Covering properties of ideals

Szymon Głąb

joint work with Marek Balcerzak and Barnabás Farkas

Let $(A_n)_{n \in \omega}$ be a sequence of measurable sets that covers μ -almost every $x \in [0, 1]$ infinitely many times. Then there exists a set $M \subseteq \omega$ of asymptotic density zero such that $(A_n)_{n \in M}$ also covers μ -almost every $x \in [0, 1]$ infinitely mamy times.

Corollary

The density zero ideal is random-indestructible.

Let $(A_n)_{n\in\omega}$ be a sequence of measurable sets that covers μ -almost every $x \in [0, 1]$ infinitely many times. Then there exists a set $M \subseteq \omega$ of asymptotic density zero such that $(A_n)_{n\in M}$ also covers μ -almost every $x \in [0, 1]$ infinitely mamy times.

Corollary

The density zero ideal is random-indestructible.

Let $(A_n)_{n\in\omega}$ be a sequence of measurable sets that covers μ -almost every $x \in [0, 1]$ infinitely many times. Then there exists a set $M \subseteq \omega$ of asymptotic density zero such that $(A_n)_{n\in M}$ also covers μ -almost every $x \in [0, 1]$ infinitely mamy times.

Corollary

The density zero ideal is random-indestructible.

Let $(A_n)_{n\in\omega}$ be a sequence of measurable sets that covers μ -almost every $x \in [0, 1]$ infinitely many times. Then there exists a set $M \subseteq \omega$ of asymptotic density zero such that $(A_n)_{n\in M}$ also covers μ -almost every $x \in [0, 1]$ infinitely mamy times.

Corollary

The density zero ideal is random-indestructible.

A sequence $(A_n)_{n \in \omega}$ is an *I-a.e. infinite-fold cover of X* if

$\left\{x \in X : \{n \in \omega : x \in A_n\} \text{ is finite}\right\} \in I, \text{ i.e. } \limsup_{n \in \omega} A_n \in I^*.$

Let \mathcal{A} be a σ -algebra of subsets of X and an ideal \mathcal{J} on ω . The pair (\mathcal{A}, I) has the \mathcal{J} -covering property if for every *I*-a.e. infinite-fold cover $(\mathcal{A}_n)_{n\in\omega}$ of X by sets from \mathcal{A} , there is a set $S \in \mathcal{J}$ such that $(\mathcal{A}_n)_{n\in S}$ is also an *I*-a.e. infinite-fold cover of X.

 $CP(I) = CP(\mathcal{A}, I) = \{\mathcal{J} : (\mathcal{A}, I) \text{ has the } \mathcal{J}\text{-covering property}\},\$

A sequence $(A_n)_{n \in \omega}$ is an *I-a.e. infinite-fold cover of X* if

$$\{x \in X : \{n \in \omega : x \in A_n\} \text{ is finite}\} \in I, \text{ i.e. } \limsup_{n \in \omega} A_n \in I^*.$$

Let \mathcal{A} be a σ -algebra of subsets of X and an ideal \mathcal{J} on ω . The pair (\mathcal{A}, I) has the \mathcal{J} -covering property if for every *I*-a.e. infinite-fold cover $(\mathcal{A}_n)_{n\in\omega}$ of X by sets from \mathcal{A} , there is a set $S \in \mathcal{J}$ such that $(\mathcal{A}_n)_{n\in S}$ is also an *I*-a.e. infinite-fold cover of X.

 $CP(I) = CP(\mathcal{A}, I) = \{\mathcal{J} : (\mathcal{A}, I) \text{ has the } \mathcal{J}\text{-covering property}\},\$

A sequence $(A_n)_{n \in \omega}$ is an *I-a.e. infinite-fold cover of X* if

$$\left\{x \in X : \left\{n \in \omega : x \in A_n\right\} \text{ is finite}\right\} \in I, \text{ i.e. } \limsup_{n \in \omega} A_n \in I^*.$$

Let \mathcal{A} be a σ -algebra of subsets of X and an ideal \mathcal{J} on ω . The pair (\mathcal{A}, I) has the \mathcal{J} -covering property if for every *I*-a.e. infinite-fold cover $(\mathcal{A}_n)_{n\in\omega}$ of X by sets from \mathcal{A} , there is a set $S \in \mathcal{J}$ such that $(\mathcal{A}_n)_{n\in S}$ is also an *I*-a.e. infinite-fold cover of X.

 $CP(I) = CP(\mathcal{A}, I) = \{\mathcal{J} : (\mathcal{A}, I) \text{ has the } \mathcal{J}\text{-covering property}\},\$

A sequence $(A_n)_{n \in \omega}$ is an *I-a.e. infinite-fold cover of X* if

$$\left\{x \in X : \left\{n \in \omega : x \in A_n\right\} \text{ is finite}\right\} \in I, \text{ i.e. } \limsup_{n \in \omega} A_n \in I^*.$$

Let \mathcal{A} be a σ -algebra of subsets of X and an ideal \mathcal{J} on ω . The pair (\mathcal{A}, I) has the \mathcal{J} -covering property if for every *I*-a.e. infinite-fold cover $(\mathcal{A}_n)_{n\in\omega}$ of X by sets from \mathcal{A} , there is a set $S \in \mathcal{J}$ such that $(\mathcal{A}_n)_{n\in S}$ is also an *I*-a.e. infinite-fold cover of X.

 $\operatorname{CP}(I) = \operatorname{CP}(\mathcal{A}, I) = \big\{ \mathcal{J} : (\mathcal{A}, I) \text{ has the } \mathcal{J}\text{-covering property} \big\},$

Elekes' theorem says that $\mathcal{Z} \in \operatorname{CP}(\mathcal{N})$.

If (\mathcal{A}, I) has the \mathcal{J} -covering property, then $\operatorname{non}^*(\mathcal{J}) > \omega$.

non^{*}(\mathcal{J}) = min { $|\mathcal{H}| : \mathcal{H} \subseteq [\omega]^{\omega}$ and $\nexists A \in \mathcal{J} \forall H \in \mathcal{H} |A \cap H| = \omega$ }.

Elekes' theorem says that $\mathcal{Z} \in \operatorname{CP}(\mathcal{N})$.

If (\mathcal{A}, I) has the \mathcal{J} -covering property, then $\operatorname{non}^*(\mathcal{J}) > \omega$.

non^{*}(\mathcal{J}) = min { $|\mathcal{H}| : \mathcal{H} \subseteq [\omega]^{\omega}$ and $\nexists A \in \mathcal{J} \forall H \in \mathcal{H} |A \cap H| = \omega$ }.

Elekes' theorem says that $\mathcal{Z} \in \operatorname{CP}(\mathcal{N})$.

If (\mathcal{A}, I) has the \mathcal{J} -covering property, then $\operatorname{non}^*(\mathcal{J}) > \omega$.

non^{*}(\mathcal{J}) = min { $|\mathcal{H}| : \mathcal{H} \subseteq [\omega]^{\omega}$ and $\nexists A \in \mathcal{J} \forall H \in \mathcal{H} |A \cap H| = \omega$ }

Elekes' theorem says that $\mathcal{Z} \in \operatorname{CP}(\mathcal{N})$.

If (\mathcal{A}, I) has the \mathcal{J} -covering property, then $\operatorname{non}^*(\mathcal{J}) > \omega$.

 $\operatorname{non}^*(\mathcal{J}) = \min \left\{ |\mathcal{H}| : \mathcal{H} \subseteq [\omega]^{\omega} \text{ and } \nexists A \in \mathcal{J} \forall H \in \mathcal{H} |A \cap H| = \omega \right\}.$

Elekes' theorem says that $\mathcal{Z} \in \operatorname{CP}(\mathcal{N})$.

If (\mathcal{A}, I) has the \mathcal{J} -covering property, then $\operatorname{non}^*(\mathcal{J}) > \omega$.

 $\operatorname{non}^*(\mathcal{J}) = \min \left\{ |\mathcal{H}| : \mathcal{H} \subseteq [\omega]^{\omega} \text{ and } \nexists A \in \mathcal{J} \forall H \in \mathcal{H} |A \cap H| = \omega \right\}.$

If $\mathcal{J}_0 \leq_{\mathrm{KB}} \mathcal{J}_1$ and (\mathcal{A}, I) has the \mathcal{J}_0 -covering property, then (\mathcal{A}, I) has the \mathcal{J}_1 -covering property as well.

 $\mathcal{J}_0 \leq_{\mathrm{KB}} \mathcal{J}_1$ iff there is a finite-to-one function $f : \omega \to \omega$ such that $f^{-1}[A] \in \mathcal{J}_1$ for each $A \in \mathcal{J}_0$.

Elekes' theorem says that $\mathcal{Z} \in \operatorname{CP}(\mathcal{N})$.

If (\mathcal{A}, I) has the \mathcal{J} -covering property, then $\operatorname{non}^*(\mathcal{J}) > \omega$.

 $\operatorname{non}^*(\mathcal{J}) = \min \left\{ |\mathcal{H}| : \mathcal{H} \subseteq [\omega]^{\omega} \text{ and } \nexists A \in \mathcal{J} \forall H \in \mathcal{H} |A \cap H| = \omega \right\}.$

there is no ideal \mathcal{J} on ω such that I has the \mathcal{J} -covering property if $I = [\omega^{\omega}]^{\leq \omega}$, NWD (the ideal of nowhere dense subsets of ω^{ω}), or \mathcal{K}_{σ} .

Fubini product of ideals $I \subseteq \mathcal{P}(X)$ and $K \subseteq \mathcal{P}(Y)$:

$$I \otimes K = \{A \subseteq X \times Y : \{x \in X : (A)_x \in K\} \in I^*\}.$$

Theorem

$$\operatorname{CP}_{P\text{-ideals}}(\mathcal{N}\otimes\mathcal{M})=\operatorname{CP}_{P\text{-ideals}}(\mathcal{N}).$$

Question

there is no ideal \mathcal{J} on ω such that I has the \mathcal{J} -covering property if $I = [\omega^{\omega}]^{\leq \omega}$, NWD (the ideal of nowhere dense subsets of ω^{ω}), or \mathcal{K}_{σ} .

Fubini product of ideals $I \subseteq \mathcal{P}(X)$ and $K \subseteq \mathcal{P}(Y)$:

 $I \otimes K = \{A \subseteq X \times Y : \{x \in X : (A)_x \in K\} \in I^*\}.$

Theorem

$$\operatorname{CP}_{P\text{-}ideals}(\mathcal{N}\otimes\mathcal{M})=\operatorname{CP}_{P\text{-}ideals}(\mathcal{N}).$$

Question

there is no ideal \mathcal{J} on ω such that I has the \mathcal{J} -covering property if $I = [\omega^{\omega}]^{\leq \omega}$, NWD (the ideal of nowhere dense subsets of ω^{ω}), or \mathcal{K}_{σ} .

Fubini product of ideals $I \subseteq \mathcal{P}(X)$ and $K \subseteq \mathcal{P}(Y)$:

$$I \otimes K = \{A \subseteq X \times Y : \{x \in X : (A)_x \in K\} \in I^*\}.$$

I heorem

$$\operatorname{CP}_{P\text{-}ideals}(\mathcal{N}\otimes\mathcal{M})=\operatorname{CP}_{P\text{-}ideals}(\mathcal{N}).$$

Question

there is no ideal \mathcal{J} on ω such that I has the \mathcal{J} -covering property if $I = [\omega^{\omega}]^{\leq \omega}$, NWD (the ideal of nowhere dense subsets of ω^{ω}), or \mathcal{K}_{σ} .

Fubini product of ideals $I \subseteq \mathcal{P}(X)$ and $K \subseteq \mathcal{P}(Y)$:

$$I \otimes K = \{A \subseteq X \times Y : \{x \in X : (A)_x \in K\} \in I^*\}.$$

Theorem

$$\operatorname{CP}_{P\text{-}ideals}(\mathcal{N}\otimes\mathcal{M})=\operatorname{CP}_{P\text{-}ideals}(\mathcal{N}).$$

Question

there is no ideal \mathcal{J} on ω such that I has the \mathcal{J} -covering property if $I = [\omega^{\omega}]^{\leq \omega}$, NWD (the ideal of nowhere dense subsets of ω^{ω}), or \mathcal{K}_{σ} .

Fubini product of ideals $I \subseteq \mathcal{P}(X)$ and $K \subseteq \mathcal{P}(Y)$:

$$I \otimes K = \{A \subseteq X \times Y : \{x \in X : (A)_x \in K\} \in I^*\}.$$

Theorem

$$\operatorname{CP}_{P\text{-}ideals}(\mathcal{N}\otimes\mathcal{M})=\operatorname{CP}_{P\text{-}ideals}(\mathcal{N}).$$

Question

Theorem

Let I be a σ -ideal on a Polish space X, and assume that \mathbb{P}_I is proper. If I has the \mathcal{J} -covering property, then \mathcal{J} is \mathbb{P}_I -indestructible.

Example

 \mathcal{ED} and $\operatorname{Fin} \otimes \operatorname{Fin}$ are Cohen-indestructible but \mathcal{M} does not have the \mathcal{ED} - or $\operatorname{Fin} \otimes \operatorname{Fin-covering}$ properties.

$$\mathcal{ED} = \left\{ A \subseteq \omega \times \omega : \limsup_{n \to \infty} |(A)_n| < \infty \right\}$$

Theorem

Let *I* be a σ -ideal on a Polish space *X*, and assume that \mathbb{P}_I is proper. If *I* has the \mathcal{J} -covering property, then \mathcal{J} is \mathbb{P}_I -indestructible.

Example

 \mathcal{ED} and $\operatorname{Fin} \otimes \operatorname{Fin}$ are Cohen-indestructible but \mathcal{M} does not have the \mathcal{ED} - or $\operatorname{Fin} \otimes \operatorname{Fin-covering}$ properties.

$$\mathcal{ED} = \left\{ A \subseteq \omega \times \omega : \limsup_{n \to \infty} |(A)_n| < \infty \right\}$$

Theorem

Let *I* be a σ -ideal on a Polish space *X*, and assume that \mathbb{P}_I is proper. If *I* has the \mathcal{J} -covering property, then \mathcal{J} is \mathbb{P}_I -indestructible.

Example

 \mathcal{ED} and Fin \otimes Fin are Cohen-indestructible but \mathcal{M} does not have the \mathcal{ED} - or Fin \otimes Fin-covering properties.

$$\mathcal{ED} = \left\{ A \subseteq \omega \times \omega : \limsup_{n \to \infty} |(A)_n| < \infty \right\}$$

Theorem

Let I be a σ -ideal on a Polish space X, and assume that \mathbb{P}_I is proper. If I has the \mathcal{J} -covering property, then \mathcal{J} is \mathbb{P}_I -indestructible.

Example

 \mathcal{ED} and $\operatorname{Fin} \otimes \operatorname{Fin}$ are Cohen-indestructible but \mathcal{M} does not have the \mathcal{ED} - or $\operatorname{Fin} \otimes \operatorname{Fin-covering}$ properties.

$$\mathcal{ED} = \left\{ A \subseteq \omega \times \omega : \limsup_{n \to \infty} |(A)_n| < \infty \right\}$$

Theorem

Let *I* be a σ -ideal on a Polish space *X*, and assume that \mathbb{P}_I is proper. If *I* has the \mathcal{J} -covering property, then \mathcal{J} is \mathbb{P}_I -indestructible.

Example

 \mathcal{ED} and $\operatorname{Fin} \otimes \operatorname{Fin}$ are Cohen-indestructible but \mathcal{M} does not have the \mathcal{ED} - or $\operatorname{Fin} \otimes \operatorname{Fin-covering}$ properties.

$$\mathcal{ED} = \left\{ A \subseteq \omega \times \omega : \limsup_{n \to \infty} |(A)_n| < \infty \right\}$$

Assume \mathcal{J} is a Borel ideal. Then \mathcal{M} has the \mathcal{J} -covering property iff \mathcal{J} is not a weak Q-ideal (i.e. $\mathcal{ED}_{\mathrm{fin}} \leq_{\mathrm{KB}} \mathcal{J}$). In other words,

$\operatorname{CP}_{\operatorname{Borel}}(\mathcal{M}) = \{\mathcal{J} : \mathcal{J} \text{ is a Borel non weak } Q\text{-ideal}\}.$

 \mathcal{J} on ω is called *weak Q-ideal* if for each partition $(P_n)_{n \in \omega}$ of ω into finite sets, there is an $X \in \mathcal{J}^+$ such that $|X \cap P_n| \leq 1$ for each n.

 $\mathcal{ED}_{\mathrm{fin}} = \mathcal{ED} \upharpoonright \Delta$ where $\Delta = \{(n, m) \in \omega \times \omega : m \leq n\}.$ \mathcal{J} is a weak Q-ideal iff $\mathcal{ED}_{\mathrm{fin}} \not\leq_{\mathrm{KB}} \mathcal{J}.$

Assume \mathcal{J} is a Borel ideal. Then \mathcal{M} has the \mathcal{J} -covering property iff \mathcal{J} is not a weak Q-ideal (i.e. $\mathcal{ED}_{\mathrm{fin}} \leq_{\mathrm{KB}} \mathcal{J}$). In other words,

 $CP_{Borel}(\mathcal{M}) = \{\mathcal{J} : \mathcal{J} \text{ is a Borel non weak } Q\text{-ideal}\}.$

 \mathcal{J} on ω is called *weak Q-ideal* if for each partition $(P_n)_{n \in \omega}$ of ω into finite sets, there is an $X \in \mathcal{J}^+$ such that $|X \cap P_n| \leq 1$ for each n.

 $\mathcal{ED}_{\operatorname{fin}} = \mathcal{ED} \upharpoonright \Delta$ where $\Delta = \{(n, m) \in \omega \times \omega : m \leq n\}$. \mathcal{J} is a weak Q-ideal iff $\mathcal{ED}_{\operatorname{fin}} \nleq_{\operatorname{KB}} \mathcal{J}$.

Assume \mathcal{J} is a Borel ideal. Then \mathcal{M} has the \mathcal{J} -covering property iff \mathcal{J} is not a weak Q-ideal (i.e. $\mathcal{ED}_{\mathrm{fin}} \leq_{\mathrm{KB}} \mathcal{J}$). In other words,

 $CP_{Borel}(\mathcal{M}) = \{\mathcal{J} : \mathcal{J} \text{ is a Borel non weak } Q\text{-ideal}\}.$

 \mathcal{J} on ω is called *weak Q-ideal* if for each partition $(P_n)_{n \in \omega}$ of ω into finite sets, there is an $X \in \mathcal{J}^+$ such that $|X \cap P_n| \leq 1$ for each n.

 $\mathcal{ED}_{\operatorname{fin}} = \mathcal{ED} \upharpoonright \Delta \text{ where } \Delta = \{(n, m) \in \omega \times \omega : m \leq n\}.$ $\mathcal{J} \text{ is a weak Q-ideal iff } \mathcal{ED}_{\operatorname{fin}} \nleq_{\operatorname{KB}} \mathcal{J}.$

Assume \mathcal{J} is a Borel ideal. Then \mathcal{M} has the \mathcal{J} -covering property iff \mathcal{J} is not a weak Q-ideal (i.e. $\mathcal{ED}_{\mathrm{fin}} \leq_{\mathrm{KB}} \mathcal{J}$). In other words,

 $CP_{Borel}(\mathcal{M}) = \{\mathcal{J} : \mathcal{J} \text{ is a Borel non weak } Q\text{-ideal}\}.$

 \mathcal{J} on ω is called *weak Q-ideal* if for each partition $(P_n)_{n \in \omega}$ of ω into finite sets, there is an $X \in \mathcal{J}^+$ such that $|X \cap P_n| \leq 1$ for each n.

 $\mathcal{ED}_{\operatorname{fin}} = \mathcal{ED} \upharpoonright \Delta \text{ where } \Delta = \{(n, m) \in \omega \times \omega : m \leq n\}.$ $\mathcal{J} \text{ is a weak Q-ideal iff } \mathcal{ED}_{\operatorname{fin}} \nleq_{\operatorname{KB}} \mathcal{J}.$

$$\mathcal{Z}_u = \left\{ A \subseteq \omega : \lim_{n \to \infty} \frac{S_n(A)}{n} = 0 \right\}.$$

 $S_n(A) = \max\{|A \cap [k, k+n)| : k \in \omega\},\$

Theorem

 $\mathcal{Z} \not\leq_{\mathrm{KB}} \mathcal{Z}_u$ and \mathcal{N} has the \mathcal{Z}_u -covering property.(\mathcal{Z} is not KB-minimal in $\mathrm{CP}_{\mathrm{Borel}}(\mathcal{N})$)

Question

Does there exist a KB-smallest (or at least KB-minimal) element is ${\rm CP}_{\rm Borel}({\cal N})?$

▶ < ∃ ▶ <</p>

$$\mathcal{Z}_u = \left\{ A \subseteq \omega : \lim_{n \to \infty} \frac{S_n(A)}{n} = 0 \right\}.$$
$$S_n(A) = \max \left\{ |A \cap [k, k+n)| : k \in \omega \right\},$$

 $\mathcal{Z} \not\leq_{\mathrm{KB}} \mathcal{Z}_u$ and \mathcal{N} has the \mathcal{Z}_u -covering property.(\mathcal{Z} is not KB-minimal in $\mathrm{CP}_{\mathrm{Borel}}(\mathcal{N})$)

Question

Does there exist a KB-smallest (or at least KB-minimal) element is $\mathrm{CP}_{\mathrm{Borel}}(\mathcal{N})?$

▶ < ∃ ▶ <</p>

$$\mathcal{Z}_u = \left\{ A \subseteq \omega : \lim_{n \to \infty} \frac{S_n(A)}{n} = 0 \right\}.$$
$$S_n(A) = \max\left\{ |A \cap [k, k+n)| : k \in \omega \right\},$$

 $\mathcal{Z} \not\leq_{\mathrm{KB}} \mathcal{Z}_u$ and \mathcal{N} has the \mathcal{Z}_u -covering property.(\mathcal{Z} is not KB-minimal in $\mathrm{CP}_{\mathrm{Borel}}(\mathcal{N})$)

Question

Does there exist a KB-smallest (or at least KB-minimal) element is ${\rm CP}_{\rm Borel}({\cal N})?$

► < Ξ > <</p>

$$\mathcal{Z}_u = \left\{ A \subseteq \omega : \lim_{n \to \infty} \frac{S_n(A)}{n} = 0 \right\}.$$
$$S_n(A) = \max\left\{ |A \cap [k, k+n)| : k \in \omega \right\}$$

,

→ < Ξ → <</p>

Theorem

 $\mathcal{Z} \not\leq_{\mathrm{KB}} \mathcal{Z}_u$ and \mathcal{N} has the \mathcal{Z}_u -covering property.(\mathcal{Z} is not KB-minimal in $\mathrm{CP}_{\mathrm{Borel}}(\mathcal{N})$)

Question

Does there exist a KB-smallest (or at least KB-minimal) element is ${\rm CP}_{\rm Borel}({\cal N})?$

$$\mathcal{Z}_u = \left\{ A \subseteq \omega : \lim_{n \to \infty} \frac{S_n(A)}{n} = 0 \right\}.$$
$$S_n(A) = \max\left\{ |A \cap [k, k+n)| : k \in \omega \right\}$$

,

< ∃ →

Theorem

 $\mathcal{Z} \not\leq_{\mathrm{KB}} \mathcal{Z}_u$ and \mathcal{N} has the \mathcal{Z}_u -covering property.(\mathcal{Z} is not KB-minimal in $\mathrm{CP}_{\mathrm{Borel}}(\mathcal{N})$)

Question

Does there exist a KB-smallest (or at least KB-minimal) element is ${\rm CP}_{\rm Borel}({\cal N})?$

$$\mathcal{Z}_u = \left\{ A \subseteq \omega : \lim_{n \to \infty} \frac{S_n(A)}{n} = 0 \right\}.$$
$$S_n(A) = \max\left\{ |A \cap [k, k+n)| : k \in \omega \right\}$$

,

Theorem

 $\mathcal{Z} \not\leq_{\mathrm{KB}} \mathcal{Z}_u$ and \mathcal{N} has the \mathcal{Z}_u -covering property.(\mathcal{Z} is not KB-minimal in $\mathrm{CP}_{\mathrm{Borel}}(\mathcal{N})$)

Question

Does there exist a KB-smallest (or at least KB-minimal) element is ${\rm CP}_{\rm Borel}({\cal N})?$

Assume $\mathfrak{t} = \mathfrak{c}$ and $|\mathcal{A}| \leq \mathfrak{c}$. Then there is no KB-smallest element in $\operatorname{CP}(\mathcal{A}, I)$.

Theorem

After adding ω_1 Cohen-reals, there is an ideal \mathcal{J} such that $\mathcal{ED}_{\text{fin}} \not\leq_{\text{KB}} \mathcal{J}$ (in particular, $\mathcal{Z}_u \not\leq_{\text{KB}} \mathcal{J}$) but \mathcal{N} and \mathcal{M} have the \mathcal{J} -covering property.

Question

Is it provable in **ZFC** that there are no KB-smallest elements of $CP(\mathcal{N})$ and $CP(\mathcal{M})$? Or at least, is it provable that \mathcal{Z}_u and \mathcal{ED}_{fin} are not the KB-smallest members of these families?

Assume $\mathfrak{t} = \mathfrak{c}$ and $|\mathcal{A}| \leq \mathfrak{c}$. Then there is no KB-smallest element in $\operatorname{CP}(\mathcal{A}, I)$.

Theorem

After adding ω_1 Cohen-reals, there is an ideal \mathcal{J} such that $\mathcal{ED}_{\mathrm{fin}} \not\leq_{\mathrm{KB}} \mathcal{J}$ (in particular, $\mathcal{Z}_u \not\leq_{\mathrm{KB}} \mathcal{J}$) but \mathcal{N} and \mathcal{M} have the \mathcal{J} -covering property.

Question

Is it provable in **ZFC** that there are no KB-smallest elements of $CP(\mathcal{N})$ and $CP(\mathcal{M})$? Or at least, is it provable that \mathcal{Z}_u and \mathcal{ED}_{fin} are not the KB-smallest members of these families?

Assume $\mathfrak{t} = \mathfrak{c}$ and $|\mathcal{A}| \leq \mathfrak{c}$. Then there is no KB-smallest element in $\operatorname{CP}(\mathcal{A}, I)$.

Theorem

After adding ω_1 Cohen-reals, there is an ideal \mathcal{J} such that $\mathcal{ED}_{\mathrm{fin}} \not\leq_{\mathrm{KB}} \mathcal{J}$ (in particular, $\mathcal{Z}_u \not\leq_{\mathrm{KB}} \mathcal{J}$) but \mathcal{N} and \mathcal{M} have the \mathcal{J} -covering property.

Question

Is it provable in **ZFC** that there are no KB-smallest elements of $CP(\mathcal{N})$ and $CP(\mathcal{M})$? Or at least, is it provable that \mathcal{Z}_u and \mathcal{ED}_{fin} are not the KB-smallest members of these families?

Assume that I is a translation invariant ccc σ -ideal on \mathbb{R} fulfilling the condition

 $\mathbb{Q} + A \in I^*$ for each $A \in \operatorname{Borel}(\mathbb{R}) \setminus I$.

Fix a P-ideal \mathcal{J} on ω . If I does not have the \mathcal{J} -covering property, then there exists an infinite-fold Borel cover $(A'_n)_{n\in\omega}$ of \mathbb{R} with $\limsup_{n\in S} A'_n \in I$ for all $S \in \mathcal{J}$.