# Grigorieff forcing and automorphisms of $\mathcal{P}(\omega)/\operatorname{Fin}$

### David Chodounský Institute of Mathematics AS CR

July 8, 2012

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let  $\varphi$  be an automorphism of the Boolean algebra  $\mathcal{P}(\omega)/\operatorname{Fin}$ 

A partial 1-1 function  $f: A \rightarrow A$  is an almost permutation if  $Dom(f) = A^* A = Rng(f)$ 

Each bijection  $f \colon A \to B$  induces a homeomorphism  $\psi \colon \mathcal{P}(A) / \operatorname{Fin} \to \mathcal{P}(B) / \operatorname{Fin}$  by  $\psi([C]) = [f[C]]$  for  $C \in \mathcal{P}(A)$ 

### Definition

An automorphism  $\varphi$  of  $\mathcal{P}(\omega)/$  Fin is trivial iff it is induced by some almost permutation of  $\omega$ .

A D F A 同 F A E F A E F A Q A

An automorphism  $\varphi$  of  $\mathcal{P}(\omega)/\mathsf{Fin}$  is trivial iff it is induced by some almost permutation of  $\omega$ .

# Question

*Is every automorphism of*  $\mathcal{P}(\omega)/\mathsf{Fin}$  *trivial?* 



An automorphism  $\varphi$  of  $\mathcal{P}(\omega)/\mathsf{Fin}$  is trivial iff it is induced by some almost permutation of  $\omega$ .

(ロ) (同) (三) (三) (三) (○) (○)

# Question

*Is every automorphism of*  $\mathcal{P}(\omega)/\mathsf{Fin}$  *trivial?* 

Negative answers

• W. Rudin (1956):  $CH \Rightarrow NO$ 

An automorphism  $\varphi$  of  $\mathcal{P}(\omega)/F$  in is trivial iff it is induced by some almost permutation of  $\omega$ .

## Question

*Is every automorphism of*  $\mathcal{P}(\omega)$ / Fin *trivial?* 

Negative answers

- W. Rudin (1956):  $CH \Rightarrow NO$
- ▶ Baumgartner (198?): p-ultrafilter with character  $\omega_1 \Rightarrow NO$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

An automorphism  $\varphi$  of  $\mathcal{P}(\omega)/\mathsf{Fin}$  is trivial iff it is induced by some almost permutation of  $\omega$ .

# Question

*Is every automorphism of*  $\mathcal{P}(\omega)/\mathsf{Fin}$  *trivial?* 

Negative answers

- W. Rudin (1956):  $CH \Rightarrow NO$
- ▶ Baumgartner (198?): p-ultrafilter with character  $\omega_1 \Rightarrow NO$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• van Douwen (198?):  $\mathfrak{u} = \omega_1 \Rightarrow NO$ 

Is every automorphism of  $\mathcal{P}(\omega)$  / Fin trivial?

Negative answers

- W. Rudin (1956):  $CH \Rightarrow NO$
- ► Baumgartner (198?): p-ultrafilter with character  $\omega_1 \Rightarrow NO$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• van Douwen (198?):  $\mathfrak{u} = \omega_1 \Rightarrow NO$ 

Is every automorphism of  $\mathcal{P}(\omega)$  / Fin trivial?

Negative answers

- W. Rudin (1956):  $CH \Rightarrow NO$
- ▶ Baumgartner (198?): p-ultrafilter with character  $\omega_1 \Rightarrow NO$
- van Douwen (198?):  $\mathfrak{u} = \omega_1 \Rightarrow NO$

Positive answers

 Shelah (1982): Consistently YES (iterated oracle chain condition forcing)

*Is every automorphism of*  $\mathcal{P}(\omega)/\mathsf{Fin}$  *trivial?* 

Negative answers

- W. Rudin (1956):  $CH \Rightarrow NO$
- ▶ Baumgartner (198?): p-ultrafilter with character  $\omega_1 \Rightarrow NO$
- van Douwen (198?):  $\mathfrak{u} = \omega_1 \Rightarrow NO$

Positive answers

 Shelah (1982): Consistently YES (iterated oracle chain condition forcing)

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• Shelah, Steprans (1988):  $PFA \Rightarrow YES$ 

Is every automorphism of  $\mathcal{P}(\omega)$  / Fin trivial?

Negative answers

- W. Rudin (1956):  $CH \Rightarrow NO$
- ▶ Baumgartner (198?): p-ultrafilter with character  $\omega_1 \Rightarrow NO$
- van Douwen (198?):  $\mathfrak{u} = \omega_1 \Rightarrow NO$

Positive answers

- Shelah (1982): Consistently YES (iterated oracle chain condition forcing)
- Shelah, Steprans (1988):  $PFA \Rightarrow YES$
- ▶ Velickovic (1993): OCA + MA<sub> $\omega_1$ </sub> ⇒ YES (but MA  $\Rightarrow$  YES)

*Is every automorphism of*  $\mathcal{P}(\omega)/\mathsf{Fin}$  *trivial?* 

Negative answers

- W. Rudin (1956):  $CH \Rightarrow NO$
- ▶ Baumgartner (198?): p-ultrafilter with character  $\omega_1 \Rightarrow NO$
- van Douwen (198?):  $\mathfrak{u} = \omega_1 \Rightarrow NO$

Positive answers

- Shelah (1982): Consistently YES (iterated oracle chain condition forcing)
- Shelah, Steprans (1988):  $PFA \Rightarrow YES$
- ▶ Velickovic (1993): OCA + MA<sub> $\omega_1$ </sub> ⇒ YES (but MA  $\Rightarrow$  YES)

### Question

Does  $\mathfrak{d} = \omega_1$  imply that there is a non-trivial automorphism of  $\mathcal{P}(\omega)/\operatorname{Fin}$ ?

Does  $\mathfrak{d} = \omega_1$  imply that there is a non-trivial automorphism of  $\mathcal{P}(\omega)/\operatorname{Fin}$ ?

Shelah, Steprans (2002): "∂ = ω₁ + all automorphism are somewhere trivial" is consistent

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Does  $\mathfrak{d} = \omega_1$  imply that there is a non-trivial automorphism of  $\mathcal{P}(\omega)/\operatorname{Fin}$ ?

- Shelah, Steprans (2002): "∂ = ω₁ + all automorphism are somewhere trivial" is consistent
- ► Shelah, Steprans (Recently): "a condition close to  $\vartheta = \omega_1$ " ⇒ there is a non-trivial automorphism

(ロ) (同) (三) (三) (三) (○) (○)

Does  $\mathfrak{d} = \omega_1$  imply that there is a non-trivial automorphism of  $\mathcal{P}(\omega)/\operatorname{Fin}$ ?

- Shelah, Steprans (2002): "∂ = ω₁ + all automorphism are somewhere trivial" is consistent
- Shelah, Steprans (Recently): "a condition close to 
  ∂ = ω<sub>1</sub>" ⇒ there is a non-trivial automorphism

Let  $\varphi$  be an automorphism of  $\mathcal{P}(\omega)/$  Fin. The ideal Triv  $\varphi$  consists of sets  $A \subset \omega$ , such  $\varphi$  is induced on A by some (almost) bijection  $f \colon A \to \omega$ .

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let  $\varphi$  be an automorphism of  $\mathcal{P}(\omega)/$  Fin. The ideal Triv  $\varphi$  consists of sets  $A \subset \omega$ , such  $\varphi$  is induced on A by some (almost) bijection  $f \colon A \to \omega$ .

### Definition

Let S be a subset of  $\mathcal{P}(\omega)$ . The automorphism  $\varphi$  is trivial on S if Triv  $\varphi \cap S \neq \emptyset$ .

Let  $\varphi$  be an automorphism of  $\mathcal{P}(\omega)/$  Fin. The ideal Triv  $\varphi$  consists of sets  $A \subset \omega$ , such  $\varphi$  is induced on A by some (almost) bijection  $f \colon A \to \omega$ .

# Definition

Let S be a subset of  $\mathcal{P}(\omega)$ . The automorphism  $\varphi$  is trivial on S if Triv  $\varphi \cap S \neq \emptyset$ .

- trivial  $\Leftrightarrow$  trivial on  $\{\omega\}$
- somewhere trivial  $\Leftrightarrow$  trivial on  $[\omega]^{\omega}$

Suppose  $\varphi$  is a non-trivial automorphism

Suppose  $\varphi$  is a non-trivial automorphism

 Option 1: Curing non-triviality of φ – add an almost permutation making φ trivial.

(ロ) (同) (三) (三) (三) (○) (○)

Suppose  $\varphi$  is a non-trivial automorphism

 Option 1: Curing non-triviality of φ – add an almost permutation making φ trivial.
 Generally not possible!

(ロ) (同) (三) (三) (三) (○) (○)

Suppose  $\varphi$  is a non-trivial automorphism

 Option 1: Curing non-triviality of φ – add an almost permutation making φ trivial.
 Generally not possible!

Option 2: Killing φ – add new subsets of ω so that φ cannot be extended to an automorphism in the extension.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

# Definition (Grigorieff's forcing) Let $\mathcal{F}$ be a filter on $\omega$ . Put

$$G(\mathcal{F}) = \{ p \colon I 
ightarrow 2; I \in \mathcal{F}^* \}$$

and p < q iff  $q \subset p$ .



# Definition (Grigorieff's forcing) Let $\mathcal{F}$ be a filter on $\omega$ . Put

$$G(\mathcal{F}) = \{ p \colon I 
ightarrow 2; I \in \mathcal{F}^* \}$$

and p < q iff  $q \subset p$ .

#### Fact

Let  $\mathcal{F}$  be a non-meager p-filter. The Grigorieff's forcing  $G(\mathcal{F})$  is proper and  $^{\omega}\omega$  bounding of size c.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

### Definition (Grigorieff's forcing) Let $\mathcal{F}$ be a filter on $\omega$ . Put

Let  $\mathcal{F}$  be a filter on  $\omega$ . Put

$$G(\mathcal{F}) = \{ p \colon I 
ightarrow 2; I \in \mathcal{F}^* \}$$

and p < q iff  $q \subset p$ .

### Fact

Let  $\mathcal{F}$  be a non-meager p-filter. The Grigorieff's forcing  $G(\mathcal{F})$  is proper and  ${}^{\omega}\omega$  bounding of size  $\mathfrak{c}$ .

# Theorem (Ch., Dow)

Let  $\varphi$  be an automorphism of  $\mathcal{P}(\omega)/$  Fin and let  $\mathcal{F}$  be a non-meager p-filter such that  $\varphi$  is not trivial on  $\mathcal{F}$ . Let g be the  $G(\mathcal{F})$ -generic real. The family

$$\langle arphi( oldsymbol{p}^{-1}(1)), arphi( oldsymbol{p}^{-1}(0)) \colon oldsymbol{p} \in oldsymbol{g} 
angle$$

is an unfilled gap (in V[g]).

### Theorem (Ch., Dow)

Let  $\varphi$  be an automorphism of  $\mathcal{P}(\omega)/$  Fin and let  $\mathcal{F}$  be a non-meager p-filter such that  $\varphi$  is not trivial on  $\mathcal{F}$ . The family

 $\langle \varphi(p^{-1}(1)), \varphi(p^{-1}(0)) \colon p \in g \rangle$ 

is an unfilled gap (in V[g]).

Theorem (Abraham, Todorcevic)

(GCH) For each  $(\omega_1, \omega_1)$  gap  $\mathcal{A}$  there exist a proper  ${}^{\omega}\omega$  bounding (not adding new reals)  $\omega_2$ -p.i.c. forcing which makes  $\mathcal{A}$  indestructible in the extension.

# Theorem (Ch., Dow)

Let  $\varphi$  be an automorphism of  $\mathcal{P}(\omega)/$  Fin and let  $\mathcal{F}$  be a non-meager p-filter such that  $\varphi$  is not trivial on  $\mathcal{F}$ . The family

 $\langle \varphi(p^{-1}(1)), \varphi(p^{-1}(0)) \colon p \in g \rangle$ 

is an unfilled gap (in V[g]).

# Theorem (Abraham, Todorcevic)

(GCH) For each  $(\omega_1, \omega_1)$  gap  $\mathcal{A}$  there exist a proper  ${}^{\omega}\omega$  bounding (not adding new reals)  $\omega_2$ -p.i.c. forcing which makes  $\mathcal{A}$  indestructible in the extension.

# Corollary

(GCH) Let  $\varphi$  be an automorphism which is not trivial on a non-meager p-filter  $\mathcal{F}$ .

There is a proper  ${}^{\omega}\omega$  bounding  $\omega_2$ -p.i.c. forcing  $\mathbb{P}$  such that there is no automorphism extending  $\varphi$  in any  $\omega_1$  preserving extension of  $V[G_{\mathbb{P}}]$ .

# Corollary

(GCH) Let  $\varphi$  be an automorphism which is not trivial on a non-meager p-filter  $\mathcal{F}$ .

There is a proper  ${}^{\omega}\omega$  bounding  $\omega_2$ -p.i.c. forcing  $\mathbb{P}$  such that there is no automorphism extending  $\varphi$  in any  $\omega_1$  preserving extension of  $V[G_{\mathbb{P}}]$ .

# Corollary

It is consistent with ZFC that  $\mathfrak{d} = \omega_1$  and every automorphisms of  $\mathcal{P}(\omega)$ / Fin is trivial on each non-meager p-filter.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

## Theorem (Ch., Dow)

Let  $\varphi$  be an automorphism of  $\mathcal{P}(\omega)/$  Fin and let  $\mathcal{F}$  be a non-meager p-filter such that  $\varphi$  is not trivial on  $\mathcal{F}$ . The family

$$\mathcal{A} = \langle arphi( p^{-1}(1)), arphi( p^{-1}(0)) \colon p \in g 
angle$$

is an unfilled gap (in V[g]).

### Proof.

Let  $\dot{y}$  be a  $G(\mathcal{F})$  name for a real (a candidate for filling  $\mathcal{A}$ ). Fix a countable elementary submodel M containing  $\dot{y}$ . M-generic condition q forces that  $\dot{y}$  looks like a Cohen name. (Cohen for adding generic subset of  $\omega \setminus \text{Dom}(q)$ .)

# Proof.

Let  $\dot{y}$  be a  $G(\mathcal{F})$  name for a real (a candidate for filling  $\mathcal{A}$ ). Fix a countable elementary submodel M containing  $\dot{y}$ . M-generic condition q forces that  $\dot{y}$  looks like a Cohen name. (Cohen for adding generic subset of  $\omega \setminus \text{Dom}(q)$ .)

(ロ) (同) (三) (三) (三) (○) (○)

# Proof.

Let  $\dot{y}$  be a  $G(\mathcal{F})$  name for a real (a candidate for filling  $\mathcal{A}$ ). Fix a countable elementary submodel M containing  $\dot{y}$ . M-generic condition q forces that  $\dot{y}$  looks like a Cohen name. (Cohen for adding generic subset of  $\omega \setminus \text{Dom}(q)$ .)

#### Lemma

Let  $\varphi$  be a non-trivial automorphism and  $\mathcal{I}$  be a non-meager p-ideal. Suppose  $F : \mathcal{P}(\omega) \to \mathcal{P}(\omega)$  is function continuous on a dense  $G_{\delta}$  set.

There are  $x \subset a \in \mathcal{I}$  such that

 $\mathbf{C} \Vdash F(\mathbf{v}) \cap \varphi(\mathbf{a}) \neq^* \varphi(\mathbf{x})$  for each  $\mathbf{v} =^* \mathbf{x} \cup g_{\omega \setminus \mathbf{a}}$ 

where **C** is Cohen forcing and  $g_{\omega \setminus a}$  is Cohen generic subset of  $\omega \setminus a$ .