbitrary (x, y) ∈ ℝ².

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

[M.B+J. Hejduk (1994/95)] (0,0) is called an $\mathcal{M} \otimes \mathcal{N}$ -density point of $A \in \mathcal{B} * (\mathcal{M} \otimes \mathcal{N})$ if for each increasing sequence $(n_m)_{m \in \mathbb{N}}$ there are a subsequence $(n_{m_k})_{k \in \mathbb{N}}$ and a set $E \in \mathcal{M}$ such that

 $[-1,1] \setminus \liminf_{k \to \infty} (n_{m_k} \mathcal{A}(t/n_{m_k})) \in \mathbb{N}$ for each $t \in [-1,1] \setminus E$.

- In the standard way, we extend this definition from the case of (0,0) to the case of an arbitrary (x, y) ∈ ℝ².
- The definition of an $\mathcal{N} \otimes \mathcal{M}$ -density point is analogous.

(1) マン・ション・

Fix a σ-algebra S ⊆ P(ℝ^k) and a σ-ideal J ⊆ S that are invariant under translations and dilations.

ヨット イヨット イヨッ

- Fix a σ-algebra S ⊆ P(ℝ^k) and a σ-ideal J ⊆ S that are invariant under translations and dilations.
- ► Assume that we have a notion of an J-density point. For A ∈ S let

向下 イヨト イヨト

- Fix a σ-algebra S ⊆ P(ℝ^k) and a σ-ideal J ⊆ S that are invariant under translations and dilations.
- ► Assume that we have a notion of an J-density point. For A ∈ S let

 $\Phi(A)$ = the set of \mathcal{I} -density points of A.

- Fix a σ-algebra S ⊆ P(ℝ^k) and a σ-ideal J ⊆ S that are invariant under translations and dilations.
- ► Assume that we have a notion of an J-density point. For A ∈ S let

 $\Phi(A)$ = the set of \mathcal{I} -density points of A.

- Fix a σ-algebra S ⊆ P(ℝ^k) and a σ-ideal J ⊆ S that are invariant under translations and dilations.
- ► Assume that we have a notion of an J-density point. For A ∈ S let

 $\Phi(A)$ = the set of \mathcal{I} -density points of A.

Assume that Φ: S → P(ℝ^k) is a lower density operator, that is

 Φ(A) ∈ S for each A ∈ S;

- Fix a σ-algebra S ⊆ P(ℝ^k) and a σ-ideal J ⊆ S that are invariant under translations and dilations.
- ► Assume that we have a notion of an J-density point. For A ∈ S let

 $\Phi(A)$ = the set of \mathcal{I} -density points of A.

Assume that Φ: S → P(ℝ^k) is a lower density operator, that is

 Φ(A) ∈ S for each A ∈ S;
 Φ(∅) = ∅, Φ(ℝ^k) = ℝ^k;

- Fix a σ-algebra S ⊆ P(ℝ^k) and a σ-ideal J ⊆ S that are invariant under translations and dilations.
- ► Assume that we have a notion of an J-density point. For A ∈ S let

 $\Phi(A)$ = the set of \mathcal{I} -density points of A.

(1)
$$\Phi(A) \in S$$
 for each $A \in S$;
(2) $\Phi(\emptyset) = \emptyset$, $\Phi(\mathbb{R}^k) = \mathbb{R}^k$;
(3) $\Phi(A \cap B) = \Phi(A) \cap \Phi(B)$ for all $A, B \in S$;

- Fix a σ-algebra S ⊆ P(ℝ^k) and a σ-ideal J ⊆ S that are invariant under translations and dilations.
- ► Assume that we have a notion of an J-density point. For A ∈ S let

 $\Phi(A)$ = the set of \mathcal{I} -density points of A.

(1)
$$\Phi(A) \in S$$
 for each $A \in S$;
(2) $\Phi(\emptyset) = \emptyset$, $\Phi(\mathbb{R}^k) = \mathbb{R}^k$;
(3) $\Phi(A \cap B) = \Phi(A) \cap \Phi(B)$ for all $A, B \in S$;
(4) for all $A, B \in S$, if $A \bigtriangleup B \in J$ then $\Phi(A) = \Phi(B)$;

- Fix a σ-algebra S ⊆ P(ℝ^k) and a σ-ideal J ⊆ S that are invariant under translations and dilations.
- ► Assume that we have a notion of an J-density point. For A ∈ S let

 $\Phi(A)$ = the set of \mathcal{I} -density points of A.

- Fix a σ-algebra S ⊆ P(ℝ^k) and a σ-ideal J ⊆ S that are invariant under translations and dilations.
- ▶ Assume that we have a notion of an \mathcal{I} -density point. For $A \in \mathcal{S}$ let

 $\Phi(A)$ = the set of \mathcal{I} -density points of A.

(1)
$$\Phi(A) \in S$$
 for each $A \in S$;
(2) $\Phi(\emptyset) = \emptyset$, $\Phi(\mathbb{R}^k) = \mathbb{R}^k$;
(3) $\Phi(A \cap B) = \Phi(A) \cap \Phi(B)$ for all $A, B \in S$;
(4) for all $A, B \in S$, if $A \triangle B \in J$ then $\Phi(A) = \Phi(B)$;
(5) $\Phi(A) \triangle A \in J$ for each $A \in S$ (Lebesgue condition).
Then $\tau_J := \{A \in S : A \subseteq \Phi(A)\}$ forms a topology.

For $\mathcal{J} \in {\mathcal{M} \otimes \mathcal{N}, \mathcal{N} \otimes \mathcal{M}}$ and $\mathcal{S} := \mathcal{B}(\mathbb{R}^2) * \mathcal{J}$, all conditions except for (5) can be checked by usual methods.

→

For $\mathcal{J} \in {\mathcal{M} \otimes \mathcal{N}, \mathcal{N} \otimes \mathcal{M}}$ and $\mathcal{S} := \mathcal{B}(\mathbb{R}^2) * \mathcal{J}$, all conditions except for (5) can be checked by usual methods. The fulfillment of (5) is a nontrivial result [M.B+J. Hejduk (1994/95)].

ヨット イヨット イヨッ
For $\mathcal{J} \in {\mathcal{M} \otimes \mathcal{N}, \mathcal{N} \otimes \mathcal{M}}$ and $\mathcal{S} := \mathcal{B}(\mathbb{R}^2) * \mathcal{J}$, all conditions except for (5) can be checked by usual methods. The fulfillment of (5) is a nontrivial result [M.B+J. Hejduk (1994/95)].

This leads to topologies $\tau_{\mathcal{M}\otimes\mathcal{N}}$ and $\tau_{\mathcal{N}\otimes\mathcal{M}}$.

For $\mathcal{J} \in {\mathcal{M} \otimes \mathcal{N}, \mathcal{N} \otimes \mathcal{M}}$ and $\mathcal{S} := \mathcal{B}(\mathbb{R}^2) * \mathcal{J}$, all conditions except for (5) can be checked by usual methods. The fulfillment of (5) is a nontrivial result [M.B+J. Hejduk (1994/95)].

This leads to topologies $\tau_{M\otimes N}$ and $\tau_{N\otimes M}$.

Question (still open)

Are these topologies homeomorphic?