Definable graphs of low complexity

Stefan Geschke

July 11, 2012

Stefan Geschke Definable graphs of low complexity

(1日) (1日) (日)

æ

Definable graphs

<ロ> (四) (四) (三) (三) (三)

A graph is a set V of vertices together with a set $E \subseteq [V]^2$ of edges.

If G = (V, E) is a graph whose set V of vertices carries a topology, then G is open, closed, Borel, analytic, ... if the *edge-relation* $\{(x, y) \in V^2 : \{x, y\} \in E\}$ of G has the respective property as a subset of $V^2 \setminus \{(v, v) : v \in V\}$.

We focus on the lowest interesting complexity class: clopen graphs.

- 4 同 6 4 日 6 4 日 6

A graph is a set V of vertices together with a set $E \subseteq [V]^2$ of edges.

If G = (V, E) is a graph whose set V of vertices carries a topology, then G is open, closed, Borel, analytic, ... if the *edge-relation* $\{(x, y) \in V^2 : \{x, y\} \in E\}$ of G has the respective property as a subset of $V^2 \setminus \{(v, v) : v \in V\}$.

We focus on the lowest interesting complexity class: clopen graphs.

A graph is a set V of vertices together with a set $E \subseteq [V]^2$ of edges.

If G = (V, E) is a graph whose set V of vertices carries a topology, then G is open, closed, Borel, analytic, ... if the *edge-relation* $\{(x, y) \in V^2 : \{x, y\} \in E\}$ of G has the respective property as a subset of $V^2 \setminus \{(v, v) : v \in V\}$.

We focus on the lowest interesting complexity class: clopen graphs.

イロト イポト イラト イラト 一日

Definition

Let G = (X, E) be a graph. Then $A \subseteq X$ is a *G*-clique (a clique in *G*) if $[A]^2 \subseteq E$.

 $A \subseteq X$ is *G*-independent (an independent set in *G*) if $[A]^2 \cap E = \emptyset$. (Independent sets are sometimes called discrete.)

 $A \subseteq X$ is *G*-homogeneous (a homogeneous set in *G*) if *A* is either independent or a clique in *G*.

Definition Let G = (X, E) be a graph. Then $A \subseteq X$ is a *G*-clique (a clique in *G*) if $[A]^2 \subseteq E$.

 $A \subseteq X$ is *G*-independent (an independent set in *G*) if $[A]^2 \cap E = \emptyset$. (Independent sets are sometimes called discrete.)

 $A \subseteq X$ is *G*-homogeneous (a homogeneous set in *G*) if *A* is either independent or a clique in *G*.

イロン イヨン イヨン イヨン

Definition Let G = (X, E) be a graph. Then $A \subseteq X$ is a *G*-clique (a clique in *G*) if $[A]^2 \subseteq E$.

 $A \subseteq X$ is *G*-independent (an independent set in *G*) if $[A]^2 \cap E = \emptyset$. (Independent sets are sometimes called discrete.)

 $A \subseteq X$ is *G*-homogeneous (a homogeneous set in *G*) if *A* is either independent or a clique in *G*.

イロン イ部ン イヨン イヨン 三日

Definition

Let G = (X, E) be a graph. Then $A \subseteq X$ is a *G*-clique (a clique in *G*) if $[A]^2 \subseteq E$.

 $A \subseteq X$ is *G*-independent (an independent set in *G*) if $[A]^2 \cap E = \emptyset$. (Independent sets are sometimes called discrete.)

 $A \subseteq X$ is *G*-homogeneous (a homogeneous set in *G*) if *A* is either independent or a clique in *G*.

イロト イポト イラト イラト 一日

The *clique-number* of a graph G is the supremum of the sizes of all G-cliques.

Clique-numbers are degenerate for graphs of low complexity:

Theorem (Kubiś)

A G_{δ} -graph with an uncountable clique has a perfect clique.

This is sharp: there is an F_{σ} -graph on 2^{ω} with a clique of size \aleph_1 but no perfect clique. The graph is a variant of the symmetrization of Turing reducibility (Folklore, Kubiś-Shelah, Mátrai).

The *clique-number* of a graph G is the supremum of the sizes of all G-cliques.

Clique-numbers are degenerate for graphs of low complexity:

Theorem (Kubiś)

A G_{δ} -graph with an uncountable clique has a perfect clique.

This is sharp: there is an F_{σ} -graph on 2^{ω} with a clique of size \aleph_1 but no perfect clique. The graph is a variant of the symmetrization of Turing reducibility (Folklore, Kubiś-Shelah, Mátrai).

The *clique-number* of a graph G is the supremum of the sizes of all G-cliques.

Clique-numbers are degenerate for graphs of low complexity:

Theorem (Kubiś)

A G_{δ} -graph with an uncountable clique has a perfect clique.

This is sharp: there is an F_{σ} -graph on 2^{ω} with a clique of size \aleph_1 but no perfect clique. The graph is a variant of the symmetrization of Turing reducibility (Folklore, Kubiś-Shelah, Mátrai).

The *clique-number* of a graph G is the supremum of the sizes of all G-cliques.

Clique-numbers are degenerate for graphs of low complexity:

Theorem (Kubiś)

A G_{δ} -graph with an uncountable clique has a perfect clique.

This is sharp: there is an F_{σ} -graph on 2^{ω} with a clique of size \aleph_1 but no perfect clique. The graph is a variant of the symmetrization of Turing reducibility (Folklore, Kubiś-Shelah, Mátrai).

The *chromatic number* of a graph G is the least size of a family of G-independent (G-discrete) sets that covers all the vertices of G.

The chromatic number of open graphs is degenerate in the following sense: An open graph is either countably chromatic or has a perfect clique and hence chromatic number 2^{\aleph_0} (provable instance of Todorcevic's OCA).

This dichotomy fails for closed graphs.

(4月) (4日) (4日)

The *chromatic number* of a graph G is the least size of a family of G-independent (G-discrete) sets that covers all the vertices of G.

The chromatic number of open graphs is degenerate in the following sense: An open graph is either countably chromatic or has a perfect clique and hence chromatic number 2^{\aleph_0} (provable instance of Todorcevic's OCA).

This dichotomy fails for closed graphs.

・ 同 ト ・ ヨ ト ・ ヨ ト

The *chromatic number* of a graph G is the least size of a family of G-independent (G-discrete) sets that covers all the vertices of G.

The chromatic number of open graphs is degenerate in the following sense: An open graph is either countably chromatic or has a perfect clique and hence chromatic number 2^{\aleph_0} (provable instance of Todorcevic's OCA).

This dichotomy fails for closed graphs.

• 3 > 1

A (1) > A (2) > A

The *cochromatic number* of a graph G = (V, E) is the least cardinality of a family of homogeneous sets that covers V.

Theorem

a) There is a clopen graph G_{\min} on 2^{ω} such that a clopen graph G on a Polish space has an uncountable cochromatic number iff G_{\min} embeds into G (GKKS).

b) There is a clopen graph G_{max} on 2^{ω} whose cochromatic number is maximal among all cochromatic numbers of clopen graphs on Polish spaces (GGK).

c) It is consistent that the cochromatic number of G_{max} is $\aleph_1 < 2^{\aleph_0}$ (GKKS).

d) It is consistent that G_{min} and G_{max} have different cochromatic numbers (GGK).

イロン イヨン イヨン イヨン

The *cochromatic number* of a graph G = (V, E) is the least cardinality of a family of homogeneous sets that covers V.

Theorem

a) There is a clopen graph G_{\min} on 2^{ω} such that a clopen graph G on a Polish space has an uncountable cochromatic number iff G_{\min} embeds into G (GKKS).

b) There is a clopen graph G_{max} on 2^{ω} whose cochromatic number is maximal among all cochromatic numbers of clopen graphs on Polish spaces (GGK).

c) It is consistent that the cochromatic number of G_{max} is $\aleph_1 < 2^{\aleph_0}$ (GKKS).

d) It is consistent that G_{min} and G_{max} have different cochromatic numbers (GGK).

The *cochromatic number* of a graph G = (V, E) is the least cardinality of a family of homogeneous sets that covers V.

Theorem

a) There is a clopen graph G_{\min} on 2^{ω} such that a clopen graph G on a Polish space has an uncountable cochromatic number iff G_{\min} embeds into G (GKKS).

b) There is a clopen graph G_{max} on 2^{ω} whose cochromatic number is maximal among all cochromatic numbers of clopen graphs on Polish spaces (GGK).

c) It is consistent that the cochromatic number of G_{max} is $\aleph_1 < 2^{\aleph_0}$ (GKKS).

d) It is consistent that G_{min} and G_{max} have different cochromatic numbers (GGK).

(ロ) (同) (E) (E) (E)

The *cochromatic number* of a graph G = (V, E) is the least cardinality of a family of homogeneous sets that covers V.

Theorem

a) There is a clopen graph G_{\min} on 2^{ω} such that a clopen graph G on a Polish space has an uncountable cochromatic number iff G_{\min} embeds into G (GKKS).

b) There is a clopen graph G_{max} on 2^{ω} whose cochromatic number is maximal among all cochromatic numbers of clopen graphs on Polish spaces (GGK).

c) It is consistent that the cochromatic number of G_{max} is $\aleph_1 < 2^{\aleph_0}$ (GKKS).

d) It is consistent that G_{min} and G_{max} have different cochromatic numbers (GGK).

(ロ) (同) (E) (E) (E)

The *cochromatic number* of a graph G = (V, E) is the least cardinality of a family of homogeneous sets that covers V.

Theorem

a) There is a clopen graph G_{\min} on 2^{ω} such that a clopen graph G on a Polish space has an uncountable cochromatic number iff G_{\min} embeds into G (GKKS).

b) There is a clopen graph G_{max} on 2^{ω} whose cochromatic number is maximal among all cochromatic numbers of clopen graphs on Polish spaces (GGK).

c) It is consistent that the cochromatic number of G_{max} is $\aleph_1 < 2^{\aleph_0}$ (GKKS).

d) It is consistent that G_{\min} and G_{\max} have different cochromatic numbers (GGK).

イロン イ部ン イヨン イヨン 三日

For any graph G let Age(G) denote the class of finite graphs that embed into G.

Theorem

Let G be a clopen graph on a Polish space. If Age(G) is generated by a finite set of finite graphs by taking isomorphic copies, induced subgraphs, and substitution, then the cochromatic number of G is countable or equal to the cochromatic number of G_{min} .

Example

Age(G_{min}) is generated by two graphs with two vertices: The edge and the non-edge.

- 4 回 ト 4 ヨ ト 4 ヨ ト

For any graph G let Age(G) denote the class of finite graphs that embed into G.

Theorem

Let G be a clopen graph on a Polish space. If Age(G) is generated by a finite set of finite graphs by taking isomorphic copies, induced subgraphs, and substitution, then the cochromatic number of G is countable or equal to the cochromatic number of G_{min} .

Example

Age(G_{min}) is generated by two graphs with two vertices: The edge and the non-edge.

- 4 回 ト 4 ヨ ト 4 ヨ ト

For any graph G let Age(G) denote the class of finite graphs that embed into G.

Theorem

Let G be a clopen graph on a Polish space. If Age(G) is generated by a finite set of finite graphs by taking isomorphic copies, induced subgraphs, and substitution, then the cochromatic number of G is countable or equal to the cochromatic number of G_{min} .

Example

Age(*G*_{min}) is generated by two graphs with two vertices: The edge and the non-edge.

For any graph G let Age(G) denote the class of finite graphs that embed into G.

Theorem

Let G be a clopen graph on a Polish space. If Age(G) is generated by a finite set of finite graphs by taking isomorphic copies, induced subgraphs, and substitution, then the cochromatic number of G is countable or equal to the cochromatic number of G_{min} .

Example

Age(G_{min}) is generated by two graphs with two vertices: The edge and the non-edge.

・ 同 ト ・ ヨ ト ・ ヨ ト

For any graph G let Age(G) denote the class of finite graphs that embed into G.

Theorem

Let G be a clopen graph on a Polish space. If Age(G) is generated by a finite set of finite graphs by taking isomorphic copies, induced subgraphs, and substitution, then the cochromatic number of G is countable or equal to the cochromatic number of G_{min} .

Example

 $Age(G_{min})$ is generated by two graphs with two vertices: The edge and the non-edge.

Clopen graphs and continuous colorings

・ロト ・回ト ・ヨト ・ヨト

Э

We first observe that a clopen graph G on a Hausdorff space X is the same as a coloring $c : [X]^2 \to 2$ that is continuous wrt the natural topology on $[X]^2$, by identifying the set of edges of G with its characteristic function.

Recall that every Polish space is the 1-1 continuous image of a closed subset of $\omega^\omega.$

Hence every clopen graph on a Polish space can be pulled back to a combinatorially isomorphic clopen graph on a closed subset of ω^{ω} .

We first observe that a clopen graph G on a Hausdorff space X is the same as a coloring $c : [X]^2 \to 2$ that is continuous wrt the natural topology on $[X]^2$, by identifying the set of edges of G with its characteristic function.

Recall that every Polish space is the 1-1 continuous image of a closed subset of $\omega^\omega.$

Hence every clopen graph on a Polish space can be pulled back to a combinatorially isomorphic clopen graph on a closed subset of ω^{ω} .

We first observe that a clopen graph G on a Hausdorff space X is the same as a coloring $c : [X]^2 \to 2$ that is continuous wrt the natural topology on $[X]^2$, by identifying the set of edges of G with its characteristic function.

Recall that every Polish space is the 1-1 continuous image of a closed subset of $\omega^\omega.$

Hence every clopen graph on a Polish space can be pulled back to a combinatorially isomorphic clopen graph on a closed subset of $\omega^\omega.$

・ロン ・回と ・ヨン ・ヨン

Let X be a closed subset of ω^{ω} . For distinct $x, y \in X$ let $\Delta(x, y)$ be the least $m \in \omega$ with $x(m) \neq y(m)$.

A continuous coloring $c : [X]^2 \to 2$ is uniformly continuous there is a function $f : \omega \to \omega$ such that for all $m \in \omega$ and distinct $x, y \in X$ with $\Delta(x, y) = m$, then c(x, y) only depends on $x \upharpoonright f(m)$ and $y \upharpoonright f(m)$.

The continuous coloring *c* is of *depth k* if for all $x, y \in X$ with $x \neq y$, c(x, y) only depends on $x \upharpoonright (\Delta(x, y) + k)$ and $y \upharpoonright (\Delta(x, y) + k)$.

Let X be a closed subset of ω^{ω} . For distinct $x, y \in X$ let $\Delta(x, y)$ be the least $m \in \omega$ with $x(m) \neq y(m)$.

A continuous coloring $c : [X]^2 \to 2$ is uniformly continuous there is a function $f : \omega \to \omega$ such that for all $m \in \omega$ and distinct $x, y \in X$ with $\Delta(x, y) = m$, then c(x, y) only depends on $x \upharpoonright f(m)$ and $y \upharpoonright f(m)$.

The continuous coloring *c* is of *depth k* if for all $x, y \in X$ with $x \neq y$, c(x, y) only depends on $x \upharpoonright (\Delta(x, y) + k)$ and $y \upharpoonright (\Delta(x, y) + k)$.

イロト イヨト イヨト イヨト

3

Let X be a closed subset of ω^{ω} . For distinct $x, y \in X$ let $\Delta(x, y)$ be the least $m \in \omega$ with $x(m) \neq y(m)$.

A continuous coloring $c : [X]^2 \to 2$ is uniformly continuous there is a function $f : \omega \to \omega$ such that for all $m \in \omega$ and distinct $x, y \in X$ with $\Delta(x, y) = m$, then c(x, y) only depends on $x \upharpoonright f(m)$ and $y \upharpoonright f(m)$.

The continuous coloring *c* is of *depth k* if for all $x, y \in X$ with $x \neq y$, c(x, y) only depends on $x \upharpoonright (\Delta(x, y) + k)$ and $y \upharpoonright (\Delta(x, y) + k)$.

(ロ) (同) (E) (E) (E)

Theorem (GGK)

There is a universal continuous coloring $c : [\omega^{\omega}]^2 \rightarrow 2$ of depth 1.

Lemma (GGK)

Let $X \subseteq \omega^{\omega}$ be closed and $c : [X]^2 \to 2$ uniformly continuous. Then c is topologically isomorphic to a continuous coloring $d : [Y]^2 \to 2$ of depth 2 on a closed subset of ω^{ω} .

Theorem

There is a universal continuous coloring $c : [\omega^{\omega}]^2 \to 2$ of depth 2. This coloring is also universal for uniformly continuous colorings on ω^{ω} .

ヘロン 人間 とくほど くほとう

Theorem (GGK)

There is a universal continuous coloring $c : [\omega^{\omega}]^2 \rightarrow 2$ of depth 1.

Lemma (GGK)

Let $X \subseteq \omega^{\omega}$ be closed and $c : [X]^2 \to 2$ uniformly continuous.

Then c is topologically isomorphic to a continuous coloring $d: [Y]^2 \rightarrow 2$ of depth 2 on a closed subset of ω^{ω} .

Theorem

There is a universal continuous coloring $c : [\omega^{\omega}]^2 \to 2$ of depth 2. This coloring is also universal for uniformly continuous colorings on ω^{ω} .

Theorem (GGK)

There is a universal continuous coloring $c : [\omega^{\omega}]^2 \to 2$ of depth 1.

Lemma (GGK) Let $X \subseteq \omega^{\omega}$ be closed and $c : [X]^2 \to 2$ uniformly continuous. Then c is topologically isomorphic to a continuous coloring $d : [Y]^2 \to 2$ of depth 2 on a closed subset of ω^{ω} .

Theorem

There is a universal continuous coloring $c : [\omega^{\omega}]^2 \to 2$ of depth 2. This coloring is also universal for uniformly continuous colorings on ω^{ω} .

Theorem (GGK)

There is a universal continuous coloring $c : [\omega^{\omega}]^2 \to 2$ of depth 1.

Lemma (GGK)

Let $X \subseteq \omega^{\omega}$ be closed and $c : [X]^2 \to 2$ uniformly continuous. Then c is topologically isomorphic to a continuous coloring $d : [Y]^2 \to 2$ of depth 2 on a closed subset of ω^{ω} .

Theorem

There is a universal continuous coloring $c : [\omega^{\omega}]^2 \to 2$ of depth 2. This coloring is also universal for uniformly continuous colorings on ω^{ω} .

イロン イ部ン イヨン イヨン 三日

Theorem (GGK)

There is a universal continuous coloring $c : [\omega^{\omega}]^2 \to 2$ of depth 1.

Lemma (GGK)

Let $X \subseteq \omega^{\omega}$ be closed and $c : [X]^2 \to 2$ uniformly continuous. Then c is topologically isomorphic to a continuous coloring $d : [Y]^2 \to 2$ of depth 2 on a closed subset of ω^{ω} .

Theorem

There is a universal continuous coloring $c : [\omega^{\omega}]^2 \to 2$ of depth 2. This coloring is also universal for uniformly continuous colorings on ω^{ω} .

イロト イポト イラト イラト 一日

Definition

A *type* over a set A is a function $f : A \rightarrow 2$.

If $c : [X]^2 \to 2$ is a coloring and f is a type over a set $A \subseteq X$, then $x \in X \setminus A$ realizes f if for all $a \in A$, c(a, x) = f(a).

For a cardinal κ , the coloring *c* is κ -saturated if all types over subsets *A* of *X* of size $< \kappa$ are realized.

Lemma

Let $X \subseteq \omega^{\omega}$ be closed and let $c : [X]^2 \to 2$ be of depth 2. Let $A \subseteq X$ be such that all types over 3-element subsets of A are realized in X. Let $y, z \in A$ be distinct and $n = \Delta(y, z)$.

Then the map $x \mapsto x \upharpoonright (n+3)$ is 1-1 on A.

Saturation The compact case

Saturation

Definition

A type over a set A is a function $f : A \rightarrow 2$.

If $c : [X]^2 \to 2$ is a coloring and f is a type over a set $A \subseteq X$, then $x \in X \setminus A$ realizes f if for all $a \in A$, c(a, x) = f(a).

For a cardinal κ , the coloring *c* is κ -saturated if all types over subsets *A* of *X* of size $< \kappa$ are realized.

Lemma

Let $X \subseteq \omega^{\omega}$ be closed and let $c : [X]^2 \to 2$ be of depth 2. Let $A \subseteq X$ be such that all types over 3-element subsets of A are realized in X. Let $y, z \in A$ be distinct and $n = \Delta(y, z)$.

Then the map $x \mapsto x \upharpoonright (n+3)$ is 1-1 on A.

Definition

A type over a set A is a function $f : A \rightarrow 2$.

If $c : [X]^2 \to 2$ is a coloring and f is a type over a set $A \subseteq X$, then $x \in X \setminus A$ realizes f if for all $a \in A$, c(a, x) = f(a).

For a cardinal κ , the coloring *c* is κ -saturated if all types over subsets *A* of *X* of size $< \kappa$ are realized.

Lemma

Let $X \subseteq \omega^{\omega}$ be closed and let $c : [X]^2 \to 2$ be of depth 2. Let $A \subseteq X$ be such that all types over 3-element subsets of A are realized in X. Let $y, z \in A$ be distinct and $n = \Delta(y, z)$.

Then the map $x \mapsto x \upharpoonright (n+3)$ is 1-1 on A.

Definition

A type over a set A is a function $f : A \rightarrow 2$.

If $c : [X]^2 \to 2$ is a coloring and f is a type over a set $A \subseteq X$, then $x \in X \setminus A$ realizes f if for all $a \in A$, c(a, x) = f(a).

For a cardinal κ , the coloring *c* is κ -saturated if all types over subsets *A* of *X* of size $< \kappa$ are realized.

Lemma

Let $X \subseteq \omega^{\omega}$ be closed and let $c : [X]^2 \to 2$ be of depth 2. Let $A \subseteq X$ be such that all types over 3-element subsets of A are realized in X. Let $y, z \in A$ be distinct and $n = \Delta(y, z)$.

Then the map $x \mapsto x \upharpoonright (n+3)$ is 1-1 on A.

Definition

A type over a set A is a function $f : A \rightarrow 2$.

If $c : [X]^2 \to 2$ is a coloring and f is a type over a set $A \subseteq X$, then $x \in X \setminus A$ realizes f if for all $a \in A$, c(a, x) = f(a).

For a cardinal κ , the coloring *c* is κ -saturated if all types over subsets *A* of *X* of size $< \kappa$ are realized.

Lemma

Let $X \subseteq \omega^{\omega}$ be closed and let $c : [X]^2 \to 2$ be of depth 2. Let $A \subseteq X$ be such that all types over 3-element subsets of A are realized in X. Let $y, z \in A$ be distinct and $n = \Delta(y, z)$.

Then the map $x \mapsto x \upharpoonright (n+3)$ is 1-1 on A.

ヘロン 人間 とくほど くほとう

Definition

A type over a set A is a function $f : A \rightarrow 2$.

If $c : [X]^2 \to 2$ is a coloring and f is a type over a set $A \subseteq X$, then $x \in X \setminus A$ realizes f if for all $a \in A$, c(a, x) = f(a).

For a cardinal κ , the coloring *c* is κ -saturated if all types over subsets *A* of *X* of size $< \kappa$ are realized.

Lemma

Let $X \subseteq \omega^{\omega}$ be closed and let $c : [X]^2 \to 2$ be of depth 2. Let $A \subseteq X$ be such that all types over 3-element subsets of A are realized in X. Let $y, z \in A$ be distinct and $n = \Delta(y, z)$.

Then the map $x \mapsto x \upharpoonright (n+3)$ is 1-1 on A.

・ロン ・回 と ・ ヨ と ・ ヨ と

Definition

A type over a set A is a function $f : A \rightarrow 2$.

If $c : [X]^2 \to 2$ is a coloring and f is a type over a set $A \subseteq X$, then $x \in X \setminus A$ realizes f if for all $a \in A$, c(a, x) = f(a).

For a cardinal κ , the coloring *c* is κ -saturated if all types over subsets *A* of *X* of size $< \kappa$ are realized.

Lemma

Let $X \subseteq \omega^{\omega}$ be closed and let $c : [X]^2 \to 2$ be of depth 2. Let $A \subseteq X$ be such that all types over 3-element subsets of A are realized in X. Let $y, z \in A$ be distinct and $n = \Delta(y, z)$.

Then the map $x \mapsto x \upharpoonright (n+3)$ is 1-1 on A.

・ロン ・回 と ・ ヨ と ・ ヨ と

Definition

A type over a set A is a function $f : A \rightarrow 2$.

If $c : [X]^2 \to 2$ is a coloring and f is a type over a set $A \subseteq X$, then $x \in X \setminus A$ realizes f if for all $a \in A$, c(a, x) = f(a).

For a cardinal κ , the coloring *c* is κ -saturated if all types over subsets *A* of *X* of size $< \kappa$ are realized.

Lemma

Let $X \subseteq \omega^{\omega}$ be closed and let $c : [X]^2 \to 2$ be of depth 2. Let $A \subseteq X$ be such that all types over 3-element subsets of A are realized in X. Let $y, z \in A$ be distinct and $n = \Delta(y, z)$.

Then the map $x \mapsto x \upharpoonright (n+3)$ is 1-1 on A.

If $X \subseteq \omega^{\omega}$ is closed and $c : [X]^2 \to 2$ is of depth 2, then for every uncountable set $A \subseteq X$ there is a type over a 3-element subset of A that is not realized in X.

Example

There is an \aleph_0 -saturated clopen graph on ω^{ω} .

Corollary

No uniformly continuous coloring is universal for all continuous colorings on ω^{ω} .

Theorem

No \aleph_1 -saturated graph embeds into a clopen graph on any Polish space.

If $X \subseteq \omega^{\omega}$ is closed and $c : [X]^2 \to 2$ is of depth 2, then for every uncountable set $A \subseteq X$ there is a type over a 3-element subset of A that is not realized in X.

Example

There is an \aleph_0 -saturated clopen graph on ω^{ω} .

Corollary

No uniformly continuous coloring is universal for all continuous colorings on ω^{ω} .

Theorem

No \aleph_1 -saturated graph embeds into a clopen graph on any Polish space.

イロン 不同と 不同と 不同と

If $X \subseteq \omega^{\omega}$ is closed and $c : [X]^2 \to 2$ is of depth 2, then for every uncountable set $A \subseteq X$ there is a type over a 3-element subset of A that is not realized in X.

Example

There is an \aleph_0 -saturated clopen graph on ω^{ω} .

Corollary

No uniformly continuous coloring is universal for all continuous colorings on ω^{ω} .

Theorem

No \aleph_1 -saturated graph embeds into a clopen graph on any Polish space.

・ロン ・回 と ・ ヨ と ・ ヨ と

If $X \subseteq \omega^{\omega}$ is closed and $c : [X]^2 \to 2$ is of depth 2, then for every uncountable set $A \subseteq X$ there is a type over a 3-element subset of A that is not realized in X.

Example

There is an \aleph_0 -saturated clopen graph on ω^{ω} .

Corollary

No uniformly continuous coloring is universal for all continuous colorings on ω^{ω} .

Theorem

No \aleph_1 -saturated graph embeds into a clopen graph on any Polish space.

・ロト ・回ト ・ヨト ・ヨト

Example

a) There is an F_{σ} -graph on 2^{ω} that is \aleph_1 -saturated and has no perfect cliques. It has perfect independent sets and the chromatic number is \aleph_1 . (Saturation pointed out by Conley, chromatic number by Mátrai)

b) X be either the Cantor space 2^{ω} or the Baire space ω^{ω} . Let $\alpha \in \omega_1 \setminus \{0\}$ and $n \in \omega \setminus \{0\}$. Let Γ be one of the following classes of subsets of $X^2 \setminus \{(x, x) : x \in X\}$: Σ_{α}^0 , Π_{α}^0 , Σ_n^1 , and Π_n^1 . Then there is a graph G on X in the class Γ such that every graph on X in the class Γ embeds into G by a topological embedding. (Pointed out by B. Miller)

・ロト ・回ト ・ヨト ・ヨト

Example

a) There is an F_{σ} -graph on 2^{ω} that is \aleph_1 -saturated and has no perfect cliques. It has perfect independent sets and the chromatic number is \aleph_1 . (Saturation pointed out by Conley, chromatic number by Mátrai)

b) X be either the Cantor space 2^{ω} or the Baire space ω^{ω} . Let $\alpha \in \omega_1 \setminus \{0\}$ and $n \in \omega \setminus \{0\}$. Let Γ be one of the following classes of subsets of $X^2 \setminus \{(x, x) : x \in X\}$: Σ^0_{α} , Π^0_{α} , Σ^1_n , and Π^1_n . Then there is a graph G on X in the class Γ such that every graph on X in the class Γ embeds into G by a topological embedding. (Pointed out by B. Miller)

Lemma

Let X be a compact metric space and let $c : [X]^2 \to 2$ be continuous. Let Comp(X) denote the space of connected components of X with the quotient topology.

Then Comp(X) is compact, zero-dimensional, and metric. In particular, Comp(X) embeds into 2^{ω} .

If $c : [X]^2 \to 2$ is continuous, then c is constant on each connected component of X and induces a continuous coloring on Comp(X).

This lemma shows that we should study continuous colorings on 2^{ω} or on compact subspaces of ω^{ω} to obtain information about the class of all clopen graphs on compact metric spaces.

Lemma

Let X be a compact metric space and let $c : [X]^2 \to 2$ be continuous. Let Comp(X) denote the space of connected components of X with the quotient topology.

Then Comp(X) is compact, zero-dimensional, and metric. In particular, Comp(X) embeds into 2^{ω} .

If $c : [X]^2 \to 2$ is continuous, then c is constant on each connected component of X and induces a continuous coloring on Comp(X).

This lemma shows that we should study continuous colorings on 2^{ω} or on compact subspaces of ω^{ω} to obtain information about the class of all clopen graphs on compact metric spaces.

・ロト ・回ト ・ヨト ・ヨト

Lemma

Let X be a compact metric space and let $c : [X]^2 \to 2$ be continuous. Let Comp(X) denote the space of connected components of X with the quotient topology.

Then Comp(X) is compact, zero-dimensional, and metric. In particular, Comp(X) embeds into 2^{ω} .

If $c : [X]^2 \to 2$ is continuous, then c is constant on each connected component of X and induces a continuous coloring on Comp(X).

This lemma shows that we should study continuous colorings on 2^{ω} or on compact subspaces of ω^{ω} to obtain information about the class of all clopen graphs on compact metric spaces.

・ロン ・回 と ・ ヨ と ・ ヨ と

Lemma

Let X be a compact metric space and let $c : [X]^2 \to 2$ be continuous. Let Comp(X) denote the space of connected components of X with the quotient topology.

Then Comp(X) is compact, zero-dimensional, and metric. In particular, Comp(X) embeds into 2^{ω} .

If $c : [X]^2 \to 2$ is continuous, then c is constant on each connected component of X and induces a continuous coloring on Comp(X).

This lemma shows that we should study continuous colorings on 2^{ω} or on compact subspaces of ω^{ω} to obtain information about the class of all clopen graphs on compact metric spaces.

・ロン ・回 と ・ ヨ と ・ ヨ と

Lemma

Let X be a compact metric space and let $c : [X]^2 \to 2$ be continuous. Let Comp(X) denote the space of connected components of X with the quotient topology.

Then Comp(X) is compact, zero-dimensional, and metric. In particular, Comp(X) embeds into 2^{ω} .

If $c : [X]^2 \to 2$ is continuous, then c is constant on each connected component of X and induces a continuous coloring on Comp(X).

This lemma shows that we should study continuous colorings on 2^{ω} or on compact subspaces of ω^{ω} to obtain information about the class of all clopen graphs on compact metric spaces.

(日) (部) (注) (注) (言)

Let (P, \leq_P) and (Q, \leq_Q) be directed sets. A map $\varphi : P \to Q$ is *Tukey* if for all $q \in Q$ there is $p \in P$ such that for all $x \in P$, $\varphi(x) \leq_Q q$ implies $x \leq_P p$. In other words, a map is *Tukey* if preimages of bounded sets are bounded.

If there is a Tukey map from *P* to *Q* we say that *P* is *Tukey-reducible* to *Q*. If *P* is Tukey reducible to *Q* and *Q* is Tukey reducible to *P*, then *P* and *Q* are *Tukey-equivalent*.

Definition

Let C be the set of clopen graphs on 2^{ω} , let \leq_t denote topological embeddability, and \leq_c denote combinatorial embeddability between graphs in C.

Our goal is to prove the Tukey eqivalence of the directed sets $(\omega^{\omega}, \leq^*)$, (\mathcal{C}, \leq_t) , and (\mathcal{C}, \leq_c) .

・ロン ・回 と ・ ヨ と ・ ヨ と

Let (P, \leq_P) and (Q, \leq_Q) be directed sets. A map $\varphi : P \to Q$ is *Tukey* if for all $q \in Q$ there is $p \in P$ such that for all $x \in P$, $\varphi(x) \leq_Q q$ implies $x \leq_P p$. In other words, a map is *Tukey* if preimages of bounded sets are bounded. If there is a Tukey map from P to Q we say that P is *Tukey-reducible* to Q. If P is Tukey reducible to Q and Q is Tukey reducible to P, then P and Q are *Tukey-equivalent*.

Definition

Let C be the set of clopen graphs on 2^{ω} , let \leq_t denote topological embeddability, and \leq_c denote combinatorial embeddability between graphs in C.

Our goal is to prove the Tukey eqivalence of the directed sets $(\omega^{\omega}, \leq^*)$, (\mathcal{C}, \leq_t) , and (\mathcal{C}, \leq_c) .

(ロ) (同) (E) (E) (E)

Let (P, \leq_P) and (Q, \leq_Q) be directed sets. A map $\varphi : P \to Q$ is *Tukey* if for all $q \in Q$ there is $p \in P$ such that for all $x \in P$, $\varphi(x) \leq_Q q$ implies $x \leq_P p$. In other words, a map is *Tukey* if preimages of bounded sets are bounded. If there is a Tukey map from P to Q we say that P is *Tukey-reducible* to Q. If P is Tukey reducible to Q and Q is Tukey reducible to P, then P and Q are *Tukey-equivalent*.

Definition

Let C be the set of clopen graphs on 2^{ω} , let \leq_t denote topological embeddability, and \leq_c denote combinatorial embeddability between graphs in C.

Our goal is to prove the Tukey equivalence of the directed sets $(\omega^{\omega}, \leq^*)$, (\mathcal{C}, \leq_t) , and (\mathcal{C}, \leq_c) .

(ロ) (同) (E) (E) (E)

Let (P, \leq_P) and (Q, \leq_Q) be directed sets. A map $\varphi: P \to Q$ is *Tukey* if for all $q \in Q$ there is $p \in P$ such that for all $x \in P$, $\varphi(x) \leq_Q q$ implies $x \leq_P p$. In other words, a map is *Tukey* if preimages of bounded sets are bounded. If there is a Tukey map from P to Q we say that P is *Tukey-reducible* to Q. If P is Tukey reducible to Q and Q is Tukey reducible to P, then P and Q are *Tukey-equivalent*.

Definition

Let C be the set of clopen graphs on 2^{ω} , let \leq_t denote topological embeddability, and \leq_c denote combinatorial embeddability between graphs in C.

Our goal is to prove the Tukey eqivalence of the directed sets $(\omega^{\omega}, \leq^*)$, (\mathcal{C}, \leq_t) , and (\mathcal{C}, \leq_c) .

(ロ) (同) (E) (E) (E)

Let X be a compact subset of ω^{ω} and let $c : [X]^2 \rightarrow 2$ be continuous.

Then c is uniformly continuous.

Corollary

Every continuous coloring on a compact, zero-dimensional, metric space embeds into the universal coloring of depth 2 on ω^{ω} .

This suggests a way of assigning to each clopen graph G on 2^{ω} a function $f: \omega \to \omega$:

We assume that G is an induced subgraph of the graph corresponding to the universal coloring of depth 2 on ω^{ω} . Now let $f: \omega \to \omega$ be a function is that coordinate wise an upper bound of all vertices of G.

Let X be a compact subset of ω^{ω} and let $c : [X]^2 \to 2$ be continuous. Then c is uniformly continuous.

Corollary

Every continuous coloring on a compact, zero-dimensional, metric space embeds into the universal coloring of depth 2 on ω^{ω} .

This suggests a way of assigning to each clopen graph G on 2^{ω} a function $f: \omega \to \omega$:

We assume that G is an induced subgraph of the graph corresponding to the universal coloring of depth 2 on ω^{ω} . Now let $f: \omega \to \omega$ be a function is that coordinate wise an upper bound of all vertices of G.

Let X be a compact subset of ω^{ω} and let $c : [X]^2 \rightarrow 2$ be continuous.

Then c is uniformly continuous.

Corollary

Every continuous coloring on a compact, zero-dimensional, metric space embeds into the universal coloring of depth 2 on ω^{ω} .

This suggests a way of assigning to each clopen graph G on 2^{ω} a function $f: \omega \to \omega$:

We assume that G is an induced subgraph of the graph corresponding to the universal coloring of depth 2 on ω^{ω} . Now let $f: \omega \to \omega$ be a function is that coordinate wise an upper bound of all vertices of G.

Let X be a compact subset of ω^{ω} and let $c : [X]^2 \to 2$ be continuous.

Then c is uniformly continuous.

Corollary

Every continuous coloring on a compact, zero-dimensional, metric space embeds into the universal coloring of depth 2 on ω^{ω} .

This suggests a way of assigning to each clopen graph G on 2^{ω} a function $f: \omega \to \omega$:

We assume that G is an induced subgraph of the graph corresponding to the universal coloring of depth 2 on ω^{ω} . Now let $f: \omega \to \omega$ be a function is that coordinate wise an upper bound of all vertices of G.

Let X be a compact subset of ω^{ω} and let $c : [X]^2 \rightarrow 2$ be continuous.

Then c is uniformly continuous.

Corollary

Every continuous coloring on a compact, zero-dimensional, metric space embeds into the universal coloring of depth 2 on ω^{ω} .

This suggests a way of assigning to each clopen graph G on 2^{ω} a function $f : \omega \to \omega$:

We assume that G is an induced subgraph of the graph corresponding to the universal coloring of depth 2 on ω^{ω} . Now let $f: \omega \to \omega$ be a function is that coordinate wise an upper bound of all vertices of G.

イロン イ部ン イヨン イヨン 三日

To every function $f : \omega \to \omega$ we can assign a clopen graph G_f on 2^{ω} such that whenever G_f embeds combinatorially into a graph of depth 2 on a closed subset X of ω^{ω} , then for all but finitely many $n \in \omega$, $|X \upharpoonright n| > f(n)$.

Theorem

The directed sets $(\omega^{\omega}, \leq^*)$, (\mathcal{C}, \leq_t) , and (\mathcal{C}, \leq_c) are Tukey equivalent.

$$\mathfrak{d}(\mathcal{C},\leq_t)=\mathfrak{d}(\mathcal{C},\leq_c)=\mathfrak{d}$$

and

$$\mathfrak{b}(\mathcal{C},\leq_t)=\mathfrak{b}(\mathcal{C},\leq_c)=\mathfrak{b}.$$

Hence there is no universal clopen graph on 2^{ω}

To every function $f : \omega \to \omega$ we can assign a clopen graph G_f on 2^{ω} such that whenever G_f embeds combinatorially into a graph of depth 2 on a closed subset X of ω^{ω} , then for all but finitely many $n \in \omega$, $|X \upharpoonright n| > f(n)$.

Theorem

The directed sets $(\omega^{\omega}, \leq^*)$, (C, \leq_t) , and (C, \leq_c) are Tukey equivalent.

In particular

$$\mathfrak{d}(\mathcal{C},\leq_t)=\mathfrak{d}(\mathcal{C},\leq_c)=\mathfrak{d}$$

and

$$\mathfrak{b}(\mathcal{C},\leq_t)=\mathfrak{b}(\mathcal{C},\leq_c)=\mathfrak{b}.$$

Hence there is no universal clopen graph on 2^{ω}

To every function $f : \omega \to \omega$ we can assign a clopen graph G_f on 2^{ω} such that whenever G_f embeds combinatorially into a graph of depth 2 on a closed subset X of ω^{ω} , then for all but finitely many $n \in \omega$, $|X \upharpoonright n| > f(n)$.

Theorem

The directed sets $(\omega^{\omega}, \leq^*)$, (\mathcal{C}, \leq_t) , and (\mathcal{C}, \leq_c) are Tukey equivalent. In particular

$$\mathfrak{d}(\mathcal{C},\leq_t)=\mathfrak{d}(\mathcal{C},\leq_c)=\mathfrak{d}$$

and

$$\mathfrak{b}(\mathcal{C},\leq_t) = \mathfrak{b}(\mathcal{C},\leq_c) = \mathfrak{b}.$$

Hence there is no universal clopen graph on 2^{ω}

To every function $f : \omega \to \omega$ we can assign a clopen graph G_f on 2^{ω} such that whenever G_f embeds combinatorially into a graph of depth 2 on a closed subset X of ω^{ω} , then for all but finitely many $n \in \omega$, $|X \upharpoonright n| > f(n)$.

Theorem

The directed sets $(\omega^{\omega}, \leq^*)$, (\mathcal{C}, \leq_t) , and (\mathcal{C}, \leq_c) are Tukey equivalent.

In particular

$$\mathfrak{d}(\mathcal{C},\leq_t)=\mathfrak{d}(\mathcal{C},\leq_c)=\mathfrak{d}$$

and

$$\mathfrak{b}(\mathcal{C},\leq_t)=\mathfrak{b}(\mathcal{C},\leq_c)=\mathfrak{b}.$$

Hence there is no universal clopen graph on 2^{ω}

We can extend some of the previously used methods to larger cardinals:

Theorem

If G is a clopen graph on a compact space and A is an infinite set of vertices of G, then there is a type over a 3-element subset of A that is not realized in G.

In particular, no infinite 4*-saturated* graph embeds into a clopen graph on a compact space.

We can extend some of the previously used methods to larger cardinals:

Theorem

If G is a clopen graph on a compact space and A is an infinite set of vertices of G, then there is a type over a 3-element subset of A that is not realized in G.

In particular, no infinite 4*-saturated graph embeds into a clopen graph on a compact space.*

Image: A image: A

We can extend some of the previously used methods to larger cardinals:

Theorem

If G is a clopen graph on a compact space and A is an infinite set of vertices of G, then there is a type over a 3-element subset of A that is not realized in G.

In particular, no infinite 4-saturated graph embeds into a clopen graph on a compact space.

- ◆ 臣 → - -

Thank you!

æ