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Introduction

Vladimir Kanovei, Marcin Sabok and Jinďrich Zapletal in
Canonical Ramsey theory on Polish spaces deals in general with
the following problem:

Let X be a Polish space, I ⊆ P(X ) a σ-ideal on X and
E ∈ Borel(X × X ) an equivalence relation.

Next we are given a Borel set B ∈ I+ and we ask whether there
exists an I -positive Borel subset C ⊆ B such that E � C <B E � B.
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Introduction-Spectrum of a σ-ideal

If there exists a Borel set B ∈ I+ such that ∀C ∈ (I+ ∩ Borel(B))
E � C has the same complexity as E on the whole space, i.e.
E � C ≈B E � X , then we say that E is in the spectrum of I .

On the other hand, E can be canonized to a relation F ≤B E if for
every Borel B ∈ I+ there is a subset C ∈ (I+ ∩ Borel(B)) such
that E � C ≈B F � C .
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Introduction-Laver forcing

Laver forcing is the ordering of Laver trees ordered by reverse
inclusion; where a tree T ⊆ ω<ω is a Laver tree if

I it has a stem - a maximal node s ∈ T such that
∀t ∈ T (t ≤ s ∨ s ≤ t)

I for every node t ≥ s, t splits into infinitely many immediate
successors

Fact
There is a σ-ideal I on ωω such that Borel(ωω) \ I is forcing
equivalent to the Laver forcing.
In fact, for every analytic set A ⊆ ωω, either A ∈ I or there exists a
Laver tree T such that [T ] ⊆ A.
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Spectrum of Laver

The following theorem is proved in the book of Kanovei, Sabok
and Zapletal, Canonical Ramsey theory on Polish spaces:

Theorem
Let I be a σ-ideal on a Polish space X such that the quotient
forcing PI is proper, nowhere ccc and adds a minimal forcing
extension. Then I has total canonization for equivalence relations
classifiable by countable structures.

Corollary

Let T be a Laver tree, E an equivalence classifiable by countable
structures. Then there is a Laver subtree on which E is either the
identity relation or the full relation.
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Spectrum of Laver

J. Zapletal found the following Fσ equivalence relation (denoted
here as) K on ωω (with Kσ classes) which is in the spectrum of
Laver.
We set xKy iff
∃b∀m∃nx , ny ≤ b(x(m) ≤ y(m + ny ) ∧ y(m) ≤ x(m + nx)).

Proposition

[KaSaZa] For any Laver tree T , K � [T ] ≈B K .

Also, for any two Laver trees T and S there are x0, x1 ∈ [T ] and
y0, y1 ∈ [S ] such that x0Ky0 and x1��K y1.
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Borel equivalences we will work with

Definition
Let I be a Borel ideal on ω. It induces a Borel equivalence relation
EI (of the same complexity) on 2ω defined as:
xEIy ≡ {n ∈ ω : x(n) 6= y(n)} ∈ I.

Definition
For a subgroup G ≤ (Rω,+) let us denote EG the equivalence
relation on Rω defined as xEGy ≡ x − y ∈ G .

We will consider the equivalences E`p for p ∈ [1,∞]; so xE`py if
x − y ∈ `p, i.e.

I
∑∞

i=0(x(i)− y(i))p <∞, for p ∈ [1,∞)

I {x(i)− y(i) : i ∈ ω} is bounded, for p =∞
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Main theorem

Theorem
Let T be a Laver tree, I an Fσ P-ideal on ω and E an equivalence
relation on [T ] that is Borel reducible to EI . Then there is a Laver
subtree S ≤ T such that E � [S ] is either id([S ]) or [S ]× [S ].

Corollary

In particular, for a Laver tree T , E an equivalence on [T ] that is
Borel reducible to E2 or E`p for p ∈ [1,∞), there is a Laver subtree
S ≤ T such that E � [S ] is either id([S ]) or [S ]× [S ].

Fact
The previous theorem does not hold for equivalences Borel
reducible to E`∞ .

Proof.
The relation K defined before is Borel bireducible with E`∞ (and
with EKσ).
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Corollaries

Theorem
Let E ⊆ ωω × ωω be an equivalence relation containing K , i.e.
E ⊇ K , which is Borel reducible to EI for some Fσ P-ideal. Then
there exists a Laver large set contained in one equivalence class of
E .

Proof. Consider the set
X = {x ∈ ωω : [x ]E contains all branches of some Laver tree}.
I It is non-empty: Otherwise, by the previous theorem there is a

Laver tree S such that E � [S ] = id([S ]). There are x , y ∈ [S ]
such that xKy and since E ⊇ K , also xEy , a contradiction.

I It is E -equivalent: For, if [x ]E contained all branches of Tx

and [y ]E all branches of Ty , then there would be z0 ∈ Tx and
z1 ∈ Ty such that z0Kz1, thus z0Ez1, a contradiction.
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Corollaries

I It is a single class and it is Laver large (the complement is in
the ideal): Otherwise, the complement would contain all
branches of some Laver tree S and again, there would have to
be x ∈ X and y ∈ [S ] such that xEy .
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Silver dichotomy

Combining with the results from the book of Kanovei, Sabok,
Zapletal, the following Silver type dichotomy holds (under the

assumption ∀x ∈ R(ω
L[x]
1 < ω1)):

Theorem (Silver dichotomy)

Let E ⊆ ωω × ωω be an equivalence relation Borel reducible to EI
for some Fσ P-ideal on ω. Then either ωω = (

⋃
n∈ω En) ∪ J, where

En for every n is an equivalence class of E and J is a set in the
Laver ideal, or there exists a Laver tree T such that
E � [T ] = id([T ]).
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Silver dichotomy

Corollary

Let E ⊆ ωω × ωω be an equivalence relation Borel reducible to EI
for some Fσ P-ideal and let X ⊆ ωω be an arbitrary subset (not
necessarily definable) such that ∀x , y ∈ X (x�E y). Then there exists
a Laver tree T such that E � [T ] = id([T ]).

Proof.
The first possibility of the Silver dichotomy cannot happen. If
ωω = (

⋃
n∈ω En) ∪ J as in the statement of the previous theorem,

then X \ J is still not in the Laver ideal and is uncountable.
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