Topologies defined on trees

Aleksander Błaszczyk Silesian University, Poland

"Trends in Set Theory", Warsaw 2012

For a partial order (X, \leq) and $y \in X$ we shall use the following abbreviations:

$$(\leftarrow, y) = \{z \in X \colon z < y\},$$
$$(y, \rightarrow) = \{z \in X \colon z > y\},$$

A <u>tree</u> is a partial order (T, \leq) such that:

- 1. there exists the least element in T,
- 2. for every $t \in T$ the set (\leftarrow, t) is well ordered.

The order type of the set (\leftarrow, t) is called the <u>height</u> of t in T and denoted by ht(t,T) whereas

$$\operatorname{Lev}_{\alpha}(T) = \{t \in T \colon \operatorname{ht}(t,T) = \alpha\}$$

is the $\underline{\alpha}$ -level of T.

The height of the tree (T, \leq) is defined as ht $(T) = \min\{\alpha \colon \text{Lev}_{\alpha}(T) = \emptyset\}.$

If (T, \leq) is a tree and $t \in T$ then

 $\operatorname{succ}(t) = \{s \in T \colon s \text{ is minimal in } (t, \to)\}$

denotes the set of all <u>immediate successors</u> of the element t.

A tree (T, \leq) is called <u>infinitely branching</u> whenever the set succ(t) is infinite for every $t \in T$.

A family $\mathcal{F} \subseteq \mathcal{P}(X)$ is called a (free) filter whenever

1. $\{X \setminus F \colon |F| < \omega\} \subseteq \mathcal{F} \text{ and } \emptyset \notin \mathcal{F},$

2. $(\forall F \in \mathcal{F})(\forall G \subseteq X)(F \subseteq G \Rightarrow G \in \mathcal{F}),$

3. $(\forall F_1, F_2 \in \mathcal{F})(F_1 \cap F_2 \in \mathcal{F}).$

Let (T, \leq) be a tree and let $\mathfrak{F} = (\mathcal{F}_t : t \in T)$, where

$$\mathcal{F}_t \subseteq \mathcal{P}(\mathsf{succ}(t))$$

for every $t \in T$, be an indexed family of filters. For every $s \in T$ and every

$$\phi_s \in \prod \{ \mathcal{F}_t \colon t \in [s, \to) \},\$$

we consider the set

$$U_{s,\phi_s} = \bigcup \{ U_{\phi_s}^{\alpha} \colon \alpha < \mathsf{ht}[s, \to) \},\$$

where for every $\alpha < ht[s, \rightarrow)$ the sets $U^{\alpha}_{\phi_s} \subseteq T$ are defined as follows:

$$U_{\phi_s}^{\mathsf{0}} = \{s\},$$

 $U_{\phi_s}^{\alpha+1} = U_{\phi_s}^{\alpha} \cup \bigcup \{ \phi_s(t) \colon t \in U_{\phi_s}^{\alpha} \text{ and } \mathsf{ht}(t, [s, \rightarrow)) = \alpha \},\$

$$U_{\phi_s}^{\alpha} = \{t \in T \colon [s,t) \subseteq \bigcup \{U_{\phi_s}^{\beta} \colon \beta < \alpha\}\}$$

if α is a limit ordinal.

For every tree T and every indexed family $\mathfrak{F} = (\mathcal{F}_t : t \in T)$ of filters we consider the collection $\mathcal{B}(T,\mathfrak{F}) = \{U_{s,\phi_s} : s \in T \text{ and } \phi_s \in \prod\{\mathcal{F}_t : t \in [s, \rightarrow)\}\}.$

Lemma The family $\mathcal{B}(T, \mathfrak{F}) \cup \{\emptyset\}$ is closed under finite intersections.

Definition 1 The tree topology $\mathcal{T}_{\mathfrak{F}}$ on T is the topology generated by the family $\mathcal{B}(T,\mathfrak{F})$, where $\mathfrak{F} = (\mathcal{F}_t : t \in T)$ is an indexed family of filters. A tree endowed with the tree topology $\mathcal{T}_{\mathfrak{F}}$ is called an \mathfrak{F} -tree.

Theorem Let (T, \leq) be an \mathfrak{F} -tree of height $\kappa \geq \omega$. Then the following conditions hold true:

(1) *T* is a zero–dimensional dense in itself Hausdorff space,

(2) T is nowhere compact, i.e. if $A \subseteq T$ is a compact subspace then int $A = \emptyset$,

(3) cl Lev_{$$\alpha$$}(T) = Lev _{$<\alpha$} (T) for every $\alpha < \kappa$,

(4) int
$$Lev_{<\alpha}(T) = \emptyset$$
 for every $\alpha < \kappa$,

- (5) if $A \subseteq T$ is a chain, then A is closed and discrete,
- (6) if $A \subseteq T$ is an antichain, then A is a discrete subspace of T.

Proposition Every countable \mathfrak{F} -tree has a continuous bijection onto the space of rational numbers.

Proposition Let (T, \leq) be a special Aronszajn tree. Then for every $\mathfrak{F} = (\mathcal{F}_t : t \in T)$ the \mathfrak{F} tree T is an uncountable dense in itself space which is a countable union of closed discrete subspaces. **Theorem** Every \mathfrak{F} -tree is a collectionwise normal space.

Theorem Assume T is an \mathfrak{F} -tree with $\mathfrak{F} = (\mathcal{F}_t: t \in T)$ and $ht(T) = \omega$. Then T is extremally disconnected iff for every $t \in T$ the filter \mathcal{F}_t is an ultrafilter.

Proposition Let (T, \leq) be a tree with the underlying set

 $T = \operatorname{Seq}(\omega + \omega) = \bigcup \{ {}^{\alpha}\omega : \alpha < \omega + \omega \}$

and the partial order given by

 $x \le y \Longleftrightarrow y \restriction \mathsf{dom}(x) = x,$

and let $\mathfrak{F} = (\mathcal{F}_t: t \in T)$ be an arbitrary collection of filters. Then there exist disjoint sets $U, V \subseteq T$ which are open in the \mathfrak{F} -tree T and such that $\emptyset \in \operatorname{cl} U \cap \operatorname{cl} V$. In particular, the \mathfrak{F} -tree T is not extremally disconnected.

Later we shall assume additionally that $ht(T) = \omega$ and there exists a cardinal $\kappa \ge \omega$ such that $|\operatorname{succ}(s)| = \kappa$ for all $s \in T$. Hence, the \mathfrak{F} -tree T is extremally disconnected whenever \mathfrak{F} consist of ultrafilters.

Theorem Assume (T, \leq) is an \mathfrak{F} -tree and let $f: T \to T$ be a continuous closed mapping. If \mathfrak{F} consists of pairwise incomparable ultrafilters, then f is the identity.

Theorem Assume (T, \leq) is an \mathfrak{F} -tree and \mathfrak{F} consists of pairwise incomparable ultrafilters. If $U, V \subseteq T$ are open sets and $f: U \to V$ is an open surjection, then U = V and f is the identity.

Remark (Jerry Vaugran) Assume T = Seqis an \mathfrak{F} -tree where $\mathfrak{F} = (\mathcal{F}_s: s \in \text{Seq})$ is a collection of pairwise comparable ultrafilters. Then every two nonempty open subsets of Tare homeomorphic. **Theorem** Assume T = Seq is an \mathfrak{F} -tree where $\mathfrak{F} = (\mathcal{F}_s : s \in \text{Seq})$ is a collection of pairwise incomparable weak P-ultrafilters. Then for every continuous injection $f : \beta T \to \beta T$ there exists a clopen set $U \subseteq \beta T$ such that $f \upharpoonright U$ is the identity and $f[\beta T \setminus U]$ is a nowhere dense subset of βT . In particular, if f is a homeomorphism of βT onto itself, then it is the identity.

If $\lambda > \omega$, then a (free) filter \mathcal{F} on ω is called a <u> P_{λ} -filter</u> if for every subfamily \mathcal{F} of size less than λ there exists an element of \mathcal{F} which is almost contained in every element of \mathcal{F} . As usual \mathfrak{b} denotes the minimal cardinality of an unbounded subset of ω_{ω} ordered by the relation \leq^* .

Theorem Assume $\omega < \lambda \leq \mathfrak{b}$ and $T = \operatorname{Seq}(\omega)$. If $\mathfrak{F} = (\mathcal{F}_t : t \in T)$ consists of P_{λ} -filters and \mathcal{U} is a collection of open subsets of βT such that $|\mathcal{U}| < \lambda$ and $T \subseteq U \subseteq \beta T$ for every $U \in \mathcal{U}$, then

 $T \subseteq \operatorname{int} \bigcap \mathcal{U}.$