Borel equivalence relations and the Laver forcing

Michal Doucha

Charles University in Prague and Institute of Mathematics, AS

July 8th, 2012

Michal Doucha Borel equivalence relations and the Laver forcing

э

Introduction

Vladimir Kanovei, Marcin Sabok and Jindřich Zapletal in *Canonical Ramsey theory on Polish spaces* deals in general with the following problem:

Let X be a Polish space, $I \subseteq \mathcal{P}(X)$ a σ -ideal on X and $E \in \text{Borel}(X \times X)$ an equivalence relation.

Introduction

Vladimir Kanovei, Marcin Sabok and Jindřich Zapletal in *Canonical Ramsey theory on Polish spaces* deals in general with the following problem:

Let X be a Polish space, $I \subseteq \mathcal{P}(X)$ a σ -ideal on X and $E \in Borel(X \times X)$ an equivalence relation.

Next we are given a Borel set $B \in I^+$ and we ask whether there exists an *I*-positive Borel subset $C \subseteq B$ such that $E \upharpoonright C \leq B \in B$.

Introduction-Spectrum of a σ -ideal

If there exists a Borel set $B \in I^+$ such that $\forall C \in (I^+ \cap Borel(B))$ $E \upharpoonright C$ has the same complexity as E on the whole space, i.e. $E \upharpoonright C \approx_B E \upharpoonright X$, then we say that E is in the spectrum of I. If there exists a Borel set $B \in I^+$ such that $\forall C \in (I^+ \cap Borel(B))$ $E \upharpoonright C$ has the same complexity as E on the whole space, i.e. $E \upharpoonright C \approx_B E \upharpoonright X$, then we say that E is in the spectrum of I.

On the other hand, E can be canonized to a relation $F \leq_{\mathrm{B}} E$ if for every Borel $B \in I^+$ there is a subset $C \in (I^+ \cap \operatorname{Borel}(B))$ such that $E \upharpoonright C \approx_B F \upharpoonright C$.

Laver forcing is the ordering of Laver trees ordered by reverse inclusion; where a tree $\mathcal{T}\subseteq\omega^{<\omega}$ is a Laver tree if

Laver forcing is the ordering of Laver trees ordered by reverse inclusion; where a tree $T\subseteq\omega^{<\omega}$ is a Laver tree if

▶ it has a stem - a maximal node $s \in T$ such that $\forall t \in T(t \leq s \lor s \leq t)$

Laver forcing is the ordering of Laver trees ordered by reverse inclusion; where a tree $\mathcal{T}\subseteq\omega^{<\omega}$ is a Laver tree if

- ▶ it has a stem a maximal node $s \in T$ such that $\forall t \in T(t \leq s \lor s \leq t)$
- ▶ for every node t ≥ s, t splits into infinitely many immediate successors

Laver forcing is the ordering of Laver trees ordered by reverse inclusion; where a tree $\mathcal{T}\subseteq\omega^{<\omega}$ is a Laver tree if

- ▶ it has a stem a maximal node $s \in T$ such that $\forall t \in T(t \leq s \lor s \leq t)$
- ▶ for every node t ≥ s, t splits into infinitely many immediate successors

Fact

There is a σ -ideal I on ω^{ω} such that $Borel(\omega^{\omega}) \setminus I$ is forcing equivalent to the Laver forcing.

Laver forcing is the ordering of Laver trees ordered by reverse inclusion; where a tree $\mathcal{T}\subseteq\omega^{<\omega}$ is a Laver tree if

- ▶ it has a stem a maximal node $s \in T$ such that $\forall t \in T(t \leq s \lor s \leq t)$
- ▶ for every node t ≥ s, t splits into infinitely many immediate successors

Fact

There is a σ -ideal I on ω^{ω} such that $Borel(\omega^{\omega}) \setminus I$ is forcing equivalent to the Laver forcing. In fact, for every analytic set $A \subseteq \omega^{\omega}$, either $A \in I$ or there exists a

Laver tree T such that $[T] \subseteq A$.

The following theorem is proved in the book of Kanovei, Sabok and Zapletal, *Canonical Ramsey theory on Polish spaces*:

Theorem

Let I be a σ -ideal on a Polish space X such that the quotient forcing P_I is proper, nowhere ccc and adds a minimal forcing extension. Then I has total canonization for equivalence relations classifiable by countable structures.

The following theorem is proved in the book of Kanovei, Sabok and Zapletal, *Canonical Ramsey theory on Polish spaces*:

Theorem

Let I be a σ -ideal on a Polish space X such that the quotient forcing P_I is proper, nowhere ccc and adds a minimal forcing extension. Then I has total canonization for equivalence relations classifiable by countable structures.

Corollary

Let T be a Laver tree, E an equivalence classifiable by countable structures. Then there is a Laver subtree on which E is either the identity relation or the full relation.

J. Zapletal found the following F_{σ} equivalence relation (denoted here as) K on ω^{ω} (with K_{σ} classes) which is in the spectrum of Laver.

We set xKy iff

 $\exists b \forall m \exists n_x, n_y \leq b(x(m) \leq y(m+n_y) \land y(m) \leq x(m+n_x)).$

J. Zapletal found the following F_{σ} equivalence relation (denoted here as) K on ω^{ω} (with K_{σ} classes) which is in the spectrum of Laver.

We set xKy iff

 $\exists b \forall m \exists n_x, n_y \leq b(x(m) \leq y(m+n_y) \land y(m) \leq x(m+n_x)).$

Proposition

[KaSaZa] For any Laver tree T, $K \upharpoonright [T] \approx_B K$.

J. Zapletal found the following F_{σ} equivalence relation (denoted here as) K on ω^{ω} (with K_{σ} classes) which is in the spectrum of Laver.

We set xKy iff

$$\exists b \forall m \exists n_x, n_y \leq b(x(m) \leq y(m+n_y) \land y(m) \leq x(m+n_x)).$$

Proposition

[KaSaZa] For any Laver tree T, $K \upharpoonright [T] \approx_B K$.

Also, for any two Laver trees T and S there are $x_0, x_1 \in [T]$ and $y_0, y_1 \in [S]$ such that $x_0 K y_0$ and $x_1 K y_1$.

Borel equivalences we will work with

Definition

Let \mathcal{I} be a Borel ideal on ω . It induces a Borel equivalence relation $E_{\mathcal{I}}$ (of the same complexity) on 2^{ω} defined as: $xE_{\mathcal{I}}y \equiv \{n \in \omega : x(n) \neq y(n)\} \in \mathcal{I}.$

Borel equivalences we will work with

Definition

Let \mathcal{I} be a Borel ideal on ω . It induces a Borel equivalence relation $E_{\mathcal{I}}$ (of the same complexity) on 2^{ω} defined as: $xE_{\mathcal{I}}y \equiv \{n \in \omega : x(n) \neq y(n)\} \in \mathcal{I}.$

Definition

For a subgroup $G \leq (\mathbb{R}^{\omega}, +)$ let us denote E_G the equivalence relation on \mathbb{R}^{ω} defined as $xE_Gy \equiv x - y \in G$.

Borel equivalences we will work with

Definition

Let \mathcal{I} be a Borel ideal on ω . It induces a Borel equivalence relation $E_{\mathcal{I}}$ (of the same complexity) on 2^{ω} defined as: $xE_{\mathcal{I}}y \equiv \{n \in \omega : x(n) \neq y(n)\} \in \mathcal{I}.$

Definition

For a subgroup $G \leq (\mathbb{R}^{\omega}, +)$ let us denote E_G the equivalence relation on \mathbb{R}^{ω} defined as $xE_Gy \equiv x - y \in G$.

We will consider the equivalences E_{ℓ_p} for $p \in [1, \infty]$; so $xE_{\ell_p}y$ if $x - y \in \ell_p$, i.e.

•
$$\sum_{i=0}^{\infty} (x(i) - y(i))^p < \infty$$
, for $p \in [1, \infty)$

•
$$\{x(i) - y(i) : i \in \omega\}$$
 is bounded, for $p = \infty$

Theorem

Let T be a Laver tree, \mathcal{I} an F_{σ} P-ideal on ω and E an equivalence relation on [T] that is Borel reducible to $E_{\mathcal{I}}$. Then there is a Laver subtree $S \leq T$ such that $E \upharpoonright [S]$ is either id([S]) or $[S] \times [S]$.

Theorem

Let T be a Laver tree, \mathcal{I} an F_{σ} P-ideal on ω and E an equivalence relation on [T] that is Borel reducible to $E_{\mathcal{I}}$. Then there is a Laver subtree $S \leq T$ such that $E \upharpoonright [S]$ is either id([S]) or $[S] \times [S]$.

Corollary

In particular, for a Laver tree T, E an equivalence on [T] that is Borel reducible to E_2 or E_{ℓ_p} for $p \in [1, \infty)$, there is a Laver subtree $S \leq T$ such that $E \upharpoonright [S]$ is either id([S]) or $[S] \times [S]$.

Theorem

Let T be a Laver tree, \mathcal{I} an F_{σ} P-ideal on ω and E an equivalence relation on [T] that is Borel reducible to $E_{\mathcal{I}}$. Then there is a Laver subtree $S \leq T$ such that $E \upharpoonright [S]$ is either id([S]) or $[S] \times [S]$.

Corollary

In particular, for a Laver tree T, E an equivalence on [T] that is Borel reducible to E_2 or E_{ℓ_p} for $p \in [1, \infty)$, there is a Laver subtree $S \leq T$ such that $E \upharpoonright [S]$ is either id([S]) or $[S] \times [S]$.

Fact

The previous theorem does not hold for equivalences Borel reducible to $E_{\ell_\infty}.$

Theorem

Let T be a Laver tree, \mathcal{I} an F_{σ} P-ideal on ω and E an equivalence relation on [T] that is Borel reducible to $E_{\mathcal{I}}$. Then there is a Laver subtree $S \leq T$ such that $E \upharpoonright [S]$ is either id([S]) or $[S] \times [S]$.

Corollary

In particular, for a Laver tree T, E an equivalence on [T] that is Borel reducible to E_2 or E_{ℓ_p} for $p \in [1, \infty)$, there is a Laver subtree $S \leq T$ such that $E \upharpoonright [S]$ is either id([S]) or $[S] \times [S]$.

Fact

The previous theorem does not hold for equivalences Borel reducible to $E_{\ell_\infty}.$

Proof.

The relation K defined before is Borel bireducible with $E_{\ell_{\infty}}$ (and with $E_{K_{\sigma}}$).

Theorem

Let $E \subseteq \omega^{\omega} \times \omega^{\omega}$ be an equivalence relation containing K, i.e. $E \supseteq K$, which is Borel reducible to $E_{\mathcal{I}}$ for some F_{σ} P-ideal. Then there exists a Laver large set contained in one equivalence class of E.

Theorem

Let $E \subseteq \omega^{\omega} \times \omega^{\omega}$ be an equivalence relation containing K, i.e. $E \supseteq K$, which is Borel reducible to $E_{\mathcal{I}}$ for some F_{σ} P-ideal. Then there exists a Laver large set contained in one equivalence class of E.

Proof. Consider the set

 $X = \{x \in \omega^{\omega} : [x]_E \text{ contains all branches of some Laver tree}\}.$

Theorem

Let $E \subseteq \omega^{\omega} \times \omega^{\omega}$ be an equivalence relation containing K, i.e. $E \supseteq K$, which is Borel reducible to $E_{\mathcal{I}}$ for some F_{σ} P-ideal. Then there exists a Laver large set contained in one equivalence class of E.

Proof. Consider the set

 $X = \{x \in \omega^{\omega} : [x]_E \text{ contains all branches of some Laver tree}\}.$

It is non-empty: Otherwise, by the previous theorem there is a Laver tree S such that E ↾ [S] = id([S]). There are x, y ∈ [S] such that xKy and since E ⊇ K, also xEy, a contradiction.

Theorem

Let $E \subseteq \omega^{\omega} \times \omega^{\omega}$ be an equivalence relation containing K, i.e. $E \supseteq K$, which is Borel reducible to $E_{\mathcal{I}}$ for some F_{σ} P-ideal. Then there exists a Laver large set contained in one equivalence class of E.

Proof. Consider the set

 $X = \{x \in \omega^{\omega} : [x]_E \text{ contains all branches of some Laver tree}\}.$

- It is non-empty: Otherwise, by the previous theorem there is a Laver tree S such that E ↾ [S] = id([S]). There are x, y ∈ [S] such that xKy and since E ⊇ K, also xEy, a contradiction.
- It is *E*-equivalent: For, if [x]_E contained all branches of *T_x* and [y]_E all branches of *T_y*, then there would be z₀ ∈ *T_x* and z₁ ∈ *T_y* such that z₀Kz₁, thus z₀Ez₁, a contradiction.

It is a single class and it is Laver large (the complement is in the ideal): Otherwise, the complement would contain all branches of some Laver tree S and again, there would have to be x ∈ X and y ∈ [S] such that xEy.

Silver dichotomy

Combining with the results from the book of Kanovei, Sabok, Zapletal, the following Silver type dichotomy holds (under the assumption $\forall x \in \mathbb{R}(\omega_1^{L[x]} < \omega_1))$:

Theorem (Silver dichotomy)

Let $E \subseteq \omega^{\omega} \times \omega^{\omega}$ be an equivalence relation Borel reducible to $E_{\mathcal{I}}$ for some F_{σ} P-ideal on ω . Then either $\omega^{\omega} = (\bigcup_{n \in \omega} E_n) \cup J$, where E_n for every n is an equivalence class of E and J is a set in the Laver ideal, or there exists a Laver tree T such that $E \upharpoonright [T] = \operatorname{id}([T])$.

Silver dichotomy

Corollary

Let $E \subseteq \omega^{\omega} \times \omega^{\omega}$ be an equivalence relation Borel reducible to $E_{\mathcal{I}}$ for some F_{σ} *P*-ideal and let $X \subseteq \omega^{\omega}$ be an arbitrary subset (not necessarily definable) such that $\forall x, y \in X(x \not E y)$. Then there exists a Laver tree *T* such that $E \upharpoonright [T] = \operatorname{id}([T])$.

Silver dichotomy

Corollary

Let $E \subseteq \omega^{\omega} \times \omega^{\omega}$ be an equivalence relation Borel reducible to $E_{\mathcal{I}}$ for some F_{σ} *P*-ideal and let $X \subseteq \omega^{\omega}$ be an arbitrary subset (not necessarily definable) such that $\forall x, y \in X(x \not E y)$. Then there exists a Laver tree *T* such that $E \upharpoonright [T] = \operatorname{id}([T])$.

Proof.

The first possibility of the Silver dichotomy cannot happen. If $\omega^{\omega} = (\bigcup_{n \in \omega} E_n) \cup J$ as in the statement of the previous theorem, then $X \setminus J$ is still not in the Laver ideal and is uncountable.