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Universal minimal flow

G a topological group

X a compact Hausdorff space
π : G×X //X a continuous action

Definition

X is minimal if it has no non-trivial subflow.

Equivalently, X is minimal if for every x ∈ X its orbit
Gx = {gx : g ∈ G} is dense in X.

Definition

X is the universal minimal flow if every other minimal flow is
its G-factor.
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The universal minimal flow exists

G×M M//

G×M(G)

G×M

id×q

��

G×M(G) M(G)
· //M(G)

M

id×q

��

Theorem

The universal minimal flow exists and it is unique up to an
isomorphism.
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Groups of automorphisms

A a first order structure

G = Aut(A) group of automorphisms of A with the topology of
pointwise convergence
The topology is given by clopen subgroups

GA = {g : ga = a ∀a ∈ A}

for A a finite subset of A.
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The universal minimal flow for groups of
automorphisms of structures

L = {GAS : S ⊂ G,A ⊂ A finite} - a Boolean algebra

Definition

A subset S ⊂ G is called syndetic if there exist g1, g2, . . . , gn ∈ G
such that ∪ni=1giS = G.
A subalgebra K of L is called a syndetic subalgebra if every
GAS ∈ K is a syndetic set and if g ∈ G then also gGAS ∈ K.

Theorem

Let B(G) denote a maximal syndetic subalgebra of L with
respect to inclusion. Then the universal minimal flow for
Aut(A) is the Stone space of B(G).
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Linear orderings

card(A) = κ

LO(A) the space of linear orderings of A as a subspace of 2κ×κ

For φ ∈ Aut(A), <∈ LO(A) and a, b ∈ A

a(φ <)b if and only if φ−1(a) < φ−1(b).

Theorem

If A is and infinite set or a homogeneous

(Kn-free) graph,

(a-free) hypergraph,

Boolean algebra,

vector space over a finite field,

then the universal minimal flow of Aut(A) is a space of linear
orderings.

These results were proved in the countable case by Glasner and
Weiss, Glasner and Gutman, Kechris, Pestov and Todorcevic.
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Unique ergodicity

Definition

A topological group is called amenable, if every G-flow admits
an invariant probability Borel measure.

If such a measure is unique, then G is uniquely ergodic.

Let G be

the group of all bijection on an infinite set or

the group of automorphisms of an infinite vector space over
a finite field.

Then B(G) is generated by sets GAK for A ⊂ G finite and
K ⊂ G such that for every g ∈ G there is an h ∈ G with

G(A)g ∩GAK = GAh,

where G(A) = {g ∈ G : gA = A}.
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The universal minimal flow as a space of filters

(G, τ) a topological group

B(G) a maximal syndetic subalgebra of P(G)
B(G) is the algebra of clopen sets of the universal minimal flow
M(G) for G discrete (Balcar, Franěk)

G×M(G, τ) M(G, τ)//

G×M(G)

G×M(G, τ)

id×q

��

G×M(G) M(G)
· //M(G)

M(G, τ)

id×q

��

N a base of neighbourhoods of the neutral element
For u ∈M(G), let u∗ be the filter on P(G) generated by
{V S : V ∈ N , S ∈ u}.

q(u) = q(v) if and only if u∗ = v∗
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Extremely amenable groups

Definition

A topological group G is extremely amenable if its universal
minimal flow is a single point.

Theorem

G is extremely amenable if and only if for every V ∈ N and
A,B ∈ B(G)

V A ∩ V B 6= ∅.

Theorem

G is extremely amenable if and only if for every V ∈ N and
A ∈ B(G)

V A = G,

it means A is dense in G.
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Urysohn spaces

(U, d) - an ω-homogeneous metric space containing an isometric
copy of every finite metric space
G = Iso(U) - the group of isometries of U
Topology generated by

GεX = {φ ∈ Iso(U) : ∀x ∈ X d(φ(x), x) < ε},
where X is a finite subspace of U.

Theorem (Pestov)

Iso(U) is extremely amenable.

Proof.

Let M(Iso(U)) be the universal minimal flow for Iso(U) discrete
and A,B ∈ Cl(M(Iso(U))). Then for every GεX

GεXA ∩GεXB 6= ∅.
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The end

THANK YOU FOR YOUR ATTENTION!
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