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This topic lies in the intersection of three disciplines:

Asymptotic Topology,

General Topology,

Set Theory.
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Asymptotic category

Objects: Metric spaces,
Morphisms: Coarse maps.

A function f : X → Y between metric spaces is called coarse if
∀δ ∈ R+ ∃ε ∈ R+ ∀x , x ′ ∈ X dX (x , x ′) < δ ⇒ dY (f (x), f (x ′)) < ε.

Coarse maps are antipods of uniformly continuous maps.
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Coarse isomorphisms and coarse equivalences

Def: A coarse map f : X → Y between metric spaces is called a

a coarse isomorphism if f is bijective and f −1 is coarse;

a coarse equivalence if there exists a coarse map g : Y → X
such that max{dX (g ◦ f , idX ), dY (f ◦ g , idY )} <∞.

Example:

The identity embedding Z→ R is a coarse equivalence but not a
coarse isomorphism.

Asymptotic Topology studies properties of metric spaces
preserved by coarse equivalences.
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Asymptotic neighborhoods

A function f : X → Y between metric spaces is bounded-to-bounded
if a subset B ⊂ Y is bounded iff f −1(B) is bounded in X .

Let ω↑X be the set of all bounded-to-bounded functions ε : X → ω.

For a function ε ∈ ω↑X and a subset A ⊂ X let B(A, ε) =
⋃
a∈A

B(a, ε(a)).

A

B(A, ε)
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The corona of a metric space.

For a metric space X let Xd be X endowed with the discrete
topology and βXd be the Stone-Čech compactification of Xd .

Let X# be the closed subset of βXd

consisting of all unbounded ultrafilters.
An ultrafilter F on Xd is unbounded if it contains no bounded subset of X .

Def: The corona of a metric space X is the quotient space
X̌ = X#/∼ of X# by the equivalence relation identifying any
ultrafilters p, q ∈ X# such that B(P, ε) ∩ B(Q, ε) 6= ∅
for any P ∈ p, Q ∈ q and ε ∈ ω↑X .

Elements of X̌ are equivalence classes p̌ of ultrafilters p ∈ X#.

Topology of X̌ : For any ultrafilter p ∈ X# the sets

B̌(P, ε) = {q̌ : B(P, ε) ∈ q ∈ X#}, P ∈ p, ε ∈ ω↑X ,
form a base of closed neighborhoods of p̌ in the corona X̌ .
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General Problems

The corona is a kind of a topological telescope which transforms a

macro-object (metric space) into a compact micro-object (its corona).

Problem

Which asymptotic properties of a metric space X are reflected in
topological properties of its corona X̌ ?

Such properties should be preserved by coarse equivalences because of

Fact

Each coarse equivalence f : X → Y between metric spaces induces
a homeomorphism f̌ : X̌ → Y̌ of their coronas.
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An alternative definition of corona

A metric space X is proper if each closed ball in X is compact.

Def: A function f : X → R is called slowly oscillating if
∀ε > 0 ∀δ <∞ there is a bounded subset B ⊂ X such that
∀x , x ′ ∈ X\B dX (x , x ′) < δ ⇒ |f (x)− f (x ′)| < ε.

Example.

The function f : [1,∞)→ R, f : x 7→ 1
x , is slowly oscillating.
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Higson corona of a proper metric space

For a proper metric space X let SO(X ) be the algebra of
real-valued bounded continuous slowly oscillating functions.

This algebra determined a compactification h̄(X ) of X
called the Higson compactification of X .

The compactification h̄(X ) is the closure of the image h(X ) of X
under the embedding h : X → RSO(X ), h : x 7→ (f (x))f ∈SO(X ).

The remainder νX = h̄(X ) \ h(X ) is called the Higson corona of X .

Theorem (Protasov)

For a proper metric space X its Higson corona νX is canonically
homeomorphic to the corona X̌ of X .

The corona X̌ “sees” certain asymptotic properties of X ,

in particular, its asymptotic dimension asdim(X ).
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Various dimensions of metric spaces

A metric space X has

topological dimension dim(X ) ≤ n if for each open cover ε of
X there are an open cover δ of X and a cover C ≺ ε of X
such that the δ-star B(x , δ) =

⋃
{D ∈ δ : x ∈ D} of any point

x ∈ X , meets at most n + 1 elements of the cover C;

uniform dimension udim(X ) ≤ n if for each ε > 0 there are
δ > 0 and a cover C ≺ {B(x , ε)}x∈X of X such that each
δ-ball B(x , δ), x ∈ X , meets at most n + 1 elements of the
cover C;

asymptotic dimension asdim(X ) ≤ n if for each δ <∞ there
are ε <∞ and a cover C ≺ {B(x , ε)}x∈X of X such that each
δ-ball B(x , δ), x ∈ X , meets at most n + 1 elements of the
cover C.

Fact: dim(Rn) = udim(Rn) = asdim(Rn) = n.
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Dimension of corona

Theorem

Let X be a proper metric space. Then

1 dim(X̌ ) ≤ asdim(X ) (Dranishnikov-Keesling-Uspenskij, 1998);

2 dim(X̌ ) = asdim(X ) if asdim(X ) <∞ (Dranishnikov, 2000);

3 dim(X̌ ) = 0 iff asdim(X ) = 0 (Banakh-Chervak, 2012).

Open Problem (Dranishnikov)

Is dim(X̌ ) = asdim(X ) for each proper metric space X ?

Fact

A metric space has asymptotic dimension zero if and only if
it is coarsely isomorphic to an ultrametric space.
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The topological structure of the corona

Theorem (Protasov, 2011)

For each unbounded metric separable space X with asdim(X ) = 0

1 X̌ is a zero-dimensional compact Hausdorff space of weight c;

2 each non-empty Gδ-subset in X̌ has non-empty interior;

3 any two disjoint open Fσ-subsets of X̌ have disjoint closures.

This theorem and the CH-characterization of the Stone-Čech
remainder ω∗ = β(ω) \ ω imply:

Corollary (Protasov, 2011)

Under CH the corona X̌ of an unbounded metric separable space
X of asdim(X ) = 0 is homeomorphic to ω∗.

Problem (Protasov)

Is this theorem true in ZFC? No!
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remainder ω∗ = β(ω) \ ω imply:

Corollary (Protasov, 2011)

Under CH the corona X̌ of an unbounded metric separable space
X of asdim(X ) = 0 is homeomorphic to ω∗.

Problem (Protasov)

Is this theorem true in ZFC? No!

Taras Banakh, Ostap Chervak, Lubomyr Zdomskyy Character of points in the corona of a metric space



The topological structure of the corona

Theorem (Protasov, 2011)

For each unbounded metric separable space X with asdim(X ) = 0

1 X̌ is a zero-dimensional compact Hausdorff space of weight c;

2 each non-empty Gδ-subset in X̌ has non-empty interior;

3 any two disjoint open Fσ-subsets of X̌ have disjoint closures.

This theorem and the CH-characterization of the Stone-Čech
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Minimal character of a topological space

For a topological space X its minimal character

mχ(X ) = min
x∈X

χ(x ,X )

where χ(x ,X ), the character of X at a point x is the smallest
cardinality of a neighborhood base at x .

The cardinal u = mχ(ω∗) is one of well-known small uncountable
cardinals.

Another well-known small uncountable cardinal is d,
the cofinality of the partially ordered set (ωω,≤).

It is known that u = d = c under MA,
but the strict inequalities u < d and d < u are consistent with ZFC.
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The minimal character of corona

We say that a metric space X has isolated balls if there is ε <∞
such that for each δ <∞ there is a point x ∈ X with
B(x , δ) ⊂ B(x , ε).

Example

The space A = {n2}n∈ω ⊂ Z has asymptotically isolated balls.

Theorem (Banakh-Chervak-Zdomskyy, 2012)

The corona X̌ of an unbounded metric space X has minimal
character

mχ(X ) =

{
u if X has asymptotically isolated balls,

u · d otherwise.
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Cantor macro-cube

The Cantor macro-cube is the set

2<N =
{

(xn)∞n=1 ∈ {0, 1}N :
∑∞

n=1 xn <∞
}

endowed with the metric d((xn), (yn)) =
∑∞

n=1 2n · |xn − yn|.

2<N is an asymptotic counterpart of the Cantor cube 2ω = {0, 1}ω.

Fact

The Cantor macro-cube 2<N is coarsely isomorphic to
the Cantor macro-set

{∑∞
n=1 3n2xn : (xn)n∈N ∈ 2<N} ⊂ Z.

p
0
p p
6
p p

18
p p p p

54
p p p p p p p p

162
p p p p p p p p p p p p p p p
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Universality of the Cantor macro-cube

It is well-known that the Cantor cube 2ω contains a topological
copy of each zero-dimensional metrizable separable space.
A similar property has the Cantor macro-cube 2<N.

Definition

A metric space X has bounded geometry if
∃ε <∞ ∀δ <∞ ∃N ∈ N such that each
δ-ball B(x , δ), x ∈ X , can be covered by ≤ N ε-balls.

Theorem (Dranishnikov-Zarichnyi, 2004)

A metric space X is coarsely equivalent to a subspace of 2<N

iff asdim(X ) ≤ 0 and X has bounded geometry.
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A coarse characterization of the Cantor macro-cube

Theorem (Brouwer, 1904)

A metric space X is (uniformly) homeomorphic to 2ω if and only if
X has topological dimension zero, is compact, and contains no
isolated points.

Theorem (Banakh-Zarichnyi, 2011)

A metric space X is coarsely equivalent to 2<N if and only if
X has asymptotic dimension zero, has bounded geometry, and
contains no asymptotically isolated balls.
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A corona characterization of the Cantor macro-cube

Theorem (Banakh-Chervak-Zdomskyy, 2012)

Under u < d for a metric space X of bounded geometry the
following conditions are equivalent:

1 X and 2<N are coarsely equivalent;

2 the coronas of X and 2<N are homeomorphic;

3 dim(X̌ ) = 0 and mχ(X̌ ) = d.

So, under u < d the corona recognizes metric spaces coarsely equivalent
to the Cantor macro-cube.

Under ω1 = c the corona is “blind” and sees no difference between
asymptotically zero-dimensional separable metric spaces.

Under OCA+MAℵ1 the corona is able to see in another (say, infra-red)

end of the asymptotic spectrum and recognizes asymptotically discrete

metric spaces.
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Asymptotically discrete spaces

A metric space X is asymptotically discrete if ∃ε <∞ ∀δ <∞
there is a bounded subset B ⊂ X such that B(x , δ) ⊂ B(x , ε) for
all x ∈ X \ B.

Fact

1 Each unbounded metric space contains an unbounded
asymptotically discrete subspace.

2 A separable metric space is asymptotically discrete
iff it is coarsely equivalent to the space A = {n2}n∈ω ⊂ Z.

So up to a coarse equivalence, A = {n2}n∈ω, is a smallest
unbounded metric space, opposite to the Cantor macro-cube 2<N

which is the largest metric space of bounded geometry and
asymptotic dimension zero.
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A corona characterization of asymptotically discrete spaces

Fact

The corona Ǎ of the space A = {n2}n∈ω is canonically
homeomorphic to ω∗.

Theorem (Banakh-Chervak-Zdomskyy, 2012)

Under OCA+MAℵ1 a metric separable space X is asymptotically
discrete iff its corona X̌ is homeomorphic to Ǎ ≈ ω∗.
Moreover, each homeomorphism X̌ → Ǎ is induced by a suitable
coarse equivalence X → A.

Taras Banakh, Ostap Chervak, Lubomyr Zdomskyy Character of points in the corona of a metric space



A corona characterization of asymptotically discrete spaces

Fact
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Principal Conjecture

The proof of the preceding theorem is based on the following deep:

Theorem (Veličković, 1993)

Under OCA+MAℵ1 each homeomorphism of ω∗ is induced by a
bijection between cofinite subsets of ω.

Conjecture

Under OCA+MAℵ1 two separable metric spaces X ,Y are coarsely
equivalent iff their coronas are homeomorphic.

Moreover, each homeomorphism X̌ → Y̌ is induced by a suitable
coarse equivalence X → Y .
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