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Cardinal invariants

Definition
A graph is a set V of vertices together with a set E ⊆ [V ]2 of
edges.

If G = (V ,E ) is a graph whose set V of vertices carries a
topology, then G is open, closed, Borel, analytic, . . . if the
edge-relation {(x , y) ∈ V 2 : {x , y} ∈ E} of G has the respective
property as a subset of V 2 \ {(v , v) : v ∈ V }.

We focus on the lowest interesting complexity class: clopen graphs.
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Definition
Let G = (X ,E ) be a graph. Then A ⊆ X is a G -clique (a clique in
G ) if [A]2 ⊆ E .

A ⊆ X is G -independent (an independent set in G ) if
[A]2 ∩ E = ∅. (Independent sets are sometimes called discrete.)

A ⊆ X is G -homogeneous (a homogeneous set in G ) if A is either
independent or a clique in G .
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Definition
The clique-number of a graph G is the supremum of the sizes of all
G -cliques.

Clique-numbers are degenerate for graphs of low complexity:

Theorem (Kubís)

A Gδ-graph with an uncountable clique has a perfect clique.

This is sharp: there is an Fσ-graph on 2ω with a clique of size ℵ1
but no perfect clique. The graph is a variant of the symmetrization
of Turing reducibility (Folklore, Kubís-Shelah, Mátrai).
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Definition
The chromatic number of a graph G is the least size of a family of
G -independent (G -discrete) sets that covers all the vertices of G .

The chromatic number of open graphs is degenerate in the
following sense: An open graph is either countably chromatic or
has a perfect clique and hence chromatic number 2ℵ0 (provable
instance of Todorcevic’s OCA).

This dichotomy fails for closed graphs.
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Definition
The cochromatic number of a graph G = (V ,E ) is the least
cardinality of a family of homogeneous sets that covers V .

Theorem
a) There is a clopen graph Gmin on 2ω such that a clopen graph G
on a Polish space has an uncountable cochromatic number iff Gmin

embeds into G (GKKS).
b) There is a clopen graph Gmax on 2ω whose cochromatic number
is maximal among all cochromatic numbers of clopen graphs on
Polish spaces (GGK).
c) It is consistent that the cochromatic number of Gmax is
ℵ1 < 2ℵ0 (GKKS).
d) It is consistent that Gmin and Gmax have different cochromatic
numbers (GGK).
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Definition
For any graph G let Age(G ) denote the class of finite graphs that
embed into G .

Theorem
Let G be a clopen graph on a Polish space. If Age(G ) is generated
by a finite set of finite graphs by taking isomorphic copies, induced
subgraphs, and substitution, then the cochromatic number of G is
countable or equal to the cochromatic number of Gmin.

Example

Age(Gmin) is generated by two graphs with two vertices:
The edge and the non-edge.
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We first observe that a clopen graph G on a Hausdorff space X is
the same as a coloring c : [X ]2 → 2 that is continuous wrt the
natural topology on [X ]2, by identifying the set of edges of G with
its characteristic function.

Recall that every Polish space is the 1-1 continuous image of a
closed subset of ωω.

Hence every clopen graph on a Polish space can be pulled back to a
combinatorially isomorphic clopen graph on a closed subset of ωω.
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The compact case

Definition
Let X be a closed subset of ωω. For distinct x , y ∈ X let ∆(x , y)
be the least m ∈ ω with x(m) 6= y(m).

A continuous coloring c : [X ]2 → 2 is uniformly continuous there is
a function f : ω → ω such that for all m ∈ ω and distinct x , y ∈ X
with ∆(x , y) = m, then c(x , y) only depends on x � f (m) and
y � f (m).

The continuous coloring c is of depth k if for all x , y ∈ X with
x 6= y , c(x , y) only depends on x � (∆(x , y) + k) and
y � (∆(x , y) + k).
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Theorem (GGK)

There is a universal continuous coloring c : [ωω]2 → 2 of depth 1.

Lemma (GGK)

Let X ⊆ ωω be closed and c : [X ]2 → 2 uniformly continuous.
Then c is topologically isomorphic to a continuous coloring
d : [Y ]2 → 2 of depth 2 on a closed subset of ωω.

Theorem
There is a universal continuous coloring c : [ωω]2 → 2 of depth 2.
This coloring is also universal for uniformly continuous colorings on
ωω.
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Saturation

Definition
A type over a set A is a function f : A→ 2.

If c : [X ]2 → 2 is a coloring and f is a type over a set A ⊆ X ,
then x ∈ X \ A realizes f if for all a ∈ A, c(a, x) = f (a).

For a cardinal κ, the coloring c is κ-saturated if all types over
subsets A of X of size < κ are realized.

Lemma
Let X ⊆ ωω be closed and let c : [X ]2 → 2 be of depth 2. Let
A ⊆ X be such that all types over 3-element subsets of A are
realized in X . Let y , z ∈ A be distinct and n = ∆(y , z).

Then the map x 7→ x � (n + 3) is 1-1 on A.
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Corollary

If X ⊆ ωω is closed and c : [X ]2 → 2 is of depth 2, then for every
uncountable set A ⊆ X there is a type over a 3-element subset of
A that is not realized in X .

Example

There is an ℵ0-saturated clopen graph on ωω.

Corollary

No uniformly continuous coloring is universal for all continuous
colorings on ωω.

Theorem
No ℵ1-saturated graph embeds into a clopen graph on any Polish
space.
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Example

a) There is an Fσ-graph on 2ω that is ℵ1-saturated and has no
perfect cliques. It has perfect independent sets and the chromatic
number is ℵ1. (Saturation pointed out by Conley, chromatic
number by Mátrai)

b) X be either the Cantor space 2ω or the Baire space ωω. Let
α ∈ ω1 \ {0} and n ∈ ω \ {0}. Let Γ be one of the following classes
of subsets of X 2 \ {(x , x) : x ∈ X}: Σ0

α, Π0
α, Σ1

n, and Π1
n. Then

there is a graph G on X in the class Γ such that every graph on X
in the class Γ embeds into G by a topological embedding. (Pointed
out by B. Miller)
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The compact case

Lemma
Let X be a compact metric space and let c : [X ]2 → 2 be
continuous. Let Comp(X ) denote the space of connected
components of X with the quotient topology.

Then Comp(X ) is compact, zero-dimensional, and metric. In
particular, Comp(X ) embeds into 2ω.

If c : [X ]2 → 2 is continuous, then c is constant on each connected
component of X and induces a continuous coloring on Comp(X ).

This lemma shows that we should study continuous colorings on
2ω or on compact subspaces of ωω to obtain information about the
class of all clopen graphs on compact metric spaces.
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Definition
Let (P,≤P) and (Q,≤Q) be directed sets. A map ϕ : P → Q is
Tukey if for all q ∈ Q there is p ∈ P such that for all x ∈ P,
ϕ(x) ≤Q q implies x ≤P p. In other words, a map is Tukey if
preimages of bounded sets are bounded.
If there is a Tukey map from P to Q we say that P is
Tukey-reducible to Q. If P is Tukey reducible to Q and Q is Tukey
reducible to P, then P and Q are Tukey-equivalent.

Definition
Let C be the set of clopen graphs on 2ω, let ≤t denote topological
embeddability, and ≤c denote combinatorial embeddability
between graphs in C.

Our goal is to prove the Tukey eqivalence of the directed sets
(ωω,≤∗), (C,≤t), and (C,≤c).
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Lemma
Let X be a compact subset of ωω and let c : [X ]2 → 2 be
continuous.
Then c is uniformly continuous.

Corollary

Every continuous coloring on a compact, zero-dimensional, metric
space embeds into the universal coloring of depth 2 on ωω.

This suggests a way of assigning to each clopen graph G on 2ω a
function f : ω → ω:
We assume that G is an induced subgraph of the graph
corresponding to the universal coloring of depth 2 on ωω. Now let
f : ω → ω be a function is that coordinate wise an upper bound of
all vertices of G .
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Lemma
To every function f : ω → ω we can assign a clopen graph Gf on
2ω such that whenever Gf embeds combinatorially into a graph of
depth 2 on a closed subset X of ωω, then for all but finitely many
n ∈ ω, |X � n| > f (n).

Theorem
The directed sets (ωω,≤∗), (C,≤t), and (C,≤c) are Tukey
equivalent.
In particular

d(C,≤t) = d(C,≤c) = d

and
b(C,≤t) = b(C,≤c) = b.

Hence there is no universal clopen graph on 2ω
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We can extend some of the previously used methods to larger
cardinals:

Theorem
If G is a clopen graph on a compact space and A is an infinite set
of vertices of G , then there is a type over a 3-element subset of A
that is not realized in G.
In particular, no infinite 4-saturated graph embeds into a clopen
graph on a compact space.

Stefan Geschke Definable graphs of low complexity



Definable graphs
Clopen graphs and continuous colorings

Saturation
The compact case

We can extend some of the previously used methods to larger
cardinals:

Theorem
If G is a clopen graph on a compact space and A is an infinite set
of vertices of G , then there is a type over a 3-element subset of A
that is not realized in G.
In particular, no infinite 4-saturated graph embeds into a clopen
graph on a compact space.

Stefan Geschke Definable graphs of low complexity



Definable graphs
Clopen graphs and continuous colorings

Saturation
The compact case

We can extend some of the previously used methods to larger
cardinals:

Theorem
If G is a clopen graph on a compact space and A is an infinite set
of vertices of G , then there is a type over a 3-element subset of A
that is not realized in G.
In particular, no infinite 4-saturated graph embeds into a clopen
graph on a compact space.

Stefan Geschke Definable graphs of low complexity



Definable graphs
Clopen graphs and continuous colorings

Saturation
The compact case

Thank you!
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