# Character of points in the corona of a metric space

## Taras Banakh, Ostap Chervak, Lubomyr Zdomskyy

Kielce-Lviv-Wien

Warszawa - 2012

<u>Taras Banakh</u>, Ostap Chervak, Lubomyr Zdomskyy Character of points in the corona of a metric space

This topic lies in the intersection of three disciplines:

- Asymptotic Topology,
- General Topology,
- Set Theory.

Image: Image:

## **Objects**: Metric spaces, **Morphisms**: Coarse maps.

A function  $f : X \to Y$  between metric spaces is called *coarse* if  $\forall \delta \in \mathbb{R}_+ \exists \varepsilon \in \mathbb{R}_+ \forall x, x' \in X \ d_X(x, x') < \delta \Rightarrow d_Y(f(x), f(x')) < \varepsilon.$ 

Coarse maps are antipods of uniformly continuous maps.

**Objects**: Metric spaces, **Morphisms**: Coarse maps.

A function  $f: X \to Y$  between metric spaces is called *coarse* if  $\forall \delta \in \mathbb{R}_+ \exists \varepsilon \in \mathbb{R}_+ \forall x, x' \in X \ d_X(x, x') < \delta \Rightarrow d_Y(f(x), f(x')) < \varepsilon.$ 

Coarse maps are antipods of uniformly continuous maps.

**Objects**: Metric spaces, **Morphisms**: Coarse maps.

A function  $f: X \to Y$  between metric spaces is called *coarse* if  $\forall \delta \in \mathbb{R}_+ \exists \varepsilon \in \mathbb{R}_+ \forall x, x' \in X \ d_X(x, x') < \delta \Rightarrow d_Y(f(x), f(x')) < \varepsilon.$ 

Coarse maps are antipods of uniformly continuous maps.

**Def:** A coarse map  $f : X \to Y$  between metric spaces is called a

- a *coarse isomorphism* if f is bijective and  $f^{-1}$  is coarse;
- a coarse equivalence if there exists a coarse map g : Y → X such that max{d<sub>X</sub>(g ∘ f, id<sub>X</sub>), d<sub>Y</sub>(f ∘ g, id<sub>Y</sub>)} < ∞.</li>

#### Example:

The identity embedding  $\mathbb{Z} \to \mathbb{R}$  is a coarse equivalence but not a coarse isomorphism.

Asymptotic Topology studies properties of metric spaces preserved by coarse equivalences.

伺下 イヨト イヨ

**Def:** A coarse map  $f : X \to Y$  between metric spaces is called a

- a *coarse isomorphism* if f is bijective and  $f^{-1}$  is coarse;
- a coarse equivalence if there exists a coarse map g : Y → X such that max{d<sub>X</sub>(g ∘ f, id<sub>X</sub>), d<sub>Y</sub>(f ∘ g, id<sub>Y</sub>)} < ∞.</li>

#### Example:

The identity embedding  $\mathbb{Z} \to \mathbb{R}$  is a coarse equivalence but not a coarse isomorphism.

Asymptotic Topology studies properties of metric spaces preserved by coarse equivalences.

伺下 イヨト イヨト

**Def:** A coarse map  $f : X \to Y$  between metric spaces is called a

- a *coarse isomorphism* if f is bijective and  $f^{-1}$  is coarse;
- a coarse equivalence if there exists a coarse map g : Y → X such that max{d<sub>X</sub>(g ∘ f, id<sub>X</sub>), d<sub>Y</sub>(f ∘ g, id<sub>Y</sub>)} < ∞.</li>

## **Example:**

The identity embedding  $\mathbb{Z} \to \mathbb{R}$  is a coarse equivalence but not a coarse isomorphism.

Asymptotic Topology studies properties of metric spaces preserved by coarse equivalences.

伺 ト イ ヨ ト イ ヨ ト

**Def:** A coarse map  $f : X \to Y$  between metric spaces is called a

- a *coarse isomorphism* if f is bijective and  $f^{-1}$  is coarse;
- a coarse equivalence if there exists a coarse map g : Y → X such that max{d<sub>X</sub>(g ∘ f, id<sub>X</sub>), d<sub>Y</sub>(f ∘ g, id<sub>Y</sub>)} < ∞.</li>

## **Example:**

The identity embedding  $\mathbb{Z} \to \mathbb{R}$  is a coarse equivalence but not a coarse isomorphism.

Asymptotic Topology studies properties of metric spaces preserved by coarse equivalences.

# Asymptotic neighborhoods

## A function $f : X \to Y$ between metric spaces is *bounded-to-bounded* if a subset $B \subset Y$ is bounded iff $f^{-1}(B)$ is bounded in X.

Let  $\omega^{\uparrow X}$  be the set of all bounded-to-bounded functions  $\varepsilon: X \to \omega$ .

For a function  $\varepsilon \in \omega^{\uparrow X}$  and a subset  $A \subset X$  let  $B(A, \varepsilon) = \bigcup_{a \in A} B(a, \varepsilon(a))$ .



- - E - - E

A function  $f : X \to Y$  between metric spaces is *bounded-to-bounded* if a subset  $B \subset Y$  is bounded iff  $f^{-1}(B)$  is bounded in X.

Let  $\omega^{\uparrow X}$  be the set of all bounded-to-bounded functions  $\varepsilon: X \to \omega$ .

For a function  $\varepsilon \in \omega^{\uparrow X}$  and a subset  $A \subset X$  let  $B(A, \varepsilon) = \bigcup_{a \in A} B(a, \varepsilon(a))$ .



A function  $f : X \to Y$  between metric spaces is *bounded-to-bounded* if a subset  $B \subset Y$  is bounded iff  $f^{-1}(B)$  is bounded in X. Let  $\omega^{\uparrow X}$  be the set of all bounded-to-bounded functions  $\varepsilon : X \to \omega$ . For a function  $\varepsilon \in \omega^{\uparrow X}$  and a subset  $A \subset X$  let  $B(A, \varepsilon) = \bigcup_{a \in A} B(a, \varepsilon(a))$ .



A = 
 A = 
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A function  $f : X \to Y$  between metric spaces is *bounded-to-bounded* if a subset  $B \subset Y$  is bounded iff  $f^{-1}(B)$  is bounded in X. Let  $\omega^{\uparrow X}$  be the set of all bounded-to-bounded functions  $\varepsilon : X \to \omega$ . For a function  $\varepsilon \in \omega^{\uparrow X}$  and a subset  $A \subset X$  let  $B(A, \varepsilon) = \bigcup B(a, \varepsilon(a))$ .

a∈A

4 B 6 4 B



Let  $X^{\#}$  be the closed subset of  $\beta X_d$  consisting of all unbounded ultrafilters

An ultrafilter  $\mathcal{F}$  on  $X_d$  is *unbounded* if it contains no bounded subset of X.

**Def:** The *corona* of a metric space X is the quotient space  $\check{X} = X^{\#}/_{\sim}$  of  $X^{\#}$  by the equivalence relation identifying any ultrafilters  $p, q \in X^{\#}$  such that  $B(P, \varepsilon) \cap B(Q, \varepsilon) \neq \emptyset$  for any  $P \in p$ ,  $Q \in q$  and  $\varepsilon \in \omega^{\uparrow X}$ .

Elements of  $\check{X}$  are equivalence classes  $\check{p}$  of ultrafilters  $p \in X^{\#}$ . **Topology of**  $\check{X}$ : For any ultrafilter  $p \in X^{\#}$  the sets

$$\check{B}(P,\varepsilon) = \{\check{q}: B(P,\varepsilon) \in q \in X^{\#}\}, \ P \in p, \ \varepsilon \in \omega^{\uparrow X},$$

form a base of closed neighborhoods of  $\check{p}$  in the corona  $\check{X}$ .

伺 ト イ ヨ ト イ ヨ

# Let $X^{\#}$ be the closed subset of $\beta X_d$ consisting of all unbounded ultrafilters.

An ultrafilter  $\mathcal{F}$  on  $X_d$  is *unbounded* if it contains no bounded subset of X.

**Def:** The *corona* of a metric space X is the quotient space  $\check{X} = X^{\#}/_{\sim}$  of  $X^{\#}$  by the equivalence relation identifying any ultrafilters  $p, q \in X^{\#}$  such that  $B(P, \varepsilon) \cap B(Q, \varepsilon) \neq \emptyset$  for any  $P \in p$ ,  $Q \in q$  and  $\varepsilon \in \omega^{\uparrow X}$ .

Elements of  $\check{X}$  are equivalence classes  $\check{p}$  of ultrafilters  $p \in X^{\#}$ . **Topology of**  $\check{X}$ : For any ultrafilter  $p \in X^{\#}$  the sets

$$\check{B}(P,\varepsilon) = \{\check{q}: B(P,\varepsilon) \in q \in X^{\#}\}, \ P \in p, \ \varepsilon \in \omega^{\uparrow X},$$

form a base of closed neighborhoods of  $\check{p}$  in the corona  $\check{X}$ .

伺 ト イ ヨ ト イ ヨ

Let  $X^{\#}$  be the closed subset of  $\beta X_d$  consisting of all unbounded ultrafilters.

An ultrafilter  $\mathcal{F}$  on  $X_d$  is *unbounded* if it contains no bounded subset of X.

**Def:** The *corona* of a metric space X is the quotient space  $\check{X} = X^{\#}/_{\sim}$  of  $X^{\#}$  by the equivalence relation identifying any ultrafilters  $p, q \in X^{\#}$  such that  $B(P, \varepsilon) \cap B(Q, \varepsilon) \neq \emptyset$  for any  $P \in p$ ,  $Q \in q$  and  $\varepsilon \in \omega^{\uparrow X}$ .

Elements of  $\check{X}$  are equivalence classes  $\check{p}$  of ultrafilters  $p \in X^{\#}$ . **Topology of**  $\check{X}$ : For any ultrafilter  $p \in X^{\#}$  the sets

 $\check{B}(P,\varepsilon) = \{\check{q}: B(P,\varepsilon) \in q \in X^{\#}\}, \ P \in p, \ \varepsilon \in \omega^{\uparrow X},$ 

form a base of closed neighborhoods of  $\check{p}$  in the corona  $\check{X}$ .

伺下 イヨト イヨ

Let  $X^{\#}$  be the closed subset of  $\beta X_d$  consisting of all unbounded ultrafilters.

An ultrafilter  $\mathcal{F}$  on  $X_d$  is *unbounded* if it contains no bounded subset of X.

**Def:** The *corona* of a metric space X is the quotient space  $\check{X} = X^{\#}/_{\sim}$  of  $X^{\#}$  by the equivalence relation identifying any ultrafilters  $p, q \in X^{\#}$  such that  $B(P, \varepsilon) \cap B(Q, \varepsilon) \neq \emptyset$  for any  $P \in p$ ,  $Q \in q$  and  $\varepsilon \in \omega^{\uparrow X}$ .

Elements of  $\check{X}$  are equivalence classes  $\check{p}$  of ultrafilters  $p \in X^{\#}$ . **Topology of**  $\check{X}$ : For any ultrafilter  $p \in X^{\#}$  the sets  $\check{B}(P,\varepsilon) = \{\check{q} : B(P,\varepsilon) \in q \in X^{\#}\}, P \in p, \varepsilon \in \omega^{\uparrow X},$ 

form a base of closed neighborhoods of  $\check{p}$  in the corona  $\check{X}.$ 

(4月) (1日) (日)

Let  $X^{\#}$  be the closed subset of  $\beta X_d$  consisting of all unbounded ultrafilters.

An ultrafilter  $\mathcal{F}$  on  $X_d$  is *unbounded* if it contains no bounded subset of X.

**Def:** The *corona* of a metric space X is the quotient space  $\check{X} = X^{\#}/_{\sim}$  of  $X^{\#}$  by the equivalence relation identifying any ultrafilters  $p, q \in X^{\#}$  such that  $B(P, \varepsilon) \cap B(Q, \varepsilon) \neq \emptyset$  for any  $P \in p$ ,  $Q \in q$  and  $\varepsilon \in \omega^{\uparrow X}$ .

Elements of  $\check{X}$  are equivalence classes  $\check{p}$  of ultrafilters  $p \in X^{\#}$ . Topology of  $\check{X}$ : For any ultrafilter  $p \in X^{\#}$  the sets  $\check{B}(P, \varepsilon) = \{\check{q} : B(P, \varepsilon) \in q \in X^{\#}\}, P \in p, \varepsilon \in \omega^{\uparrow X},$ 

form a base of closed neighborhoods of  $\check{p}$  in the corona  $\check{X}$ .

伺下 イヨト イヨト

Let  $X^{\#}$  be the closed subset of  $\beta X_d$  consisting of all unbounded ultrafilters.

An ultrafilter  $\mathcal{F}$  on  $X_d$  is *unbounded* if it contains no bounded subset of X.

**Def:** The *corona* of a metric space X is the quotient space  $\check{X} = X^{\#}/_{\sim}$  of  $X^{\#}$  by the equivalence relation identifying any ultrafilters  $p, q \in X^{\#}$  such that  $B(P, \varepsilon) \cap B(Q, \varepsilon) \neq \emptyset$  for any  $P \in p$ ,  $Q \in q$  and  $\varepsilon \in \omega^{\uparrow X}$ .

Elements of X are equivalence classes p of ultrafilters  $p \in X^{\#}$ .

**Topology of**  $\check{X}$ : For any ultrafilter  $p \in X^{\#}$  the sets

 $\check{B}(P,\varepsilon) = \{\check{q}: B(P,\varepsilon) \in q \in X^{\#}\}, \ P \in p, \ \varepsilon \in \omega^{\uparrow X},$ 

form a base of closed neighborhoods of  $\check{p}$  in the corona  $\check{X}$ .

- 4 同 6 4 日 6 4 日 6

The corona is a kind of a topological telescope which transforms a macro-object (metric space) into a compact micro-object (its corona).

## Problem

Which asymptotic properties of a metric space X are reflected in topological properties of its corona  $\check{X}$ ?

Such properties should be preserved by coarse equivalences because of

#### Fact

Each coarse equivalence  $f : X \to Y$  between metric spaces induces a homeomorphism  $\tilde{f} : \check{X} \to \check{Y}$  of their coronas.

The corona is a kind of a topological telescope which transforms a macro-object (metric space) into a compact micro-object (its corona).

## Problem

Which asymptotic properties of a metric space X are reflected in topological properties of its corona  $\check{X}$ ?

Such properties should be preserved by coarse equivalences because of

#### Fact

Each coarse equivalence  $f : X \to Y$  between metric spaces induces a homeomorphism  $\check{f} : \check{X} \to \check{Y}$  of their coronas.

伺 ト イ ヨ ト イ ヨ

The corona is a kind of a topological telescope which transforms a macro-object (metric space) into a compact micro-object (its corona).

## Problem

Which asymptotic properties of a metric space X are reflected in topological properties of its corona  $\check{X}$ ?

Such properties should be preserved by coarse equivalences because of

## Fact

Each coarse equivalence  $f : X \to Y$  between metric spaces induces a homeomorphism  $\check{f} : \check{X} \to \check{Y}$  of their coronas.

## A metric space X is *proper* if each closed ball in X is compact.

**Def:** A function  $f : X \to \mathbb{R}$  is called *slowly oscillating* if  $\forall \varepsilon > 0 \ \forall \delta < \infty$  there is a bounded subset  $B \subset X$  such that  $\forall x, x' \in X \setminus B \quad d_X(x, x') < \delta \implies |f(x) - f(x')| < \varepsilon$ .

#### Example.

The function  $f:[1,\infty) o\mathbb{R}$ ,  $f:x\mapstorac{1}{x}$ , is slowly oscillating.

伺 ト イ ヨ ト イ ヨ ト

## A metric space X is *proper* if each closed ball in X is compact.

**Def:** A function  $f : X \to \mathbb{R}$  is called *slowly oscillating* if  $\forall \varepsilon > 0 \ \forall \delta < \infty$  there is a bounded subset  $B \subset X$  such that  $\forall x, x' \in X \setminus B \quad d_X(x, x') < \delta \implies |f(x) - f(x')| < \varepsilon$ .

#### Example.

The function  $f:[1,\infty) o\mathbb{R}$ ,  $f:x\mapstorac{1}{x}$ , is slowly oscillating.

直 と く ヨ と く ヨ と

## A metric space X is *proper* if each closed ball in X is compact.

**Def:** A function  $f : X \to \mathbb{R}$  is called *slowly oscillating* if  $\forall \varepsilon > 0 \ \forall \delta < \infty$  there is a bounded subset  $B \subset X$  such that  $\forall x, x' \in X \setminus B \quad d_X(x, x') < \delta \implies |f(x) - f(x')| < \varepsilon$ .

### Example.

The function  $f : [1, \infty) \to \mathbb{R}$ ,  $f : x \mapsto \frac{1}{x}$ , is slowly oscillating.

. . . . . . .

# Higson corona of a proper metric space

# For a proper metric space X let SO(X) be the algebra of real-valued bounded continuous slowly oscillating functions.

This algebra determined a compactification  $\overline{h}(X)$  of X called the Higson compactification of X.

The compactification  $\overline{h}(X)$  is the closure of the image h(X) of X under the embedding  $h: X \to \mathbb{R}^{SO(X)}$ ,  $h: x \mapsto (f(x))_{f \in SO(X)}$ .

The remainder  $\nu X = \overline{h}(X) \setminus h(X)$  is called the Higson corona of X.

#### Theorem (Protasov)

For a proper metric space X its Higson corona  $\nu X$  is canonically homeomorphic to the corona  $\check{X}$  of X.

The corona  $\check{X}$  "sees" certain asymptotic properties of X, in particular, its asymptotic dimension asdim(X).

・ 戸 ト ・ ヨ ト ・ ヨ

For a proper metric space X let SO(X) be the algebra of real-valued bounded continuous slowly oscillating functions. This algebra determined a compactification  $\bar{h}(X)$  of X called the Higson compactification of X.

The compactification  $\overline{h}(X)$  is the closure of the image h(X) of X under the embedding  $h: X \to \mathbb{R}^{SO(X)}$ ,  $h: x \mapsto (f(x))_{f \in SO(X)}$ .

The remainder  $\nu X = \overline{h}(X) \setminus h(X)$  is called the Higson corona of X.

## Theorem (Protasov)

For a proper metric space X its Higson corona  $\nu X$  is canonically homeomorphic to the corona  $\check{X}$  of X.

The corona  $\check{X}$  "sees" certain asymptotic properties of X, in particular, its asymptotic dimension asdim(X).

・ 戸 ト ・ ヨ ト ・ ヨ

This algebra determined a compactification  $\bar{h}(X)$  of X called the Higson compactification of X.

The compactification  $\bar{h}(X)$  is the closure of the image h(X) of X under the embedding  $h: X \to \mathbb{R}^{SO(X)}$ ,  $h: x \mapsto (f(x))_{f \in SO(X)}$ .

The remainder  $\nu X = \overline{h}(X) \setminus h(X)$  is called the Higson corona of X.

#### Theorem (Protasov)

For a proper metric space X its Higson corona  $\nu X$  is canonically homeomorphic to the corona  $\check{X}$  of X.

The corona  $\check{X}$  "sees" certain asymptotic properties of X, in particular, its asymptotic dimension asdim(X).

- 4 周 ト 4 戸 ト 4 戸 ト

This algebra determined a compactification  $\bar{h}(X)$  of X called the Higson compactification of X.

The compactification  $\bar{h}(X)$  is the closure of the image h(X) of X under the embedding  $h: X \to \mathbb{R}^{SO(X)}$ ,  $h: x \mapsto (f(x))_{f \in SO(X)}$ .

The remainder  $\nu X = \overline{h}(X) \setminus h(X)$  is called the Higson corona of X.

#### Theorem (Protasov)

For a proper metric space X its Higson corona  $\nu X$  is canonically homeomorphic to the corona  $\check{X}$  of X.

The corona  $\check{X}$  "sees" certain asymptotic properties of X, in particular, its asymptotic dimension asdim(X).

- 4 周 ト 4 戸 ト 4 戸 ト

This algebra determined a compactification  $\bar{h}(X)$  of X called the Higson compactification of X.

The compactification  $\bar{h}(X)$  is the closure of the image h(X) of X under the embedding  $h: X \to \mathbb{R}^{SO(X)}$ ,  $h: x \mapsto (f(x))_{f \in SO(X)}$ .

The remainder  $\nu X = \overline{h}(X) \setminus h(X)$  is called the Higson corona of X.

## Theorem (Protasov)

For a proper metric space X its Higson corona  $\nu X$  is canonically homeomorphic to the corona  $\check{X}$  of X.

The corona X "sees" certain asymptotic properties of X, in particular, its asymptotic dimension asdim(X).

(4月) (1日) (日)

This algebra determined a compactification  $\bar{h}(X)$  of X called the Higson compactification of X.

The compactification  $\bar{h}(X)$  is the closure of the image h(X) of X under the embedding  $h: X \to \mathbb{R}^{SO(X)}$ ,  $h: x \mapsto (f(x))_{f \in SO(X)}$ .

The remainder  $\nu X = \overline{h}(X) \setminus h(X)$  is called the Higson corona of X.

## Theorem (Protasov)

For a proper metric space X its Higson corona  $\nu X$  is canonically homeomorphic to the corona  $\check{X}$  of X.

The corona  $\check{X}$  "sees" certain asymptotic properties of X, in particular, its asymptotic dimension asdim(X).

A B F A B F

- topological dimension dim(X) ≤ n if for each open cover ε of X there are an open cover δ of X and a cover C ≺ ε of X such that the δ-star B(x, δ) = ∪{D ∈ δ : x ∈ D} of any point x ∈ X, meets at most n + 1 elements of the cover C;
- uniform dimension udim(X) ≤ n if for each ε > 0 there are δ > 0 and a cover C ≺ {B(x, ε)}<sub>x∈X</sub> of X such that each δ-ball B(x, δ), x ∈ X, meets at most n + 1 elements of the cover C;
- asymptotic dimension asdim(X) ≤ n if for each δ < ∞ there are ε < ∞ and a cover C ≺ {B(x, ε)}<sub>x∈X</sub> of X such that each δ-ball B(x, δ), x ∈ X, meets at most n + 1 elements of the cover C.

**Fact:** dim $(\mathbb{R}^n)$  = udim $(\mathbb{R}^n)$  = asdim $(\mathbb{R}^n)$  = n.

- topological dimension dim(X) ≤ n if for each open cover ε of X there are an open cover δ of X and a cover C ≺ ε of X such that the δ-star B(x, δ) = ∪{D ∈ δ : x ∈ D} of any point x ∈ X, meets at most n + 1 elements of the cover C;
- uniform dimension udim(X) ≤ n if for each ε > 0 there are δ > 0 and a cover C ≺ {B(x,ε)}<sub>x∈X</sub> of X such that each δ-ball B(x,δ), x ∈ X, meets at most n + 1 elements of the cover C;
- asymptotic dimension asdim(X) ≤ n if for each δ < ∞ there are ε < ∞ and a cover C ≺ {B(x, ε)}<sub>x∈X</sub> of X such that each δ-ball B(x, δ), x ∈ X, meets at most n + 1 elements of the cover C.

**Fact:** dim $(\mathbb{R}^n)$  = udim $(\mathbb{R}^n)$  = asdim $(\mathbb{R}^n)$  = n.

伺下 イヨト イヨ

- topological dimension dim(X) ≤ n if for each open cover ε of X there are an open cover δ of X and a cover C ≺ ε of X such that the δ-star B(x,δ) = ∪{D ∈ δ : x ∈ D} of any point x ∈ X, meets at most n + 1 elements of the cover C;
- uniform dimension udim(X) ≤ n if for each ε > 0 there are δ > 0 and a cover C ≺ {B(x,ε)}<sub>x∈X</sub> of X such that each δ-ball B(x,δ), x ∈ X, meets at most n + 1 elements of the cover C;
- asymptotic dimension asdim(X) ≤ n if for each δ < ∞ there are ε < ∞ and a cover C ≺ {B(x, ε)}<sub>x∈X</sub> of X such that each δ-ball B(x, δ), x ∈ X, meets at most n + 1 elements of the cover C.

**Fact:** dim $(\mathbb{R}^n)$  = udim $(\mathbb{R}^n)$  = asdim $(\mathbb{R}^n)$  = n.

- topological dimension dim(X) ≤ n if for each open cover ε of X there are an open cover δ of X and a cover C ≺ ε of X such that the δ-star B(x, δ) = ∪{D ∈ δ : x ∈ D} of any point x ∈ X, meets at most n + 1 elements of the cover C;
- uniform dimension udim(X) ≤ n if for each ε > 0 there are δ > 0 and a cover C ≺ {B(x, ε)}<sub>x∈X</sub> of X such that each δ-ball B(x, δ), x ∈ X, meets at most n + 1 elements of the cover C;
- asymptotic dimension asdim(X) ≤ n if for each δ < ∞ there are ε < ∞ and a cover C ≺ {B(x, ε)}<sub>x∈X</sub> of X such that each δ-ball B(x, δ), x ∈ X, meets at most n + 1 elements of the cover C.

**Fact:** dim $(\mathbb{R}^n)$  = udim $(\mathbb{R}^n)$  = asdim $(\mathbb{R}^n)$  = n.

## Theorem

## Let X be a proper metric space. Then

- dim $(\check{X}) \leq \operatorname{asdim}(X)$  (Dranishnikov-Keesling-Uspenskij, 1998);
- 2 dim $(\check{X})$  = asdim(X) if asdim $(X) < \infty$  (Dranishnikov, 2000);
- dim $(\check{X}) = 0$  iff asdim(X) = 0 (Banakh-Chervak, 2012).

## Open Problem (Dranishnikov)

Is dim $(\check{X})$  = asdim(X) for each proper metric space X?

## Fact

A metric space has asymptotic dimension zero if and only if it is coarsely isomorphic to an ultrametric space.

| 4 同 1 4 三 1 4 三 1
#### Theorem

Let X be a proper metric space. Then

- dim $(\check{X}) \leq \operatorname{asdim}(X)$  (Dranishnikov-Keesling-Uspenskij, 1998);
- 2 dim $(\check{X})$  = asdim(X) *if* asdim $(X) < \infty$  (Dranishnikov, 2000);
- dim $(\check{X}) = 0$  iff asdim(X) = 0 (Banakh-Chervak, 2012).

# Open Problem (Dranishnikov)

Is dim $(\check{X})$  = asdim(X) for each proper metric space X?

#### Fact

A metric space has asymptotic dimension zero if and only if it is coarsely isomorphic to an ultrametric space.

- 4 同 ト 4 ヨ ト 4 ヨ ト

#### Theorem

Let X be a proper metric space. Then

- dim $(\check{X}) \leq \operatorname{asdim}(X)$  (Dranishnikov-Keesling-Uspenskij, 1998);
- 2 dim $(\check{X})$  = asdim(X) *if* asdim $(X) < \infty$  (Dranishnikov, 2000);
- dim $(\check{X}) = 0$  iff asdim(X) = 0 (Banakh-Chervak, 2012).

# Open Problem (Dranishnikov)

Is dim $(\check{X})$  = asdim(X) for each proper metric space X?

#### Fact

A metric space has asymptotic dimension zero if and only if it is coarsely isomorphic to an ultrametric space.

- 4 同 ト 4 ヨ ト 4 ヨ ト

For each unbounded metric separable space X with asdim(X) = 0

- $\check{X}$  is a zero-dimensional compact Hausdorff space of weight  $\mathfrak{c}$ ;
- **2** each non-empty  $G_{\delta}$ -subset in  $\check{X}$  has non-empty interior;
- **3** any two disjoint open  $F_{\sigma}$ -subsets of  $\check{X}$  have disjoint closures.

This theorem and the CH-characterization of the Stone-Čech remainder  $\omega^* = \beta(\omega) \setminus \omega$  imply:

#### Corollary (Protasov, 2011)

Under CH the corona  $\check{X}$  of an unbounded metric separable space X of  $\operatorname{asdim}(X) = 0$  is homeomorphic to  $\omega^*$ .

#### Problem (Protasov)

Is this theorem true in ZFC? No!

Taras Banakh, Ostap Chervak, Lubomyr Zdomskyy Character of points in the corona of a metric space

For each unbounded metric separable space X with asdim(X) = 0

) 
$$\check{X}$$
 is a zero-dimensional compact Hausdorff space of weight  $\mathfrak{c};$ 

- **2** each non-empty  $G_{\delta}$ -subset in  $\check{X}$  has non-empty interior;
- **3** any two disjoint open  $F_{\sigma}$ -subsets of  $\check{X}$  have disjoint closures.

This theorem and the CH-characterization of the Stone-Čech remainder  $\omega^* = \beta(\omega) \setminus \omega$  imply:

# Corollary (Protasov, 2011)

Under CH the corona  $\check{X}$  of an unbounded metric separable space X of  $\operatorname{asdim}(X) = 0$  is homeomorphic to  $\omega^*$ .

#### Problem (Protasov)

Is this theorem true in ZFC? No!

For each unbounded metric separable space X with asdim(X) = 0

) 
$$\check{X}$$
 is a zero-dimensional compact Hausdorff space of weight  $\mathfrak{c};$ 

- **2** each non-empty  $G_{\delta}$ -subset in  $\check{X}$  has non-empty interior;
- **3** any two disjoint open  $F_{\sigma}$ -subsets of  $\check{X}$  have disjoint closures.

This theorem and the CH-characterization of the Stone-Čech remainder  $\omega^* = \beta(\omega) \setminus \omega$  imply:

# Corollary (Protasov, 2011)

Under CH the corona  $\check{X}$  of an unbounded metric separable space X of  $\operatorname{asdim}(X) = 0$  is homeomorphic to  $\omega^*$ .

# Problem (Protasov)

Is this theorem true in ZFC? No!

Taras Banakh, Ostap Chervak, Lubomyr Zdomskyy Character of points in the corona of a metric space

For each unbounded metric separable space X with asdim(X) = 0

) 
$$\check{X}$$
 is a zero-dimensional compact Hausdorff space of weight  $\mathfrak{c}$ ;

- **2** each non-empty  $G_{\delta}$ -subset in  $\check{X}$  has non-empty interior;
- **3** any two disjoint open  $F_{\sigma}$ -subsets of  $\check{X}$  have disjoint closures.

This theorem and the CH-characterization of the Stone-Čech remainder  $\omega^* = \beta(\omega) \setminus \omega$  imply:

# Corollary (Protasov, 2011)

Under CH the corona  $\check{X}$  of an unbounded metric separable space X of  $\operatorname{asdim}(X) = 0$  is homeomorphic to  $\omega^*$ .

# Problem (Protasov)

Is this theorem true in ZFC? No!

 $m\chi(X) = \min_{x \in X} \chi(x, X)$ 

where  $\chi(x, X)$ , the *character* of X at a point x is the smallest cardinality of a neighborhood base at x.

The cardinal  $\mathbf{u} = m\chi(\omega^*)$  is one of well-known small uncountable cardinals.

Another well-known small uncountable cardinal is  $\mathfrak{d}$ , the cofinality of the partially ordered set  $(\omega^{\omega}, \leq)$ .

It is known that  $\mathfrak{u} = \mathfrak{d} = \mathfrak{c}$  under MA,

but the strict inequalities  $\mathfrak{u} < \mathfrak{d}$  and  $\mathfrak{d} < \mathfrak{u}$  are consistent with ZFC.

 $m\chi(X) = \min_{x \in X} \chi(x, X)$ 

where  $\chi(x, X)$ , the *character* of X at a point x is the smallest cardinality of a neighborhood base at x.

The cardinal  $\mathbf{u} = m\chi(\omega^*)$  is one of well-known small uncountable cardinals.

Another well-known small uncountable cardinal is  $\mathfrak{d}$ , the cofinality of the partially ordered set  $(\omega^{\omega}, \leq)$ .

It is known that  $\mathfrak{u} = \mathfrak{d} = \mathfrak{c}$  under MA,

but the strict inequalities  $\mathfrak{u} < \mathfrak{d}$  and  $\mathfrak{d} < \mathfrak{u}$  are consistent with ZFC.

. . . . . . .

 $m\chi(X) = \min_{x \in X} \chi(x, X)$ 

where  $\chi(x, X)$ , the *character* of X at a point x is the smallest cardinality of a neighborhood base at x.

The cardinal  $\mathbf{u} = m\chi(\omega^*)$  is one of well-known small uncountable cardinals.

Another well-known small uncountable cardinal is  $\mathfrak{d}$ , the cofinality of the partially ordered set  $(\omega^{\omega}, \leq)$ .

It is known that  $\mathfrak{u} = \mathfrak{d} = \mathfrak{c}$  under MA,

but the strict inequalities  $\mathfrak{u} < \mathfrak{d}$  and  $\mathfrak{d} < \mathfrak{u}$  are consistent with ZFC.

 $m\chi(X) = \min_{x \in X} \chi(x, X)$ 

where  $\chi(x, X)$ , the *character* of X at a point x is the smallest cardinality of a neighborhood base at x.

The cardinal  $\mathbf{u} = m\chi(\omega^*)$  is one of well-known small uncountable cardinals.

Another well-known small uncountable cardinal is  $\mathfrak{d}$ , the cofinality of the partially ordered set  $(\omega^{\omega}, \leq)$ .

It is known that  $\mathfrak{u} = \mathfrak{d} = \mathfrak{c}$  under MA,

but the strict inequalities  $\mathfrak{u} < \mathfrak{d}$  and  $\mathfrak{d} < \mathfrak{u}$  are consistent with ZFC.

 $m\chi(X) = \min_{x \in X} \chi(x, X)$ 

where  $\chi(x, X)$ , the *character* of X at a point x is the smallest cardinality of a neighborhood base at x.

The cardinal  $\mathbf{u} = m\chi(\omega^*)$  is one of well-known small uncountable cardinals.

Another well-known small uncountable cardinal is  $\mathfrak{d}$ , the cofinality of the partially ordered set  $(\omega^{\omega}, \leq)$ .

It is known that  $\mathfrak{u} = \mathfrak{d} = \mathfrak{c}$  under MA,

but the strict inequalities u < 0 and 0 < u are consistent with ZFC.

We say that a metric space X has isolated balls if there is  $\varepsilon < \infty$  such that for each  $\delta < \infty$  there is a point  $x \in X$  with  $B(x, \delta) \subset B(x, \varepsilon)$ .

#### Example

The space  $\mathbb{A} = \{n^2\}_{n \in \omega} \subset \mathbb{Z}$  has asymptotically isolated balls.

#### Theorem (Banakh-Chervak-Zdomskyy, 2012)

The corona  $\check{X}$  of an unbounded metric space X has minimal character

$$m\chi(X) = \begin{cases} \mathfrak{u} & \text{if } X \text{ has asymptotically isolated balls,} \\ \mathfrak{u} \cdot \mathfrak{d} & \text{otherwise.} \end{cases}$$

/□ ▶ < 글 ▶ < 글

We say that a metric space X has isolated balls if there is  $\varepsilon < \infty$  such that for each  $\delta < \infty$  there is a point  $x \in X$  with  $B(x, \delta) \subset B(x, \varepsilon)$ .

#### Example

The space  $\mathbb{A} = \{n^2\}_{n \in \omega} \subset \mathbb{Z}$  has asymptotically isolated balls.

## Theorem (Banakh-Chervak-Zdomskyy, 2012)

The corona  $\check{X}$  of an unbounded metric space X has minimal character

$$m\chi(X) = \begin{cases} \mathfrak{u} & \text{if } X \text{ has asymptotically isolated balls,} \\ \mathfrak{u} \cdot \mathfrak{d} & \text{otherwise.} \end{cases}$$

同 ト イヨト イヨト

We say that a metric space X has isolated balls if there is  $\varepsilon < \infty$  such that for each  $\delta < \infty$  there is a point  $x \in X$  with  $B(x, \delta) \subset B(x, \varepsilon)$ .

#### Example

The space  $\mathbb{A} = \{n^2\}_{n \in \omega} \subset \mathbb{Z}$  has asymptotically isolated balls.

# Theorem (Banakh-Chervak-Zdomskyy, 2012)

The corona  $\check{X}$  of an unbounded metric space X has minimal character

$$m\chi(X) = \begin{cases} \mathfrak{u} & \text{if } X \text{ has asymptotically isolated balls,} \\ \mathfrak{u} \cdot \mathfrak{d} & \text{otherwise.} \end{cases}$$

$$2^{<\mathbb{N}} = \left\{ (x_n)_{n=1}^{\infty} \in \{0,1\}^{\mathbb{N}} : \sum_{n=1}^{\infty} x_n < \infty \right\}$$

endowed with the metric  $d((x_n), (y_n)) = \sum_{n=1}^{\infty} 2^n \cdot |x_n - y_n|$ .

 $2^{<\mathbb{N}}$  is an asymptotic counterpart of the Cantor cube  $2^{\omega} = \{0, 1\}^{\omega}$ .

#### Fact

The Cantor macro-cube  $2^{<\mathbb{N}}$  is coarsely isomorphic to the Cantor macro-set  $\left\{\sum_{n=1}^{\infty} 3^n 2x_n : (x_n)_{n\in\mathbb{N}} \in 2^{<\mathbb{N}}\right\} \subset \mathbb{Z}$ .

0.6 18 54

162

通 と イ ヨ と イ ヨ と

Taras Banakh, Ostap Chervak, Lubomyr Zdomskyy Character of points in the corona of a metric space

$$2^{<\mathbb{N}} = \left\{ (x_n)_{n=1}^{\infty} \in \{0,1\}^{\mathbb{N}} : \sum_{n=1}^{\infty} x_n < \infty \right\}$$

endowed with the metric  $d((x_n), (y_n)) = \sum_{n=1}^{\infty} 2^n \cdot |x_n - y_n|$ .

 $2^{<\mathbb{N}}$  is an asymptotic counterpart of the Cantor cube  $2^{\omega} = \{0,1\}^{\omega}$ .

#### Fact

The Cantor macro-cube  $2^{<\mathbb{N}}$  is coarsely isomorphic to the Cantor macro-set  $\left\{\sum_{n=1}^{\infty} 3^n 2x_n : (x_n)_{n\in\mathbb{N}} \in 2^{<\mathbb{N}}\right\} \subset \mathbb{Z}$ .

06 18 54

162

通 と イ ヨ と イ ヨ と

Taras Banakh, Ostap Chervak, Lubomyr Zdomskyy Character of points in the corona of a metric space

$$2^{<\mathbb{N}} = \left\{ (x_n)_{n=1}^{\infty} \in \{0,1\}^{\mathbb{N}} : \sum_{n=1}^{\infty} x_n < \infty \right\}$$

endowed with the metric  $d((x_n), (y_n)) = \sum_{n=1}^{\infty} 2^n \cdot |x_n - y_n|$ .

 $2^{<\mathbb{N}}$  is an asymptotic counterpart of the Cantor cube  $2^{\omega} = \{0,1\}^{\omega}$ .

#### Fact

The Cantor macro-cube  $2^{<\mathbb{N}}$  is coarsely isomorphic to the Cantor macro-set  $\left\{\sum_{n=1}^{\infty} 3^n 2x_n : (x_n)_{n\in\mathbb{N}} \in 2^{<\mathbb{N}}\right\} \subset \mathbb{Z}$ .

| 06 | 18 | 54 | 162 |  |
|----|----|----|-----|--|

$$2^{<\mathbb{N}} = \left\{ (x_n)_{n=1}^{\infty} \in \{0,1\}^{\mathbb{N}} : \sum_{n=1}^{\infty} x_n < \infty \right\}$$

endowed with the metric  $d((x_n), (y_n)) = \sum_{n=1}^{\infty} 2^n \cdot |x_n - y_n|$ .

 $2^{<\mathbb{N}}$  is an asymptotic counterpart of the Cantor cube  $2^{\omega} = \{0,1\}^{\omega}$ .

#### Fact

The Cantor macro-cube  $2^{<\mathbb{N}}$  is coarsely isomorphic to the Cantor macro-set  $\left\{\sum_{n=1}^{\infty} 3^n 2x_n : (x_n)_{n\in\mathbb{N}} \in 2^{<\mathbb{N}}\right\} \subset \mathbb{Z}$ .

| •• •• |    |    |     | <br> |
|-------|----|----|-----|------|
| 06    | 18 | 54 | 162 |      |

# Universality of the Cantor macro-cube

It is well-known that the Cantor cube  $2^{\omega}$  contains a topological copy of each zero-dimensional metrizable separable space.

A similar property has the Cantor macro-cube 2 $^<$ 

#### Definition

A metric space X has bounded geometry if  $\exists \varepsilon < \infty \ \forall \delta < \infty \ \exists N \in \mathbb{N}$  such that each  $\delta$ -ball  $B(x, \delta)$ ,  $x \in X$ , can be covered by  $\leq N \varepsilon$ -balls.

#### Theorem (Dranishnikov-Zarichnyi, 2004)

A metric space X is coarsely equivalent to a subspace of  $2^{<\mathbb{N}}$  iff asdim $(X) \leq 0$  and X has bounded geometry.

It is well-known that the Cantor cube  $2^{\omega}$  contains a topological copy of each zero-dimensional metrizable separable space. A similar property has the Cantor macro-cube  $2^{<\mathbb{N}}$ .

#### Definition

A metric space X has bounded geometry if  $\exists \varepsilon < \infty \ \forall \delta < \infty \ \exists N \in \mathbb{N}$  such that each  $\delta$ -ball  $B(x, \delta)$ ,  $x \in X$ , can be covered by  $\leq N \varepsilon$ -balls.

#### Theorem (Dranishnikov-Zarichnyi, 2004)

A metric space X is coarsely equivalent to a subspace of  $2^{<\mathbb{N}}$  iff asdim(X)  $\leq 0$  and X has bounded geometry.

同 ト イヨト イヨト

It is well-known that the Cantor cube  $2^{\omega}$  contains a topological copy of each zero-dimensional metrizable separable space.

#### Definition

A metric space X has bounded geometry if  $\exists \varepsilon < \infty \ \forall \delta < \infty \ \exists N \in \mathbb{N}$  such that each  $\delta$ -ball  $B(x, \delta)$ ,  $x \in X$ , can be covered by  $\leq N \varepsilon$ -balls.

#### Theorem (Dranishnikov-Zarichnyi, 2004)

A metric space X is coarsely equivalent to a subspace of  $2^{<\mathbb{N}}$  iff asdim(X)  $\leq 0$  and X has bounded geometry.

向下 イヨト イヨト

It is well-known that the Cantor cube  $2^{\omega}$  contains a topological copy of each zero-dimensional metrizable separable space.

#### Definition

A metric space X has bounded geometry if  $\exists \varepsilon < \infty \ \forall \delta < \infty \ \exists N \in \mathbb{N}$  such that each  $\delta$ -ball  $B(x, \delta)$ ,  $x \in X$ , can be covered by  $\leq N \varepsilon$ -balls.

# Theorem (Dranishnikov-Zarichnyi, 2004)

A metric space X is coarsely equivalent to a subspace of  $2^{<\mathbb{N}}$  iff  $\operatorname{asdim}(X) \leq 0$  and X has bounded geometry.

## Theorem (Brouwer, 1904)

A metric space X is (uniformly) homeomorphic to  $2^{\omega}$  if and only if X has topological dimension zero, is compact, and contains no isolated points.

#### Theorem (Banakh-Zarichnyi, 2011)

A metric space X is coarsely equivalent to  $2^{<\mathbb{N}}$  if and only if X has asymptotic dimension zero, has bounded geometry, and contains no asymptotically isolated balls.

# Theorem (Brouwer, 1904)

A metric space X is (uniformly) homeomorphic to  $2^{\omega}$  if and only if X has topological dimension zero, is compact, and contains no isolated points.

# Theorem (Banakh-Zarichnyi, 2011)

A metric space X is coarsely equivalent to  $2^{<\mathbb{N}}$  if and only if X has asymptotic dimension zero, has bounded geometry, and contains no asymptotically isolated balls.

Under  $u < \mathfrak{d}$  for a metric space X of bounded geometry the following conditions are equivalent:

- X and  $2^{<\mathbb{N}}$  are coarsely equivalent;
- 2 the coronas of X and  $2^{<\mathbb{N}}$  are homeomorphic;

3 dim
$$(\check{X}) = 0$$
 and  $m\chi(\check{X}) = \mathfrak{d}$ .

So, under  $\mathfrak{u}<\mathfrak{d}$  the corona recognizes metric spaces coarsely equivalent to the Cantor macro-cube.

Under  $\omega_1 = \mathfrak{c}$  the corona is "blind" and sees no difference between asymptotically zero-dimensional separable metric spaces.

Under OCA+MA<sub> $\aleph_1$ </sub> the corona is able to see in another (say, infra-red) end of the asymptotic spectrum and recognizes asymptotically discrete metric spaces.

同下 イヨト イヨ

Under  $u < \mathfrak{d}$  for a metric space X of bounded geometry the following conditions are equivalent:

- X and  $2^{<\mathbb{N}}$  are coarsely equivalent;
- 2 the coronas of X and  $2^{<\mathbb{N}}$  are homeomorphic;

3 dim
$$(\check{X})=0$$
 and  $m\chi(\check{X})=\mathfrak{d}.$ 

# So, under $\mathfrak{u}<\mathfrak{d}$ the corona recognizes metric spaces coarsely equivalent to the Cantor macro-cube.

Under  $\omega_1 = \mathfrak{c}$  the corona is "blind" and sees no difference between asymptotically zero-dimensional separable metric spaces.

Under OCA+MA<sub> $\aleph_1$ </sub> the corona is able to see in another (say, infra-red) end of the asymptotic spectrum and recognizes asymptotically discrete metric spaces.

同 ト イヨ ト イヨ ト

Under  $u < \mathfrak{d}$  for a metric space X of bounded geometry the following conditions are equivalent:

- X and  $2^{<\mathbb{N}}$  are coarsely equivalent;
- 2 the coronas of X and  $2^{<\mathbb{N}}$  are homeomorphic;

3 dim
$$(\check{X})=0$$
 and  $m\chi(\check{X})=\mathfrak{d}.$ 

So, under  $\mathfrak{u}<\mathfrak{d}$  the corona recognizes metric spaces coarsely equivalent to the Cantor macro-cube.

Under  $\omega_1 = \mathfrak{c}$  the corona is "blind" and sees no difference between asymptotically zero-dimensional separable metric spaces.

Under OCA+MA<sub> $\aleph_1$ </sub> the corona is able to see in another (say, infra-red) end of the asymptotic spectrum and recognizes asymptotically discrete metric spaces.

直 ト イヨ ト イヨ ト

Under  $u < \mathfrak{d}$  for a metric space X of bounded geometry the following conditions are equivalent:

- X and  $2^{<\mathbb{N}}$  are coarsely equivalent;
- 2 the coronas of X and  $2^{<\mathbb{N}}$  are homeomorphic;

3 dim
$$(\check{X}) = 0$$
 and  $m\chi(\check{X}) = \mathfrak{d}$ .

So, under  $\mathfrak{u} < \mathfrak{d}$  the corona recognizes metric spaces coarsely equivalent to the Cantor macro-cube.

Under  $\omega_1 = \mathfrak{c}$  the corona is "blind" and sees no difference between asymptotically zero-dimensional separable metric spaces.

Under OCA+MA $_{\aleph_1}$  the corona is able to see in another (say, infra-red) end of the asymptotic spectrum and recognizes asymptotically discrete metric spaces.

伺 ト イヨト イヨト

A metric space X is asymptotically discrete if  $\exists \varepsilon < \infty \ \forall \delta < \infty$ there is a bounded subset  $B \subset X$  such that  $B(x, \delta) \subset B(x, \varepsilon)$  for all  $x \in X \setminus B$ .

#### Fact

- Each unbounded metric space contains an unbounded asymptotically discrete subspace.
- ② A separable metric space is asymptotically discrete iff it is coarsely equivalent to the space A = {n<sup>2</sup>}<sub>n∈ω</sub> ⊂ Z.

So up to a coarse equivalence,  $\mathbb{A} = \{n^2\}_{n \in \omega}$ , is a smallest unbounded metric space, opposite to the Cantor macro-cube  $2^{<\mathbb{N}}$  which is the largest metric space of bounded geometry and asymptotic dimension zero.

♬▶ ◀ ☱ ▶ ◀

A metric space X is asymptotically discrete if  $\exists \varepsilon < \infty \ \forall \delta < \infty$ there is a bounded subset  $B \subset X$  such that  $B(x, \delta) \subset B(x, \varepsilon)$  for all  $x \in X \setminus B$ .

#### Fact

- Each unbounded metric space contains an unbounded asymptotically discrete subspace.
  - A separable metric space is asymptotically discrete iff it is coarsely equivalent to the space A = {n<sup>2</sup>}<sub>n∈ω</sub> ⊂ Z.

So up to a coarse equivalence,  $\mathbb{A} = \{n^2\}_{n \in \omega}$ , is a smallest unbounded metric space, opposite to the Cantor macro-cube  $2^{<\mathbb{N}}$  which is the largest metric space of bounded geometry and asymptotic dimension zero.

- A 🗐 🕨 A

A metric space X is asymptotically discrete if  $\exists \varepsilon < \infty \ \forall \delta < \infty$ there is a bounded subset  $B \subset X$  such that  $B(x, \delta) \subset B(x, \varepsilon)$  for all  $x \in X \setminus B$ .

#### Fact

- Each unbounded metric space contains an unbounded asymptotically discrete subspace.
- ② A separable metric space is asymptotically discrete iff it is coarsely equivalent to the space A = {n<sup>2</sup>}<sub>n∈ω</sub> ⊂ Z.

So up to a coarse equivalence,  $\mathbb{A} = \{n^2\}_{n \in \omega}$ , is a smallest unbounded metric space, opposite to the Cantor macro-cube  $2^{<\mathbb{N}}$  which is the largest metric space of bounded geometry and asymptotic dimension zero.

A 3 3 4 4

A metric space X is asymptotically discrete if  $\exists \varepsilon < \infty \ \forall \delta < \infty$ there is a bounded subset  $B \subset X$  such that  $B(x, \delta) \subset B(x, \varepsilon)$  for all  $x \in X \setminus B$ .

#### Fact

- Each unbounded metric space contains an unbounded asymptotically discrete subspace.
- ② A separable metric space is asymptotically discrete iff it is coarsely equivalent to the space A = {n<sup>2</sup>}<sub>n∈ω</sub> ⊂ Z.

So up to a coarse equivalence,  $\mathbb{A} = \{n^2\}_{n \in \omega}$ , is a smallest unbounded metric space, opposite to the Cantor macro-cube  $2^{<\mathbb{N}}$  which is the largest metric space of bounded geometry and asymptotic dimension zero.

I ≡ → I

A metric space X is asymptotically discrete if  $\exists \varepsilon < \infty \ \forall \delta < \infty$ there is a bounded subset  $B \subset X$  such that  $B(x, \delta) \subset B(x, \varepsilon)$  for all  $x \in X \setminus B$ .

#### Fact

- Each unbounded metric space contains an unbounded asymptotically discrete subspace.
- ② A separable metric space is asymptotically discrete iff it is coarsely equivalent to the space A = {n<sup>2</sup>}<sub>n∈ω</sub> ⊂ Z.

So up to a coarse equivalence,  $\mathbb{A} = \{n^2\}_{n \in \omega}$ , is a smallest unbounded metric space, opposite to the Cantor macro-cube  $2^{<\mathbb{N}}$  which is the largest metric space of bounded geometry and asymptotic dimension zero.

# A corona characterization of asymptotically discrete spaces

#### Fact

The corona  $\check{\mathbb{A}}$  of the space  $\mathbb{A} = \{n^2\}_{n \in \omega}$  is canonically homeomorphic to  $\omega^*$ .

# Theorem (Banakh-Chervak-Zdomskyy, 2012)

Under OCA+MA<sub> $\aleph_1$ </sub> a metric separable space X is asymptotically discrete iff its corona  $\check{X}$  is homeomorphic to  $\check{\mathbb{A}} \approx \omega^*$ . Moreover, each homeomorphism  $\check{X} \to \check{\mathbb{A}}$  is induced by a suitable coarse equivalence  $X \to \mathbb{A}$ .

# A corona characterization of asymptotically discrete spaces

#### Fact

The corona  $\check{\mathbb{A}}$  of the space  $\mathbb{A} = \{n^2\}_{n \in \omega}$  is canonically homeomorphic to  $\omega^*$ .

# Theorem (Banakh-Chervak-Zdomskyy, 2012)

Under OCA+MA<sub> $\aleph_1$ </sub> a metric separable space X is asymptotically discrete iff its corona  $\check{X}$  is homeomorphic to  $\check{\mathbb{A}} \approx \omega^*$ . Moreover, each homeomorphism  $\check{X} \to \check{\mathbb{A}}$  is induced by a suitable coarse equivalence  $X \to \mathbb{A}$ .

# A corona characterization of asymptotically discrete spaces

#### Fact

The corona  $\check{\mathbb{A}}$  of the space  $\mathbb{A} = \{n^2\}_{n \in \omega}$  is canonically homeomorphic to  $\omega^*$ .

# Theorem (Banakh-Chervak-Zdomskyy, 2012)

Under OCA+MA<sub> $\aleph_1$ </sub> a metric separable space X is asymptotically discrete iff its corona  $\check{X}$  is homeomorphic to  $\check{\mathbb{A}} \approx \omega^*$ . Moreover, each homeomorphism  $\check{X} \to \check{\mathbb{A}}$  is induced by a suitable coarse equivalence  $X \to \mathbb{A}$ .
The proof of the preceding theorem is based on the following deep:

### Theorem (Veličković, 1993)

Under OCA+MA<sub> $\aleph_1$ </sub> each homeomorphism of  $\omega^*$  is induced by a bijection between cofinite subsets of  $\omega$ .

#### Conjecture

Under OCA+MA<sub> $\aleph_1$ </sub> two separable metric spaces *X*, *Y* are coarsely equivalent iff their coronas are homeomorphic.

Moreover, each homeomorphism  $\check{X} \to \check{Y}$  is induced by a suitable coarse equivalence  $X \to Y$ .

同 ト イ ヨ ト イ ヨ ト

The proof of the preceding theorem is based on the following deep:

Theorem (Veličković, 1993)

Under OCA+MA<sub> $\aleph_1$ </sub> each homeomorphism of  $\omega^*$  is induced by a bijection between cofinite subsets of  $\omega$ .

### Conjecture

Under OCA+MA<sub> $\aleph_1$ </sub> two separable metric spaces *X*, *Y* are coarsely equivalent iff their coronas are homeomorphic.

Moreover, each homeomorphism  $\check{X} \to \check{Y}$  is induced by a suitable coarse equivalence  $X \to Y$ .

同 ト イヨ ト イヨ ト

The proof of the preceding theorem is based on the following deep:

### Theorem (Veličković, 1993)

Under OCA+MA<sub> $\aleph_1$ </sub> each homeomorphism of  $\omega^*$  is induced by a bijection between cofinite subsets of  $\omega$ .

### Conjecture

Under OCA+MA<sub> $\aleph_1$ </sub> two separable metric spaces X, Y are coarsely equivalent iff their coronas are homeomorphic.

Moreover, each homeomorphism  $\check{X} \to \check{Y}$  is induced by a suitable coarse equivalence  $X \to Y$ .

伺 ト イ ヨ ト イ ヨ ト

# 

T.Banakh, O.Chervak, L.Zdomskyy, On character of points in the Higson corona of a metric space, preprint http://arxiv.org/abs/1206.0626.

\* \* \*

Thanks!

医下子 医

# 

T.Banakh, O.Chervak, L.Zdomskyy, On character of points in the Higson corona of a metric space, preprint http://arxiv.org/abs/1206.0626.

\* \* \*

Thanks!

3 N