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Background

Theorem (B. E. Johnson 1967). Let X be a Banach space which is isomorphic to its
square X ⊕ X . Then each derivation from the Banach algebra B(X ) of (bounded)
operators on X into a Banach B(X )-bimodule is automatically continuous.

Question: what happens when X � X ⊕ X?

Theorem (Semadeni 1960). The Banach space C [0, ω1] of continuous functions on the
ordinal interval [0, ω1], equipped with its order topology, is not isomorphic to its square.

Theorem (Loy and Willis 1989). Each derivation from the Banach algebra B(C [0, ω1])
into a Banach B(C [0, ω1])-bimodule is automatically continuous.

Key step: there is a maximal ideal M of codimension one in B(C [0, ω1]) which has a
bounded right approximate identity.

We call M the Loy�Willis ideal.

It is de�ned using a representation of operators on C [0, ω1] as scalar-valued
[0, ω1]× [0, ω1]-matrices; an operator belongs to M if and only if its �nal column is
continuous.
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Motivation

Motivation: Give a `coordinate-free' description of M .

Theorem (TK+Niels Laustsen, JFA 2012). An operator on C [0, ω1] belongs to the
Loy�Willis ideal if and only if the identity operator on C [0, ω1] does not factor through it;

M = {T ∈ B(C [0, ω1]) : ∀R, S ∈ B(C [0, ω1]) : I 6= STR}.

Corollary. The Loy�Willis ideal is the unique maximal ideal of B(C [0, ω1]).

Proof. The theorem implies that the identity operator belongs to the ideal generated by
any operator not in M . 2
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Related results

Many Banach spaces X share with C [0, ω1] the property that

MX := {T ∈ B(X ) : ∀R, S ∈ B(X ) : I 6= STR}

is the unique maximal ideal of B(X ).

Fact (Dosev and Johnson 2010). Suppose that MX is closed under addition. Then MX

is the unique maximal ideal of B(X ).

Examples. MX is the unique maximal ideal of B(X ) in the following cases:

(i) X = `p for 1 6 p <∞ and X = c0 (Gohberg, Markus and Feldman 1960);

(ii) X = Lp[0, 1] for 1 6 p <∞ (Dosev, Johnson and Schechtman 2011; known
implicitly before);

(iii) X = `∞ ∼= L∞[0, 1] (NJL and Loy 2005, using Peªczy«ski and Rosenthal);

(iv) X =
(⊕

`n2
)
c0

and X =
(⊕

`n2
)
`1

(NJL, Loy and Read 2004; NJL, Schlumprecht

and Zsák 2006);

(v) X = C [0, 1] (Brooker 2010, using Peªczy«ski and Rosenthal);

(vi) X = C [0, ωω] and X = C [0, ωα], where α is a countable epsilon number, that is, a
countable ordinal satisfying α = ωα (Brooker (unpublished), using Bourgain and
Peªczy«ski).

Note that C [0, ω1] di�ers from all of the above-mentioned Banach spaces because
C [0, ω1] � C [0, ω1]⊕ C [0, ω1].

4



Related results

Many Banach spaces X share with C [0, ω1] the property that

MX := {T ∈ B(X ) : ∀R, S ∈ B(X ) : I 6= STR}

is the unique maximal ideal of B(X ).

Fact (Dosev and Johnson 2010). Suppose that MX is closed under addition. Then MX

is the unique maximal ideal of B(X ).

Examples. MX is the unique maximal ideal of B(X ) in the following cases:

(i) X = `p for 1 6 p <∞ and X = c0 (Gohberg, Markus and Feldman 1960);

(ii) X = Lp[0, 1] for 1 6 p <∞ (Dosev, Johnson and Schechtman 2011; known
implicitly before);

(iii) X = `∞ ∼= L∞[0, 1] (NJL and Loy 2005, using Peªczy«ski and Rosenthal);

(iv) X =
(⊕

`n2
)
c0

and X =
(⊕

`n2
)
`1

(NJL, Loy and Read 2004; NJL, Schlumprecht

and Zsák 2006);

(v) X = C [0, 1] (Brooker 2010, using Peªczy«ski and Rosenthal);

(vi) X = C [0, ωω] and X = C [0, ωα], where α is a countable epsilon number, that is, a
countable ordinal satisfying α = ωα (Brooker (unpublished), using Bourgain and
Peªczy«ski).

Note that C [0, ω1] di�ers from all of the above-mentioned Banach spaces because
C [0, ω1] � C [0, ω1]⊕ C [0, ω1].

4



Related results

Many Banach spaces X share with C [0, ω1] the property that

MX := {T ∈ B(X ) : ∀R, S ∈ B(X ) : I 6= STR}

is the unique maximal ideal of B(X ).

Fact (Dosev and Johnson 2010). Suppose that MX is closed under addition. Then MX

is the unique maximal ideal of B(X ).

Examples. MX is the unique maximal ideal of B(X ) in the following cases:

(i) X = `p for 1 6 p <∞ and X = c0 (Gohberg, Markus and Feldman 1960);

(ii) X = Lp[0, 1] for 1 6 p <∞ (Dosev, Johnson and Schechtman 2011; known
implicitly before);

(iii) X = `∞ ∼= L∞[0, 1] (NJL and Loy 2005, using Peªczy«ski and Rosenthal);

(iv) X =
(⊕

`n2
)
c0

and X =
(⊕

`n2
)
`1

(NJL, Loy and Read 2004; NJL, Schlumprecht

and Zsák 2006);

(v) X = C [0, 1] (Brooker 2010, using Peªczy«ski and Rosenthal);

(vi) X = C [0, ωω] and X = C [0, ωα], where α is a countable epsilon number, that is, a
countable ordinal satisfying α = ωα (Brooker (unpublished), using Bourgain and
Peªczy«ski).

Note that C [0, ω1] di�ers from all of the above-mentioned Banach spaces because
C [0, ω1] � C [0, ω1]⊕ C [0, ω1].

4



Related results

Many Banach spaces X share with C [0, ω1] the property that

MX := {T ∈ B(X ) : ∀R, S ∈ B(X ) : I 6= STR}

is the unique maximal ideal of B(X ).

Fact (Dosev and Johnson 2010). Suppose that MX is closed under addition. Then MX

is the unique maximal ideal of B(X ).

Examples. MX is the unique maximal ideal of B(X ) in the following cases:

(i) X = `p for 1 6 p <∞ and X = c0 (Gohberg, Markus and Feldman 1960);

(ii) X = Lp[0, 1] for 1 6 p <∞ (Dosev, Johnson and Schechtman 2011; known
implicitly before);

(iii) X = `∞ ∼= L∞[0, 1] (NJL and Loy 2005, using Peªczy«ski and Rosenthal);

(iv) X =
(⊕

`n2
)
c0

and X =
(⊕

`n2
)
`1

(NJL, Loy and Read 2004; NJL, Schlumprecht

and Zsák 2006);

(v) X = C [0, 1] (Brooker 2010, using Peªczy«ski and Rosenthal);

(vi) X = C [0, ωω] and X = C [0, ωα], where α is a countable epsilon number, that is, a
countable ordinal satisfying α = ωα (Brooker (unpublished), using Bourgain and
Peªczy«ski).

Note that C [0, ω1] di�ers from all of the above-mentioned Banach spaces because
C [0, ω1] � C [0, ω1]⊕ C [0, ω1].

4



Related results

Many Banach spaces X share with C [0, ω1] the property that

MX := {T ∈ B(X ) : ∀R, S ∈ B(X ) : I 6= STR}

is the unique maximal ideal of B(X ).

Fact (Dosev and Johnson 2010). Suppose that MX is closed under addition. Then MX

is the unique maximal ideal of B(X ).

Examples. MX is the unique maximal ideal of B(X ) in the following cases:

(i) X = `p for 1 6 p <∞ and X = c0 (Gohberg, Markus and Feldman 1960);

(ii) X = Lp[0, 1] for 1 6 p <∞ (Dosev, Johnson and Schechtman 2011; known
implicitly before);

(iii) X = `∞ ∼= L∞[0, 1] (NJL and Loy 2005, using Peªczy«ski and Rosenthal);

(iv) X =
(⊕

`n2
)
c0

and X =
(⊕

`n2
)
`1

(NJL, Loy and Read 2004; NJL, Schlumprecht

and Zsák 2006);

(v) X = C [0, 1] (Brooker 2010, using Peªczy«ski and Rosenthal);

(vi) X = C [0, ωω] and X = C [0, ωα], where α is a countable epsilon number, that is, a
countable ordinal satisfying α = ωα (Brooker (unpublished), using Bourgain and
Peªczy«ski).

Note that C [0, ω1] di�ers from all of the above-mentioned Banach spaces because
C [0, ω1] � C [0, ω1]⊕ C [0, ω1].

4



Related results

Many Banach spaces X share with C [0, ω1] the property that

MX := {T ∈ B(X ) : ∀R, S ∈ B(X ) : I 6= STR}

is the unique maximal ideal of B(X ).

Fact (Dosev and Johnson 2010). Suppose that MX is closed under addition. Then MX

is the unique maximal ideal of B(X ).

Examples. MX is the unique maximal ideal of B(X ) in the following cases:

(i) X = `p for 1 6 p <∞ and X = c0 (Gohberg, Markus and Feldman 1960);

(ii) X = Lp[0, 1] for 1 6 p <∞ (Dosev, Johnson and Schechtman 2011; known
implicitly before);

(iii) X = `∞ ∼= L∞[0, 1] (NJL and Loy 2005, using Peªczy«ski and Rosenthal);

(iv) X =
(⊕

`n2
)
c0

and X =
(⊕

`n2
)
`1

(NJL, Loy and Read 2004; NJL, Schlumprecht

and Zsák 2006);

(v) X = C [0, 1] (Brooker 2010, using Peªczy«ski and Rosenthal);

(vi) X = C [0, ωω] and X = C [0, ωα], where α is a countable epsilon number, that is, a
countable ordinal satisfying α = ωα (Brooker (unpublished), using Bourgain and
Peªczy«ski).

Note that C [0, ω1] di�ers from all of the above-mentioned Banach spaces because
C [0, ω1] � C [0, ω1]⊕ C [0, ω1].

4



Related results

Many Banach spaces X share with C [0, ω1] the property that

MX := {T ∈ B(X ) : ∀R, S ∈ B(X ) : I 6= STR}

is the unique maximal ideal of B(X ).

Fact (Dosev and Johnson 2010). Suppose that MX is closed under addition. Then MX

is the unique maximal ideal of B(X ).

Examples. MX is the unique maximal ideal of B(X ) in the following cases:

(i) X = `p for 1 6 p <∞ and X = c0 (Gohberg, Markus and Feldman 1960);

(ii) X = Lp[0, 1] for 1 6 p <∞ (Dosev, Johnson and Schechtman 2011; known
implicitly before);

(iii) X = `∞ ∼= L∞[0, 1] (NJL and Loy 2005, using Peªczy«ski and Rosenthal);

(iv) X =
(⊕

`n2
)
c0

and X =
(⊕

`n2
)
`1

(NJL, Loy and Read 2004; NJL, Schlumprecht

and Zsák 2006);

(v) X = C [0, 1] (Brooker 2010, using Peªczy«ski and Rosenthal);

(vi) X = C [0, ωω] and X = C [0, ωα], where α is a countable epsilon number, that is, a
countable ordinal satisfying α = ωα (Brooker (unpublished), using Bourgain and
Peªczy«ski).

Note that C [0, ω1] di�ers from all of the above-mentioned Banach spaces because
C [0, ω1] � C [0, ω1]⊕ C [0, ω1].

4



Related results

Many Banach spaces X share with C [0, ω1] the property that

MX := {T ∈ B(X ) : ∀R, S ∈ B(X ) : I 6= STR}

is the unique maximal ideal of B(X ).

Fact (Dosev and Johnson 2010). Suppose that MX is closed under addition. Then MX

is the unique maximal ideal of B(X ).

Examples. MX is the unique maximal ideal of B(X ) in the following cases:

(i) X = `p for 1 6 p <∞ and X = c0 (Gohberg, Markus and Feldman 1960);

(ii) X = Lp[0, 1] for 1 6 p <∞ (Dosev, Johnson and Schechtman 2011; known
implicitly before);

(iii) X = `∞ ∼= L∞[0, 1] (NJL and Loy 2005, using Peªczy«ski and Rosenthal);

(iv) X =
(⊕

`n2
)
c0

and X =
(⊕

`n2
)
`1

(NJL, Loy and Read 2004; NJL, Schlumprecht

and Zsák 2006);

(v) X = C [0, 1] (Brooker 2010, using Peªczy«ski and Rosenthal);

(vi) X = C [0, ωω] and X = C [0, ωα], where α is a countable epsilon number, that is, a
countable ordinal satisfying α = ωα (Brooker (unpublished), using Bourgain and
Peªczy«ski).

Note that C [0, ω1] di�ers from all of the above-mentioned Banach spaces because
C [0, ω1] � C [0, ω1]⊕ C [0, ω1].

4



Related results

Many Banach spaces X share with C [0, ω1] the property that

MX := {T ∈ B(X ) : ∀R, S ∈ B(X ) : I 6= STR}

is the unique maximal ideal of B(X ).

Fact (Dosev and Johnson 2010). Suppose that MX is closed under addition. Then MX

is the unique maximal ideal of B(X ).

Examples. MX is the unique maximal ideal of B(X ) in the following cases:

(i) X = `p for 1 6 p <∞ and X = c0 (Gohberg, Markus and Feldman 1960);

(ii) X = Lp[0, 1] for 1 6 p <∞ (Dosev, Johnson and Schechtman 2011; known
implicitly before);

(iii) X = `∞ ∼= L∞[0, 1] (NJL and Loy 2005, using Peªczy«ski and Rosenthal);

(iv) X =
(⊕

`n2
)
c0

and X =
(⊕

`n2
)
`1

(NJL, Loy and Read 2004; NJL, Schlumprecht

and Zsák 2006);

(v) X = C [0, 1] (Brooker 2010, using Peªczy«ski and Rosenthal);

(vi) X = C [0, ωω] and X = C [0, ωα], where α is a countable epsilon number, that is, a
countable ordinal satisfying α = ωα (Brooker (unpublished), using Bourgain and
Peªczy«ski).

Note that C [0, ω1] di�ers from all of the above-mentioned Banach spaces because
C [0, ω1] � C [0, ω1]⊕ C [0, ω1].

4



Related results

Many Banach spaces X share with C [0, ω1] the property that

MX := {T ∈ B(X ) : ∀R, S ∈ B(X ) : I 6= STR}

is the unique maximal ideal of B(X ).

Fact (Dosev and Johnson 2010). Suppose that MX is closed under addition. Then MX

is the unique maximal ideal of B(X ).

Examples. MX is the unique maximal ideal of B(X ) in the following cases:

(i) X = `p for 1 6 p <∞ and X = c0 (Gohberg, Markus and Feldman 1960);

(ii) X = Lp[0, 1] for 1 6 p <∞ (Dosev, Johnson and Schechtman 2011; known
implicitly before);

(iii) X = `∞ ∼= L∞[0, 1] (NJL and Loy 2005, using Peªczy«ski and Rosenthal);

(iv) X =
(⊕

`n2
)
c0

and X =
(⊕

`n2
)
`1

(NJL, Loy and Read 2004; NJL, Schlumprecht

and Zsák 2006);

(v) X = C [0, 1] (Brooker 2010, using Peªczy«ski and Rosenthal);

(vi) X = C [0, ωω] and X = C [0, ωα], where α is a countable epsilon number, that is, a
countable ordinal satisfying α = ωα (Brooker (unpublished), using Bourgain and
Peªczy«ski).

Note that C [0, ω1] di�ers from all of the above-mentioned Banach spaces because
C [0, ω1] � C [0, ω1]⊕ C [0, ω1].

4



Weak compact generation

Recall that a Banach space E is weakly compactly generated if there is a weakly compact
set K ⊆ E such that span K is dense in E .

A C(K)-space is WCG if and only if it K is an Eberelin compact space, that is, K is
homeomorphic to a weakly compact subset of a Banach space.

Warning: A closed subspace of a WCG Banach space need not be WCG.

Pietsch's general framework: By an operator ideal we understand a subclass J of B,

containing the identity operator on the one-dimensional Banach space

which assigns to each pair (E ,F ) of Banach spaces a (not necessarily closed) linear
subspace J (E ,F ) = B(E ,F ) ∩ J such that for any Banach spaces X ,Y ,E ,F and for any
operators T ∈ B(X ,E), S ∈ J (E ,F ) and R ∈ B(F ,Y ) we have RST ∈ J (X ,Y ).

An operator ideal J is closed, if the subspace J (E ,F ) is closed in B(E ,F ) for any pair (E ,F )
of Banach spaces.

Examples: Compact operators K , weakly comapct operators W , strictly singular operators S ,
operators with range of density character < κ Xκ (denoted Xω1 = X ), weak Banach�Saks
operators W BS and many more...
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Weakly compactly generated operators

We de�ne an operator T ∈ B(E ,F ) to be weakly compactly generated if there is a WCG
subspace G of F such that T (E) ⊆ G . Denote WCG the class of such operators.

Observation (TK+T. Kochanek). The class WCG is a closed operator ideal.

The non-trivial thing is closedness. It follows from closedness of WCG spaces under
`1-sums (Lindenstrauss).

The operator ideal certaing contains W and X , yet is incomparable to S and V
(Dunford�Pettis operators).

OK, �ne, but I want some set theory!

Theorem (P. Koszmider, N. Laustsen, TK; joint work in progress) For each
T ∈ B(C0([0, ω1))) there are a scalar λ and a club set D ⊆ ω1 such that

e∗αT (x) = λe∗αx

for x ∈ C0([0, ω1)), α ∈ D (e∗α is the Dirac point mass δα functional).

Theorem (T.K., T. Kochanek). A similar theorem holds for the long James space
Jp(ω1) (recall its norm)

‖x‖Jp
= 2−1/p sup

{(
|x(αn)− x(α0)|p +

∑n

j=1|x(αj )− x(αj−1)|p
)1/p

: n ∈ N and

0 6 α0 < α1 < . . . < αn < η
}
,
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Partial structure of the lattice of closed ideals of B = B(C [0, ω1])

M
� � // // B

X + G c0(ω1)

# �
11dddddddddd

X
# �

11cccccccccc

...

?�
OO

...

?�

OO

G C(Kα+1)⊕c0(ω1)
?�

OO

G C(Kα+1)

?�
OO

# � 22ddddd

Kα = [0, ωω
α

]

G C(Kα)⊕c0(ω1)
?�
OO

G C(Kα)

?�
OO

# � 22ddddddd

...
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OO

...

?�

OO

G C(K1)⊕c0(ω1)
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OO

G C(K1)

?�
OO

# � 22ddddddd
G c0(ω1)

: Z
llYYYYYY

G c0

9 Y
llXXXXXXXXXXX % �

33 33ffffffffff

{0} �
� // // K

# �
11 11dddddddddddd
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Weakly compactly generated operators

Corollary (P. Koszmider, N. Laustsen, TK) The map ΛT 7→ λ as above is a character on
B(C0(ω1)) (and B(Jp). For T ∈ B(C0(ω1)) we have T ∈ kerΛ ⇐⇒ the range of T
is contained in C0(ω1 \ D) which turns out to be a WCG Banach space.

A similar statement for the long James space is true as well but a bit trickier to state.

Observation: The ideal M = WCG (C [0, ω1]) has codimension one. Can we heuristically
infer that [0, ω1] is close to an Eberlein compact space?

Another notable example: P. Koszmider has constructed under CH a C(K)-space such
that K is not Eberlein and X (C(K)) has codimension 1 in B(C(K)). In particlar,
X (C(K)) = WCG (C(K)).

Question The above space K is an example of a Mrówka space, that is, the Stone space
of a Boolean subalgebra of ℘(ω) generated by some uncountable almost disjoint family
(and �nite sets). Is for every Mrówka space K the ideal WCG (C(K)) maximal ideal of
B(C(K)).
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