Settheoretical mathods in algebraic constructions

Artur Bartoszewicz Szymon Głąb Adam Paszkiewicz

Institute of Mathematics, Technical University of Łódź, Wólczańska 215, 93-005 Łódź, Poland Institute of Mathematics, Technical University of Łódź, Wólczańska 215, 93-005 Łódź, Poland Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland

For a cardinal κ a subset E of a linear algebra A is called κ -algebrable whenever $E \cup \{0\}$ contains a κ -generated linear algebra. If E is ω -algebrable, it is simply said to be algebrable. Let us observe that the set E is κ -algebrable for $\kappa > \omega$ if and only if it contains an algebra which is a κ -dimensional linear space (see [3]). Additionally, we say that a subset E of commutative linear algebra A is strongly κ -algebrable [3] if there exists a κ -generated free algebra A' contained in $E \cup \{0\}$.

For a cardinal κ a subset E of a linear algebra A is called κ -algebrable whenever $E \cup \{0\}$ contains a κ -generated linear algebra. If E is ω -algebrable, it is simply said to be algebrable. Let us observe that the set E is κ -algebrable for $\kappa > \omega$ if and only if it contains an algebra which is a κ -dimensional linear space (see [3]). Additionally, we say that a subset E of commutative linear algebra A is strongly κ -algebrable [3] if there exists a κ -generated free algebra A' contained in $E \cup \{0\}$.

Note, that $X = \{x_{\alpha} : \alpha < \kappa\} \subset E$ is a set of free generators of a free algebra $A' \subset E \cup \{0\}$ if and only if the set X' of elements of the form $x_{\alpha_1}^{k_1} x_{\alpha_2}^{k_2} \dots x_{\alpha_n}^{k_n}$ is linearly independent and all linear combinations of elements from X' are in $E \cup \{0\}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

The notions of κ -algebrability and strong κ -algebrability do not coincide. There is a simple example witnessing this: it is the subset c_{00} of c_0 consisting of all sequences with real terms equal to zero from some place. It can be proved that c_{00} is algebrable in c_0 but is not strongly 1-algebrable [3].

• • = • • = •

Most of known results on algebrability are focus on the cases between ω -algebrability and c-algebrability. Recently, $2^{\mathfrak{c}}$ -algebrability was established in $\mathbb{C}^{\mathbb{C}}$ and $\mathbb{R}^{\mathbb{R}}$ using independent families of subsets of \mathfrak{c} and a decomposition of \mathbb{C} and \mathbb{R} into \mathfrak{c} copies of Bernstein sets (see [3], [2] and [1]).

Most of known results on algebrability are focus on the cases between ω -algebrability and c-algebrability. Recently, 2^c-algebrability was established in $\mathbb{C}^{\mathbb{C}}$ and $\mathbb{R}^{\mathbb{R}}$ using independent families of subsets of c and a decomposition of \mathbb{C} and \mathbb{R} into c copies of Bernstein sets (see [3], [2] and [1]).

The motivation for this note comes from [2]. There was proved that the set of Zygmund-Siepiński functions is a strongly κ -algebrable subset of linear algebra $\mathbb{R}^{\mathbb{R}}$ where κ is the cardinality of a family of almost disjoint subsets of \mathbb{R} .

The following classical result of Kuratowski and Sierpiński [4] will be useful in the sequel.

Theorem (Disjoint Refinement Lemma)

Let $\kappa \geq \omega$. For any family $\{P_{\alpha} : \alpha < \kappa\}$ of sets of cardinality κ there is a family $\{Q_{\alpha} : \alpha < \kappa\}$ of set of cardinality κ such that (a) $\forall \alpha < \kappa \ (Q_{\alpha} \subset P_{\alpha});$ (b) $\forall \alpha < \beta < \kappa \ (Q_{\alpha} \cap Q_{\beta} = \emptyset).$

The family $\{Q_{\alpha} : \alpha < \kappa\}$ will be called a disjoint refinement of $\{P_{\alpha} : \alpha < \kappa\}$.

向下 イヨト イヨト

Let X be a set of cardinality κ where $\kappa = \kappa^{\omega}$. Let I be a subset of \mathbb{R} (or \mathbb{C}) with a non-empty interior. Then there exists a free linear subalgebra of \mathbb{R}^X (or \mathbb{C}^X) of 2^{κ} generators being surjections from X to I.

Proof

At first note that if $\kappa^{\omega} = \kappa$, then $\kappa \ge \mathfrak{c}$. Therefore $|X| \ge |I|$, so there are surjections from X to I. Let $Y = ([0,1] \times \kappa)^{\mathbb{N}}$ and fix a family $\{A_{\xi} : \xi < 2^{\kappa}\}$ of independent subsets of κ . For each $\xi < 2^{\kappa}$ define $\overline{f_{\xi}} : Y \to [0,1]$ by the formula

$$\bar{f}_{\xi}(t_1, y_1, t_2, y_2, ...) = \prod_{n=1}^{\infty} t_n^{\chi_{A_{\xi}}(y_n)},$$

where $t_n \in [0, 1]$, $y_n \in \kappa$, $\chi_{A_{\xi}}$ stands for the characteristic function of A_{ξ} and $0^0 = 1$.

Since $\kappa^{\omega} = \kappa$ and $\kappa \geq \mathfrak{c}$, then |Y| = |X|. Note also that I is of cardinality \mathfrak{c} , since it has non-empty interior. Hence we can find two bijections $\phi: X \to Y$ and $\psi: [0,1] \to I$. Then functions $f_{\xi} = \psi \circ \overline{f}_{\xi} \circ \phi$, $\xi < 2^{\kappa}$, are free generators in \mathbb{R}^{X} (or in \mathbb{C}^{X})

向下 イヨト イヨト

Since $\kappa^{\omega} = \kappa$ and $\kappa \geq \mathfrak{c}$, then |Y| = |X|. Note also that I is of cardinality \mathfrak{c} , since it has non-empty interior. Hence we can find two bijections $\phi: X \to Y$ and $\psi: [0, 1] \to I$. Then functions $f_{\xi} = \psi \circ \overline{f}_{\xi} \circ \phi$, $\xi < 2^{\kappa}$, are free generators in \mathbb{R}^{X} (or in \mathbb{C}^{X})

We say that a map f from topological space X to \mathbb{C} is strongly everywhere surjective if for every nonempty open set $U \subset X$ and every $z \in \mathbb{C}$ the cardinality of $\{x \in U : f(x) = z\}$ equals to the cardinality of U.

向下 イヨト イヨト

The set of all strongly everywhere surjective functions $f: \beta \kappa \setminus \kappa \to \mathbb{C}$ is strongly $2^{2^{2^{\kappa}}}$ -algebrable.

Proof.

Recall that the basis of $\beta \kappa \setminus \kappa$ consists of sets $U_A = \{p : p \text{ is a }$ non-principle ultrafilter on κ such that $A \in p$ for $A \subset \kappa$. Every set U_A is of cardinality $2^{2^{\kappa}}$. Let $\{U_{\xi}: \xi < 2^{2^{\kappa}}\}$ be an enumeration of all subsets of the basis such that each U_A appears $2^{2^{\kappa}}$ many times. Let $\{Q_{\xi}: \xi < 2^{2^{\kappa}}\}$ be a disjoint refinement of $\{U_{\xi}: \xi < 2^{2^{\kappa}}\}$. By Theorem 2, there is a free algebra \mathcal{A}_{ξ} of functions of $2^{2^{2^{\kappa}}}$ generators $\{f_n^{\xi} : \eta < 2^{2^{2^{\kappa}}}\}$ being surjections from Q_{ξ} onto \mathbb{C} . Since polynomials are surjections from \mathbb{C}^n onto \mathbb{C} , then $\mathcal{A}_{\mathcal{E}}$ consists of surjections from $Q_{\mathcal{E}}$ onto \mathbb{C} . Let \mathcal{A} be the algebra generated by $\{f_n : \eta < 2^{2^n}\}$ where $f_n(x) = f_n^{\xi}(x)$ if $x \in Q_{\xi}$, and $f_n(x) = 0$ if $x \notin \bigcup_{\xi < 2^{2^{\kappa}}} Q_{\xi}$. Then \mathcal{A}

is clearly a free linear algebra consisting of strongly everywhere surjective functions from $\beta \kappa \setminus \kappa$ to \mathbb{C} .

A function $f : \mathbb{C} \to \mathbb{C}$ is called *strongly everywhere surjective* if f takes \mathfrak{c} many times every value $z \in \mathbb{C}$ on every non-empty open subset of \mathbb{C} . A function $f : \mathbb{C} \to \mathbb{C}$ is called *perfectly everywhere surjective* if f maps every perfect subset of \mathbb{C} onto \mathbb{C} . We will denote the above classes of functions by $S\mathcal{ES}(\mathbb{C})$ and $\mathcal{PES}(\mathbb{C})$.

A B K A B K

A function $f : \mathbb{C} \to \mathbb{C}$ is called *strongly everywhere surjective* if f takes \mathfrak{c} many times every value $z \in \mathbb{C}$ on every non-empty open subset of \mathbb{C} . A function $f : \mathbb{C} \to \mathbb{C}$ is called *perfectly everywhere surjective* if f maps every perfect subset of \mathbb{C} onto \mathbb{C} . We will denote the above classes of functions by $S\mathcal{ES}(\mathbb{C})$ and $\mathcal{PES}(\mathbb{C})$. By $\mathcal{EDD}(\mathbb{R})$ we denote the set of all everywhere discontinuous Darboux functions (from \mathbb{R} to \mathbb{R}), i.e. nowhere continuous functions which map connected sets onto connected sets.

A function $f : \mathbb{C} \to \mathbb{C}$ is called *strongly everywhere surjective* if f takes \mathfrak{c} many times every value $z \in \mathbb{C}$ on every non-empty open subset of \mathbb{C} . A function $f : \mathbb{C} \to \mathbb{C}$ is called *perfectly everywhere surjective* if f maps every perfect subset of \mathbb{C} onto \mathbb{C} . We will denote the above classes of functions by $S\mathcal{ES}(\mathbb{C})$ and $\mathcal{PES}(\mathbb{C})$. By $\mathcal{EDD}(\mathbb{R})$ we denote the set of all everywhere discontinuous Darboux functions (from \mathbb{R} to \mathbb{R}), i.e. nowhere continuous functions which map connected sets onto connected sets.

A function $f : \mathbb{R} \to \mathbb{R}$ is called *Sierpiński function* if any perfect set $P \subset \mathbb{R}$ contains a perfect set $Q \subset P$ such that $f|_Q$ is continuous.

The following families of functions are strongly 2^c-algebrable:

- (i) $\mathcal{PES}(\mathbb{C})$;
- (ii) $SES(\mathbb{C}) \setminus PES(\mathbb{C})$;
- (iii) $\mathcal{EDD}(\mathbb{R})$;
- (iv) functions whose sets of continuity points equal K for a fixed closed set $K \subsetneq \mathbb{R}$ (or $K \subsetneq \mathbb{C}$).

向下 イヨト イヨト

By \mathcal{F} denote the set of all functions $f : \mathbb{C} \to \mathbb{C}$ which fulfils the following conditions:

(a) f is strongly everywhere surjective;

(b) for any perfect set S there is a perfect set $S' \subset S$ with $f|_{S'} = 0$, in particular f is $s(\mathbb{C})$ -measurable;

(c) f is Lebesgue measurable and f has the Baire property. Then \mathcal{F} is strongly 2^c-algebrable.

Let \mathcal{F}_1 be the family of all functions from $\mathcal{SES}(\mathbb{C})$ which have the Baire property but are neither measurable nor *s*-measurable. Let \mathcal{F}_2 be the family of all functions from $\mathcal{SES}(\mathbb{C})$ which are measurable but neither have the Baire property nor are *s*-measurable.

Let \mathcal{F}_1 be the family of all functions from $\mathcal{SES}(\mathbb{C})$ which have the Baire property but are neither measurable nor *s*-measurable. Let \mathcal{F}_2 be the family of all functions from $\mathcal{SES}(\mathbb{C})$ which are measurable but neither have the Baire property nor are *s*-measurable.

Theorem

The families \mathcal{F}_1 and \mathcal{F}_2 are strongly $2^{\mathfrak{c}}$ -algebrable.

- A. Bartoszewicz, M. Bienias, S. Głąb, Independent Bernstein sets and algebraic constructions, to appear in J. Math. Anal. Appl.
- A. Bartoszewicz, S. Głąb, D. Pellegrino and J. B. Seoane-Sepúlveda, Algebrability, non-linear properties, and special functions, to appear in Proc. Amer. Math. Soc.
- A. Bartoszewicz, S. Głąb *Strong algebrability of sets of sequences and functions*, to appear in Proc. Amer. Math. Soc.
- C. Kuratowski, W. Sierpiński, Sur un probleme de M. Fréchet concernant les dimensions des ensembles linéaires, Fund. Math. 8 (1926), 192–200.