Universal minimal flow in the language of filters

Dana Bartošová

Trends in Set Theory, Warsaw July 10, 2012

Dana Bartosova Universal minimal flow in the language of filters

Universal minimal flow

 ${\cal G}$ a topological group

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □

G a topological group X a compact Hausdorff space

 $\begin{array}{l} G \text{ a topological group} \\ X \text{ a compact Hausdorff space} \\ \pi: G \times X \longrightarrow X \text{ a continuous action} \end{array}$

<ロ> (四) (四) (三) (三) (三) (三)

G a topological group X a compact Hausdorff space $\pi: G \times X \longrightarrow X$ a continuous action

Definition

X is minimal if it has no non-trivial subflow.

イロト イロト イヨト イヨト 三日

G a topological group X a compact Hausdorff space $\pi: G \times X \longrightarrow X$ a continuous action

Definition

X is minimal if it has no non-trivial subflow.

Equivalently, X is minimal if for every $x \in X$ its orbit $Gx = \{gx : g \in G\}$ is dense in X.

<ロ> (四) (四) (三) (三) (三) (三)

G a topological group X a compact Hausdorff space $\pi: G \times X \longrightarrow X$ a continuous action

Definition

X is minimal if it has no non-trivial subflow.

Equivalently, X is minimal if for every $x \in X$ its orbit $Gx = \{gx : g \in G\}$ is dense in X.

Definition

X is the universal minimal flow if every other minimal flow is its G-factor.

<ロ> (四) (四) (三) (三) (三) (三)

The universal minimal flow exists

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三豆 - のへで

The universal minimal flow exists

Theorem

The universal minimal flow exists and it is unique up to an isomorphism.

<ロ> (四) (四) (三) (三) (三) (三)

 ${\cal A}$ a first order structure

Dana Bartosova Universal minimal flow in the language of filters

イロト イロト イヨト イヨト 三日

 \mathcal{A} a first order structure $G = \operatorname{Aut}(\mathcal{A})$ group of automorphisms of \mathcal{A} with the topology of pointwise convergence

イロト イロト イヨト イヨト 三日

 \mathcal{A} a first order structure $G = \operatorname{Aut}(\mathcal{A})$ group of automorphisms of \mathcal{A} with the topology of pointwise convergence The topology is given by clopen subgroups

 \mathcal{A} a first order structure $G = \operatorname{Aut}(\mathcal{A})$ group of automorphisms of \mathcal{A} with the topology of pointwise convergence The topology is given by clopen subgroups

$$G_A = \{g : ga = a \ \forall a \in A\}$$

for A a finite subset of \mathcal{A} .

(日) (周) (日) (日) (日)

The universal minimal flow for groups of automorphisms of structures

$$L = \{G_A S : S \subset G, A \subset \mathcal{A} \text{ finite}\}$$
 - a Boolean algebra

Dana Bartosova Universal minimal flow in the language of filters

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □

The universal minimal flow for groups of automorphisms of structures

 $L = \{G_AS: S \subset G, A \subset \mathcal{A} \text{ finite}\}$ - a Boolean algebra

Definition

A subset $S \subset G$ is called syndetic if there exist $g_1, g_2, \ldots, g_n \in G$ such that $\bigcup_{i=1}^n g_i S = G$.

(日) (周) (日) (日) (日)

The universal minimal flow for groups of automorphisms of structures

 $L = \{G_AS: S \subset G, A \subset \mathcal{A} \text{ finite}\}$ - a Boolean algebra

Definition

A subset $S \subset G$ is called syndetic if there exist $g_1, g_2, \ldots, g_n \in G$ such that $\bigcup_{i=1}^n g_i S = G$. A subalgebra K of L is called a syndetic subalgebra if every $G_A S \in K$ is a syndetic set and if $g \in G$ then also $gG_A S \in K$.

《日》 《御》 《글》 《글》 - 글

The universal minimal flow for groups of automorphisms of structures

 $L = \{G_AS: S \subset G, A \subset \mathcal{A} \text{ finite}\}$ - a Boolean algebra

Definition

A subset $S \subset G$ is called syndetic if there exist $g_1, g_2, \ldots, g_n \in G$ such that $\bigcup_{i=1}^n g_i S = G$. A subalgebra K of L is called a syndetic subalgebra if every $G_A S \in K$ is a syndetic set and if $g \in G$ then also $gG_A S \in K$.

Theorem

Let B(G) denote a maximal syndetic subalgebra of L with respect to inclusion. Then the universal minimal flow for $Aut(\mathcal{A})$ is the Stone space of B(G).

《日》 《御》 《글》 《글》 - 글

$$\operatorname{card}(A) = \kappa$$

Dana Bartosova Universal minimal flow in the language of filters

 $\operatorname{card}(A) = \kappa$ LO(\mathcal{A}) the space of linear orderings of \mathcal{A} as a subspace of $2^{\kappa \times \kappa}$

 $\operatorname{card}(A) = \kappa$ $\operatorname{LO}(\mathcal{A})$ the space of linear orderings of \mathcal{A} as a subspace of $2^{\kappa \times \kappa}$ For $\phi \in \operatorname{Aut}(\mathcal{A}), < \in \operatorname{LO}(\mathcal{A})$ and $a, b \in \mathcal{A}$

 $a(\phi <)b$ if and only if $\phi^{-1}(a) < \phi^{-1}(b)$.

Dana Bartosova Universal minimal flow in the language of filters

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

card(A) = κ LO(\mathcal{A}) the space of linear orderings of \mathcal{A} as a subspace of $2^{\kappa \times \kappa}$ For $\phi \in \operatorname{Aut}(\mathcal{A})$, $<\in \operatorname{LO}(\mathcal{A})$ and $a, b \in \mathcal{A}$ $a(\phi <)b$ if and only if $\phi^{-1}(a) < \phi^{-1}(b)$.

Theorem

If \mathcal{A} is and infinite set or a homogeneous

- $(K_n$ -free) graph,
- (a-free) hypergraph,
- Boolean algebra,
- vector space over a finite field,

《日》 《曰》 《曰》 《曰》 [] []

card(A) = κ LO(\mathcal{A}) the space of linear orderings of \mathcal{A} as a subspace of $2^{\kappa \times \kappa}$ For $\phi \in \operatorname{Aut}(\mathcal{A})$, $<\in \operatorname{LO}(\mathcal{A})$ and $a, b \in \mathcal{A}$ $a(\phi <)b$ if and only if $\phi^{-1}(a) < \phi^{-1}(b)$.

Theorem

If \mathcal{A} is and infinite set or a homogeneous

- $(K_n$ -free) graph,
- (a-free) hypergraph,
- Boolean algebra,
- vector space over a finite field,

then the universal minimal flow of $Aut(\mathcal{A})$ is a space of linear orderings.

card(A) = κ LO(\mathcal{A}) the space of linear orderings of \mathcal{A} as a subspace of $2^{\kappa \times \kappa}$ For $\phi \in \operatorname{Aut}(\mathcal{A})$, $<\in \operatorname{LO}(\mathcal{A})$ and $a, b \in \mathcal{A}$ $a(\phi <)b$ if and only if $\phi^{-1}(a) < \phi^{-1}(b)$.

Theorem

If \mathcal{A} is and infinite set or a homogeneous

- $(K_n$ -free) graph,
- (a-free) hypergraph,
- Boolean algebra,
- vector space over a finite field,

then the universal minimal flow of $Aut(\mathcal{A})$ is a space of linear orderings.

These results were proved in the countable case by Glasner and Weiss, Glasner and Gutman, Kechris, Pestov and Todorcevic.

A topological group is called *amenable*, if every G-flow admits an invariant probability Borel measure.

<ロ> (四) (四) (三) (三) (三) (三)

Unique ergodicity

Definition

A topological group is called amenable, if every G-flow admits an invariant probability Borel measure. If such a measure is unique, then G is uniquely ergodic.

<ロ> (四) (四) (三) (三) (三) (三)

A topological group is called amenable, if every G-flow admits an invariant probability Borel measure. If such a measure is unique, then G is uniquely ergodic.

Let G be

- the group of all bijection on an infinite set or
- the group of automorphisms of an infinite vector space over a finite field.

A topological group is called amenable, if every G-flow admits an invariant probability Borel measure. If such a measure is unique, then G is uniquely ergodic.

Let G be

- the group of all bijection on an infinite set or
- the group of automorphisms of an infinite vector space over a finite field.

Then B(G) is generated by sets $G_A K$ for $A \subset G$ finite and $K \subset G$ such that for every $g \in G$ there is an $h \in G$ with

(日) (周) (日) (日) (日)

A topological group is called amenable, if every G-flow admits an invariant probability Borel measure. If such a measure is unique, then G is uniquely ergodic.

Let G be

- the group of all bijection on an infinite set or
- the group of automorphisms of an infinite vector space over a finite field.

Then B(G) is generated by sets $G_A K$ for $A \subset G$ finite and $K \subset G$ such that for every $g \in G$ there is an $h \in G$ with

$$G_{(A)}g \cap G_A K = G_A h,$$

(日) (周) (日) (日) (日)

A topological group is called amenable, if every G-flow admits an invariant probability Borel measure. If such a measure is unique, then G is uniquely ergodic.

Let G be

- the group of all bijection on an infinite set or
- the group of automorphisms of an infinite vector space over a finite field.

Then B(G) is generated by sets $G_A K$ for $A \subset G$ finite and $K \subset G$ such that for every $g \in G$ there is an $h \in G$ with

$$G_{(A)}g \cap G_A K = G_A h,$$

where $G_{(A)} = \{g \in G : gA = A\}.$

 (G,τ) a topological group

Dana Bartosova Universal minimal flow in the language of filters

 (G, τ) a topological group B(G) a maximal syndetic subalgebra of $\mathcal{P}(G)$

 (G,τ) a topological group

B(G) a maximal syndetic subalgebra of $\mathcal{P}(G)$

B(G) is the algebra of clopen sets of the universal minimal flow M(G) for G discrete (Balcar, Franěk)

 (G, τ) a topological group B(G) a maximal syndetic subalgebra of $\mathcal{P}(G)$ B(G) is the algebra of clopen sets of the universal minimal flow M(G) for G discrete (Balcar, Franěk)

$G \times M$	$M(G) \xrightarrow{\cdot} M$	(G)
$\mathrm{id} imes q$		$\mathrm{id} imes q$
$\overset{\psi}{G \times M}$	$(G, \tau) ightarrow M(e)$	$\stackrel{lat}{G}, au)$

 (G, τ) a topological group B(G) a maximal syndetic subalgebra of $\mathcal{P}(G)$ B(G) is the algebra of clopen sets of the universal minimal flow M(G) for G discrete (Balcar, Franěk)

$$\begin{array}{c|c} G \times M(G) & \xrightarrow{\cdot} M(G) \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ G \times M(G,\tau) \to M(G,\tau) \end{array}$$

 ${\mathcal N}$ a base of neighbourhoods of the neutral element

 (G, τ) a topological group B(G) a maximal syndetic subalgebra of $\mathcal{P}(G)$ B(G) is the algebra of clopen sets of the universal minimal flow M(G) for G discrete (Balcar, Franěk)

$$\begin{array}{c|c} G \times M(G) & \xrightarrow{\cdot} M(G) \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ G \times M(G,\tau) \to M(G,\tau) \end{array}$$

 \mathcal{N} a base of neighbourhoods of the neutral element For $u \in M(G)$, let u^* be the filter on $\mathcal{P}(G)$ generated by $\{VS : V \in \mathcal{N}, S \in u\}.$

 (G, τ) a topological group B(G) a maximal syndetic subalgebra of $\mathcal{P}(G)$ B(G) is the algebra of clopen sets of the universal minimal flow M(G) for G discrete (Balcar, Franěk)

$$\begin{array}{c|c} G \times M(G) & \xrightarrow{\cdot} M(G) \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ G \times M(G,\tau) \to M(G,\tau) \end{array}$$

 \mathcal{N} a base of neighbourhoods of the neutral element For $u \in M(G)$, let u^* be the filter on $\mathcal{P}(G)$ generated by $\{VS : V \in \mathcal{N}, S \in u\}.$

$$q(u) = q(v)$$
 if and only if $u^* = v^*$

A topological group G is extremely amenable if its universal minimal flow is a single point.

A topological group G is extremely amenable if its universal minimal flow is a single point.

Theorem

G is extremely amenable if and only if for every $V \in \mathcal{N}$ and $A, B \in B(G)$ $VA \cap VB \neq \emptyset$.

Dana Bartosova Universal minimal flow in the language of filters

A topological group G is extremely amenable if its universal minimal flow is a single point.

Theorem

G is extremely amenable if and only if for every $V \in \mathcal{N}$ and $A, B \in B(G)$ $VA \cap VB \neq \emptyset.$

Theorem

G is extremely amenable if and only if for every $V \in \mathcal{N}$ and $A \in B(G)$

$$VA = G,$$

it means A is dense in G.

Dana Bartosova Universal minimal flow in the language of filters

◆□▶ ◆御▶ ◆注▶ ◆注▶ … 注 … のへで

 (\mathbb{U},d) - an $\omega\text{-homogeneous}$ metric space containing an isometric copy of every finite metric space

・ロト ・四ト ・ヨト ・ヨ

 (\mathbb{U}, d) - an ω -homogeneous metric space containing an isometric copy of every finite metric space

 $G = \operatorname{Iso}(U)$ - the group of isometries of ${\mathbb U}$

(日) (문) (문) (문) (문)

 (\mathbb{U},d) - an ω -homogeneous metric space containing an isometric copy of every finite metric space $G=\mathrm{Iso}(U)$ - the group of isometries of \mathbb{U} Topology generated by

$$G_X^{\varepsilon} = \{ \phi \in \operatorname{Iso}(\mathbb{U}) : \forall x \in X \ d(\phi(x), x) < \varepsilon \},\$$

where X is a finite subspace of \mathbb{U} .

 (\mathbb{U},d) - an ω -homogeneous metric space containing an isometric copy of every finite metric space $G=\mathrm{Iso}(U)$ - the group of isometries of \mathbb{U} Topology generated by

$$G_X^{\varepsilon} = \{ \phi \in \operatorname{Iso}(\mathbb{U}) : \forall x \in X \ d(\phi(x), x) < \varepsilon \},\$$

where X is a finite subspace of \mathbb{U} .

Theorem (Pestov)

 $\operatorname{Iso}(\mathbb{U})$ is extremely amenable.

 (\mathbb{U},d) - an ω -homogeneous metric space containing an isometric copy of every finite metric space $G=\mathrm{Iso}(U)$ - the group of isometries of \mathbb{U} Topology generated by

 $G_X^{\varepsilon} = \{ \phi \in \operatorname{Iso}(\mathbb{U}) : \forall x \in X \ d(\phi(x), x) < \varepsilon \},\$

where X is a finite subspace of \mathbb{U} .

Theorem (Pestov)

 $\operatorname{Iso}(\mathbb{U})$ is extremely amenable.

Proof.

Let $M(\operatorname{Iso}(\mathbb{U}))$ be the universal minimal flow for $\operatorname{Iso}(\mathbb{U})$ discrete and $A, B \in \operatorname{Cl}(M(\operatorname{Iso}(\mathbb{U})))$.

 (\mathbb{U},d) - an ω -homogeneous metric space containing an isometric copy of every finite metric space $G=\mathrm{Iso}(U)$ - the group of isometries of \mathbb{U} Topology generated by

$$G_X^{\varepsilon} = \{ \phi \in \operatorname{Iso}(\mathbb{U}) : \forall x \in X \ d(\phi(x), x) < \varepsilon \},\$$

where X is a finite subspace of \mathbb{U} .

Theorem (Pestov)

 $\operatorname{Iso}(\mathbb{U})$ is extremely amenable.

Proof.

Let $M(\operatorname{Iso}(\mathbb{U}))$ be the universal minimal flow for $\operatorname{Iso}(\mathbb{U})$ discrete and $A, B \in \operatorname{Cl}(M(\operatorname{Iso}(\mathbb{U})))$. Then for every G_X^{ε}

$$G_X^{\varepsilon}A \cap G_X^{\varepsilon}B \neq \emptyset.$$

THANK YOU FOR YOUR ATTENTION!

Dana Bartosova Universal minimal flow in the language of filters

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 ○ のへで