The operator ideal of weakly compactly generated operators

Tomasz Kania

Lancaster University

Trends in Set Theory 2012

Warszawa, July 10

1

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Theorem (B. E. Johnson 1967). Let X be a Banach space which is isomorphic to its square $X \oplus X$. Then each derivation from the Banach algebra $\mathscr{B}(X)$ of (bounded) operators on X into a Banach $\mathscr{B}(X)$ -bimodule is automatically continuous.

Theorem (B. E. Johnson 1967). Let X be a Banach space which is isomorphic to its square $X \oplus X$. Then each derivation from the Banach algebra $\mathscr{B}(X)$ of (bounded) operators on X into a Banach $\mathscr{B}(X)$ -bimodule is automatically continuous.

Question: what happens when $X \ncong X \oplus X$?

Theorem (B. E. Johnson 1967). Let X be a Banach space which is isomorphic to its square $X \oplus X$. Then each derivation from the Banach algebra $\mathscr{B}(X)$ of (bounded) operators on X into a Banach $\mathscr{B}(X)$ -bimodule is automatically continuous.

Question: what happens when $X \ncong X \oplus X$?

Theorem (Semadeni 1960). The Banach space $C[0, \omega_1]$ of continuous functions on the ordinal interval $[0, \omega_1]$, equipped with its order topology, is *not* isomorphic to its square.

Theorem (B. E. Johnson 1967). Let X be a Banach space which is isomorphic to its square $X \oplus X$. Then each derivation from the Banach algebra $\mathscr{B}(X)$ of (bounded) operators on X into a Banach $\mathscr{B}(X)$ -bimodule is automatically continuous.

Question: what happens when $X \ncong X \oplus X$?

Theorem (Semadeni 1960). The Banach space $C[0, \omega_1]$ of continuous functions on the ordinal interval $[0, \omega_1]$, equipped with its order topology, is *not* isomorphic to its square.

Theorem (Loy and Willis 1989). Each derivation from the Banach algebra $\mathscr{B}(C[0, \omega_1])$ into a Banach $\mathscr{B}(C[0, \omega_1])$ -bimodule is automatically continuous.

Theorem (B. E. Johnson 1967). Let X be a Banach space which is isomorphic to its square $X \oplus X$. Then each derivation from the Banach algebra $\mathscr{B}(X)$ of (bounded) operators on X into a Banach $\mathscr{B}(X)$ -bimodule is automatically continuous.

Question: what happens when $X \ncong X \oplus X$?

Theorem (Semadeni 1960). The Banach space $C[0, \omega_1]$ of continuous functions on the ordinal interval $[0, \omega_1]$, equipped with its order topology, is *not* isomorphic to its square.

Theorem (Loy and Willis 1989). Each derivation from the Banach algebra $\mathscr{B}(C[0, \omega_1])$ into a Banach $\mathscr{B}(C[0, \omega_1])$ -bimodule is automatically continuous.

Key step: there is a maximal ideal \mathcal{M} of codimension one in $\mathcal{B}(C[0, \omega_1])$ which has a bounded right approximate identity.

Theorem (B. E. Johnson 1967). Let X be a Banach space which is isomorphic to its square $X \oplus X$. Then each derivation from the Banach algebra $\mathscr{B}(X)$ of (bounded) operators on X into a Banach $\mathscr{B}(X)$ -bimodule is automatically continuous.

Question: what happens when $X \ncong X \oplus X$?

Theorem (Semadeni 1960). The Banach space $C[0, \omega_1]$ of continuous functions on the ordinal interval $[0, \omega_1]$, equipped with its order topology, is *not* isomorphic to its square.

Theorem (Loy and Willis 1989). Each derivation from the Banach algebra $\mathscr{B}(C[0, \omega_1])$ into a Banach $\mathscr{B}(C[0, \omega_1])$ -bimodule is automatically continuous.

Key step: there is a maximal ideal \mathcal{M} of codimension one in $\mathcal{B}(C[0, \omega_1])$ which has a bounded right approximate identity.

We call *M* the *Loy–Willis ideal*.

Theorem (B. E. Johnson 1967). Let X be a Banach space which is isomorphic to its square $X \oplus X$. Then each derivation from the Banach algebra $\mathscr{B}(X)$ of (bounded) operators on X into a Banach $\mathscr{B}(X)$ -bimodule is automatically continuous.

Question: what happens when $X \ncong X \oplus X$?

Theorem (Semadeni 1960). The Banach space $C[0, \omega_1]$ of continuous functions on the ordinal interval $[0, \omega_1]$, equipped with its order topology, is *not* isomorphic to its square.

Theorem (Loy and Willis 1989). Each derivation from the Banach algebra $\mathscr{B}(C[0, \omega_1])$ into a Banach $\mathscr{B}(C[0, \omega_1])$ -bimodule is automatically continuous.

Key step: there is a maximal ideal \mathcal{M} of codimension one in $\mathcal{B}(C[0, \omega_1])$ which has a bounded right approximate identity.

We call *M* the Loy–Willis ideal.

It is defined using a representation of operators on $C[0, \omega_1]$ as scalar-valued $[0, \omega_1] \times [0, \omega_1]$ -matrices; an operator belongs to \mathcal{M} if and only if its final column is continuous.

Motivation

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

・ロト < 団ト < ミト < ミト ミ のへで

Theorem (TK+Niels Laustsen, JFA 2012). An operator on $C[0, \omega_1]$ belongs to the Loy–Willis ideal if and only if the identity operator on $C[0, \omega_1]$ does not factor through it;

 $\mathscr{M} = \{T \in \mathscr{B}(C[0,\omega_1]) : \forall R, S \in \mathscr{B}(C[0,\omega_1]) : I \neq STR\}.$

▲□▶▲□▶▲≡▶▲≡▶ ▲□ ◆ ○ ◇ ◇

Theorem (TK+Niels Laustsen, JFA 2012). An operator on $C[0, \omega_1]$ belongs to the Loy–Willis ideal if and only if the identity operator on $C[0, \omega_1]$ does not factor through it;

$$\mathscr{M} = \{T \in \mathscr{B}(C[0,\omega_1]) : \forall R, S \in \mathscr{B}(C[0,\omega_1]) : I \neq STR\}.$$

Corollary. The Loy–Willis ideal is the unique maximal ideal of $\mathscr{B}(C[0, \omega_1])$.

< ロ > < 回 > < 三 > < 三 > < 三 > < 三 < つ < ぐ

Theorem (TK+Niels Laustsen, JFA 2012). An operator on $C[0, \omega_1]$ belongs to the Loy–Willis ideal if and only if the identity operator on $C[0, \omega_1]$ does not factor through it;

 $\mathscr{M} = \{T \in \mathscr{B}(C[0,\omega_1]) : \forall R, S \in \mathscr{B}(C[0,\omega_1]) : I \neq STR\}.$

Corollary. The Loy–Willis ideal is the unique maximal ideal of $\mathscr{B}(C[0, \omega_1])$.

Proof. The theorem implies that the identity operator belongs to the ideal generated by any operator not in \mathcal{M} .

Many Banach spaces X share with $C[0, \omega_1]$ the property that

 $\mathscr{M}_{\boldsymbol{X}} := \{ T \in \mathscr{B}(\boldsymbol{X}) : \forall R, S \in \mathscr{B}(\boldsymbol{X}) : I \neq STR \}$

is the unique maximal ideal of $\mathscr{B}(X)$.

Many Banach spaces X share with $C[0, \omega_1]$ the property that

$$\mathscr{M}_{X} := \{ T \in \mathscr{B}(X) : \forall R, S \in \mathscr{B}(X) : I \neq STR \}$$

is the unique maximal ideal of $\mathscr{B}(X)$.

Fact (Dosev and Johnson 2010). Suppose that \mathcal{M}_X is closed under addition. Then \mathcal{M}_X is the unique maximal ideal of $\mathcal{B}(X)$.

4

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

Many Banach spaces X share with $C[0, \omega_1]$ the property that

$$\mathscr{M}_{X} := \{ T \in \mathscr{B}(X) : \forall R, S \in \mathscr{B}(X) : I \neq STR \}$$

is the unique maximal ideal of $\mathscr{B}(X)$.

Fact (Dosev and Johnson 2010). Suppose that \mathcal{M}_X is closed under addition. Then \mathcal{M}_X is the unique maximal ideal of $\mathcal{B}(X)$.

Examples. \mathcal{M}_X is the unique maximal ideal of $\mathcal{B}(X)$ in the following cases: (i) $X = \ell_p$ for $1 \leq p < \infty$ and $X = c_0$ (Gohberg, Markus and Feldman 1960);

Many Banach spaces X share with $C[0, \omega_1]$ the property that

$$\mathscr{M}_{X} := \{ T \in \mathscr{B}(X) : \forall R, S \in \mathscr{B}(X) : I \neq STR \}$$

is the unique maximal ideal of $\mathscr{B}(X)$.

Fact (Dosev and Johnson 2010). Suppose that \mathcal{M}_X is closed under addition. Then \mathcal{M}_X is the unique maximal ideal of $\mathcal{B}(X)$.

Examples. \mathcal{M}_X is the unique maximal ideal of $\mathcal{B}(X)$ in the following cases:

(i) $X = \ell_p$ for $1 \leq p < \infty$ and $X = c_0$ (Gohberg, Markus and Feldman 1960);

(ii) $X = L_p[0, 1]$ for $1 \le p < \infty$ (Dosev, Johnson and Schechtman 2011; known implicitly before);

Many Banach spaces X share with $C[0, \omega_1]$ the property that

$$\mathscr{M}_{X} := \{T \in \mathscr{B}(X) : \forall R, S \in \mathscr{B}(X) : I \neq STR\}$$

is the unique maximal ideal of $\mathscr{B}(X)$.

Fact (Dosev and Johnson 2010). Suppose that \mathcal{M}_X is closed under addition. Then \mathcal{M}_X is the unique maximal ideal of $\mathcal{B}(X)$.

Examples. \mathcal{M}_X is the unique maximal ideal of $\mathcal{B}(X)$ in the following cases:

- (i) $X = \ell_p$ for $1 \leq p < \infty$ and $X = c_0$ (Gohberg, Markus and Feldman 1960);
- (ii) $X = L_p[0, 1]$ for $1 \le p < \infty$ (Dosev, Johnson and Schechtman 2011; known implicitly before);

(iii) $X = \ell_{\infty} \cong L_{\infty}[0, 1]$ (NJL and Loy 2005, using Pełczyński and Rosenthal);

Many Banach spaces X share with $C[0, \omega_1]$ the property that

$$\mathscr{M}_{X} := \{T \in \mathscr{B}(X) : \forall R, S \in \mathscr{B}(X) : I \neq STR\}$$

is the unique maximal ideal of $\mathscr{B}(X)$.

Fact (Dosev and Johnson 2010). Suppose that \mathcal{M}_X is closed under addition. Then \mathcal{M}_X is the unique maximal ideal of $\mathcal{B}(X)$.

- (i) $X = \ell_p$ for $1 \leq p < \infty$ and $X = c_0$ (Gohberg, Markus and Feldman 1960);
- (ii) $X = L_p[0, 1]$ for $1 \le p < \infty$ (Dosev, Johnson and Schechtman 2011; known implicitly before);
- (iii) $X = \ell_{\infty} \cong L_{\infty}[0, 1]$ (NJL and Loy 2005, using Pełczyński and Rosenthal);
- (iv) $X = \left(\bigoplus \ell_2^n\right)_{c_0}$ and $X = \left(\bigoplus \ell_2^n\right)_{\ell_1}$ (NJL, Loy and Read 2004; NJL, Schlumprecht and Zsák 2006);

Many Banach spaces X share with $C[0, \omega_1]$ the property that

$$\mathscr{M}_{X} := \{T \in \mathscr{B}(X) : \forall R, S \in \mathscr{B}(X) : I \neq STR\}$$

is the unique maximal ideal of $\mathscr{B}(X)$.

Fact (Dosev and Johnson 2010). Suppose that \mathcal{M}_X is closed under addition. Then \mathcal{M}_X is the unique maximal ideal of $\mathcal{B}(X)$.

- (i) $X = \ell_p$ for $1 \leq p < \infty$ and $X = c_0$ (Gohberg, Markus and Feldman 1960);
- (ii) $X = L_p[0, 1]$ for $1 \le p < \infty$ (Dosev, Johnson and Schechtman 2011; known implicitly before);
- (iii) $X = \ell_{\infty} \cong L_{\infty}[0, 1]$ (NJL and Loy 2005, using Pełczyński and Rosenthal);
- (iv) $X = \left(\bigoplus \ell_2^n\right)_{c_0}$ and $X = \left(\bigoplus \ell_2^n\right)_{\ell_1}$ (NJL, Loy and Read 2004; NJL, Schlumprecht and Zsák 2006);
- (v) X = C[0, 1] (Brooker 2010, using Pełczyński and Rosenthal);

Many Banach spaces X share with $C[0, \omega_1]$ the property that

$$\mathscr{M}_{X} := \{ T \in \mathscr{B}(X) : \forall R, S \in \mathscr{B}(X) : I \neq STR \}$$

is the unique maximal ideal of $\mathscr{B}(X)$.

Fact (Dosev and Johnson 2010). Suppose that \mathcal{M}_X is closed under addition. Then \mathcal{M}_X is the unique maximal ideal of $\mathcal{B}(X)$.

- (i) $X = \ell_p$ for $1 \leq p < \infty$ and $X = c_0$ (Gohberg, Markus and Feldman 1960);
- (ii) $X = L_p[0, 1]$ for $1 \le p < \infty$ (Dosev, Johnson and Schechtman 2011; known implicitly before);
- (iii) $X = \ell_{\infty} \cong L_{\infty}[0, 1]$ (NJL and Loy 2005, using Pełczyński and Rosenthal);
- (iv) $X = \left(\bigoplus \ell_2^n\right)_{c_0}$ and $X = \left(\bigoplus \ell_2^n\right)_{\ell_1}$ (NJL, Loy and Read 2004; NJL, Schlumprecht and Zsák 2006);
- (v) X = C[0, 1] (Brooker 2010, using Pełczyński and Rosenthal);
- (vi) $X = C[0, \omega^{\omega}]$ and $X = C[0, \omega^{\alpha}]$, where α is a countable epsilon number, that is, a countable ordinal satisfying $\alpha = \omega^{\alpha}$ (Brooker (unpublished), using Bourgain and Pełczyński).

Many Banach spaces X share with $C[0, \omega_1]$ the property that

$$\mathscr{M}_{X} := \{ T \in \mathscr{B}(X) : \forall R, S \in \mathscr{B}(X) : I \neq STR \}$$

is the unique maximal ideal of $\mathscr{B}(X)$.

Fact (Dosev and Johnson 2010). Suppose that \mathcal{M}_X is closed under addition. Then \mathcal{M}_X is the unique maximal ideal of $\mathcal{B}(X)$.

- (i) $X = \ell_p$ for $1 \leq p < \infty$ and $X = c_0$ (Gohberg, Markus and Feldman 1960);
- (ii) $X = L_p[0, 1]$ for $1 \le p < \infty$ (Dosev, Johnson and Schechtman 2011; known implicitly before);
- (iii) $X = \ell_{\infty} \cong L_{\infty}[0, 1]$ (NJL and Loy 2005, using Pełczyński and Rosenthal);
- (iv) $X = \left(\bigoplus \ell_2^n\right)_{c_0}$ and $X = \left(\bigoplus \ell_2^n\right)_{\ell_1}$ (NJL, Loy and Read 2004; NJL, Schlumprecht and Zsák 2006);
- (v) X = C[0, 1] (Brooker 2010, using Pełczyński and Rosenthal);
- (vi) $X = C[0, \omega^{\omega}]$ and $X = C[0, \omega^{\alpha}]$, where α is a countable epsilon number, that is, a countable ordinal satisfying $\alpha = \omega^{\alpha}$ (Brooker (unpublished), using Bourgain and Pełczyński).

Many Banach spaces X share with $C[0, \omega_1]$ the property that

$$\mathcal{M}_{X} := \{ T \in \mathcal{B}(X) : \forall R, S \in \mathcal{B}(X) : I \neq STR \}$$

is the unique maximal ideal of $\mathscr{B}(X)$.

Fact (Dosev and Johnson 2010). Suppose that \mathcal{M}_X is closed under addition. Then \mathcal{M}_X is the unique maximal ideal of $\mathcal{B}(X)$.

Examples. \mathcal{M}_X is the unique maximal ideal of $\mathcal{B}(X)$ in the following cases:

- (i) $X = \ell_p$ for $1 \leq p < \infty$ and $X = c_0$ (Gohberg, Markus and Feldman 1960);
- (ii) $X = L_p[0,1]$ for $1 \le p < \infty$ (Dosev, Johnson and Schechtman 2011; known implicitly before);
- (iii) $X = \ell_{\infty} \cong L_{\infty}[0, 1]$ (NJL and Loy 2005, using Pełczyński and Rosenthal);
- (iv) $X = \left(\bigoplus \ell_2^n\right)_{c_0}$ and $X = \left(\bigoplus \ell_2^n\right)_{\ell_1}$ (NJL, Loy and Read 2004; NJL, Schlumprecht and Zsák 2006);
- (v) X = C[0, 1] (Brooker 2010, using Pełczyński and Rosenthal);
- (vi) $X = C[0, \omega^{\omega}]$ and $X = C[0, \omega^{\alpha}]$, where α is a countable epsilon number, that is, a countable ordinal satisfying $\alpha = \omega^{\alpha}$ (Brooker (unpublished), using Bourgain and Pełczyński).

Note that $C[0, \omega_1]$ differs from all of the above-mentioned Banach spaces because $C[0, \omega_1] \ncong C[0, \omega_1] \oplus C[0, \omega_1]$.

A C(K)-space is WCG if and only if it K is an Eberelin compact space, that is, K is homeomorphic to a weakly compact subset of a Banach space.

A C(K)-space is WCG if and only if it K is an Eberelin compact space, that is, K is homeomorphic to a weakly compact subset of a Banach space.

Warning: A closed subspace of a WCG Banach space need not be WCG.

A C(K)-space is WCG if and only if it K is an Eberelin compact space, that is, K is homeomorphic to a weakly compact subset of a Banach space.

Warning: A closed subspace of a WCG Banach space need not be WCG.

Pietsch's general framework: By an operator ideal we understand a subclass *J* of *B*,

- containing the identity operator on the one-dimensional Banach space
- which assigns to each pair (E, F) of Banach spaces a (not necessarily closed) linear subspace 𝒢(E, F) = 𝔅(E, F) ∩ 𝒢 such that for any Banach spaces X, Y, E, F and for any operators T ∈ 𝔅(X, E), S ∈ 𝒢(E, F) and R ∈ 𝔅(F, Y) we have RST ∈ 𝒢(X, Y).

An operator ideal \mathscr{J} is *closed*, if the subspace $\mathscr{J}(E,F)$ is closed in $\mathscr{B}(E,F)$ for any pair (E,F) of Banach spaces.

A C(K)-space is WCG if and only if it K is an Eberelin compact space, that is, K is homeomorphic to a weakly compact subset of a Banach space.

Warning: A closed subspace of a WCG Banach space need not be WCG.

Pietsch's general framework: By an operator ideal we understand a subclass *J* of *B*,

- containing the identity operator on the one-dimensional Banach space
- which assigns to each pair (E, F) of Banach spaces a (not necessarily closed) linear subspace 𝒢(E, F) = 𝔅(E, F) ∩ 𝒢 such that for any Banach spaces X, Y, E, F and for any operators T ∈ 𝔅(X, E), S ∈ 𝒢(E, F) and R ∈ 𝔅(F, Y) we have RST ∈ 𝒢(X, Y).

An operator ideal \mathscr{J} is *closed*, if the subspace $\mathscr{J}(E,F)$ is closed in $\mathscr{B}(E,F)$ for any pair (E,F) of Banach spaces.

A C(K)-space is WCG if and only if it K is an Eberelin compact space, that is, K is homeomorphic to a weakly compact subset of a Banach space.

Warning: A closed subspace of a WCG Banach space need not be WCG.

Pietsch's general framework: By an operator ideal we understand a subclass *J* of *B*,

- containing the identity operator on the one-dimensional Banach space
- which assigns to each pair (E, F) of Banach spaces a (not necessarily closed) linear subspace 𝒢(E, F) = 𝔅(E, F) ∩ 𝒢 such that for any Banach spaces X, Y, E, F and for any operators T ∈ 𝔅(X, E), S ∈ 𝒢(E, F) and R ∈ 𝔅(F, Y) we have RST ∈ 𝒢(X, Y).

An operator ideal \mathscr{J} is *closed*, if the subspace $\mathscr{J}(E,F)$ is closed in $\mathscr{B}(E,F)$ for any pair (E,F) of Banach spaces.

Examples: Compact operators \mathscr{K} , weakly comapct operators \mathscr{W} , strictly singular operators \mathscr{S} , operators with range of density character $< \kappa \mathscr{X}_{\kappa}$ (denoted $\mathscr{X}_{\omega_1} = \mathscr{X}$), weak Banach–Saks operators \mathscr{WBS} and many more...

We define an operator $T \in \mathscr{B}(E, F)$ to be *weakly compactly generated* if there is a WCG subspace G of F such that $T(E) \subseteq G$. Denote \mathscr{WCG} the class of such operators.

We define an operator $T \in \mathscr{B}(E, F)$ to be *weakly compactly generated* if there is a WCG subspace G of F such that $T(E) \subseteq G$. Denote \mathscr{WCG} the class of such operators.

Observation (TK+T. Kochanek). The class \mathscr{WCG} is a closed operator ideal.

We define an operator $T \in \mathscr{B}(E, F)$ to be *weakly compactly generated* if there is a WCG subspace G of F such that $T(E) \subseteq G$. Denote \mathscr{WCG} the class of such operators.

Observation (TK+T. Kochanek). The class \mathscr{WCG} is a closed operator ideal.

We define an operator $T \in \mathscr{B}(E, F)$ to be *weakly compactly generated* if there is a WCG subspace G of F such that $T(E) \subseteq G$. Denote \mathscr{WCG} the class of such operators.

Observation (TK+T. Kochanek). The class \mathcal{WCG} is a closed operator ideal. The non-trivial thing is closedness. It follows from closedness of WCG spaces under ℓ_1 -sums (Lindenstrauss).

We define an operator $T \in \mathscr{B}(E, F)$ to be *weakly compactly generated* if there is a WCG subspace G of F such that $T(E) \subseteq G$. Denote \mathscr{WCG} the class of such operators.

Observation (TK+T. Kochanek). The class \mathcal{WCG} is a closed operator ideal. The non-trivial thing is closedness. It follows from closedness of WCG spaces under ℓ_1 -sums (Lindenstrauss).

The operator ideal certaing contains \mathscr{W} and \mathscr{X} , yet is incomparable to \mathscr{S} and \mathscr{V} (Dunford–Pettis operators).

We define an operator $T \in \mathscr{B}(E, F)$ to be *weakly compactly generated* if there is a WCG subspace G of F such that $T(E) \subseteq G$. Denote \mathscr{WCG} the class of such operators.

Observation (TK+T. Kochanek). The class \mathcal{WCG} is a closed operator ideal. The non-trivial thing is closedness. It follows from closedness of WCG spaces under ℓ_1 -sums (Lindenstrauss).

The operator ideal certaing contains \mathscr{W} and \mathscr{X} , yet is incomparable to \mathscr{S} and \mathscr{V} (Dunford–Pettis operators).

We define an operator $T \in \mathscr{B}(E, F)$ to be *weakly compactly generated* if there is a WCG subspace G of F such that $T(E) \subseteq G$. Denote \mathscr{WCG} the class of such operators.

Observation (TK+T. Kochanek). The class \mathscr{WCG} is a closed operator ideal. The non-trivial thing is closedness. It follows from closedness of WCG spaces under ℓ_1 -sums (Lindenstrauss).

The operator ideal certaing contains \mathscr{W} and \mathscr{X} , yet is incomparable to \mathscr{S} and \mathscr{V} (Dunford–Pettis operators).

OK, fine, but I want some set theory!

We define an operator $T \in \mathscr{B}(E, F)$ to be *weakly compactly generated* if there is a WCG subspace G of F such that $T(E) \subseteq G$. Denote \mathscr{WCG} the class of such operators.

Observation (TK+T. Kochanek). The class \mathcal{WCG} is a closed operator ideal. The non-trivial thing is closedness. It follows from closedness of WCG spaces under ℓ_1 -sums (Lindenstrauss).

The operator ideal certaing contains \mathscr{W} and \mathscr{X} , yet is incomparable to \mathscr{S} and \mathscr{V} (Dunford–Pettis operators).

OK, fine, but I want some set theory!

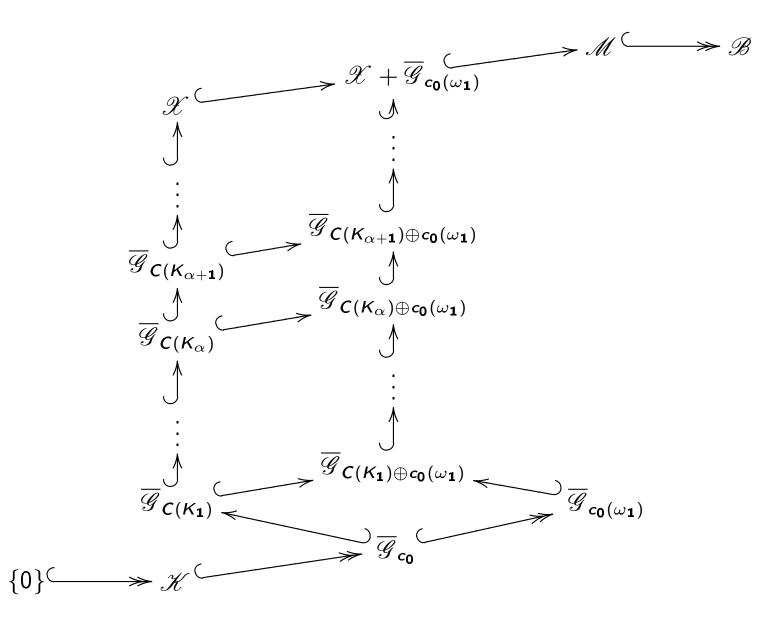
Theorem (P. Koszmider, N. Laustsen, TK; joint work in progress) For each $T \in \mathscr{B}(C_0([0, \omega_1)))$ there are a scalar λ and a club set $D \subseteq \omega_1$ such that

$$e^*_{\alpha}T(x)=\lambda e^*_{\alpha}x$$

for $x \in C_0([0, \omega_1))$, $\alpha \in D$ (e_{α}^* is the Dirac point mass δ_{α} functional). **Theorem** (T.K., T. Kochanek). A similar theorem holds for the long James space $\mathscr{J}_p(\omega_1)$ (recall its norm)

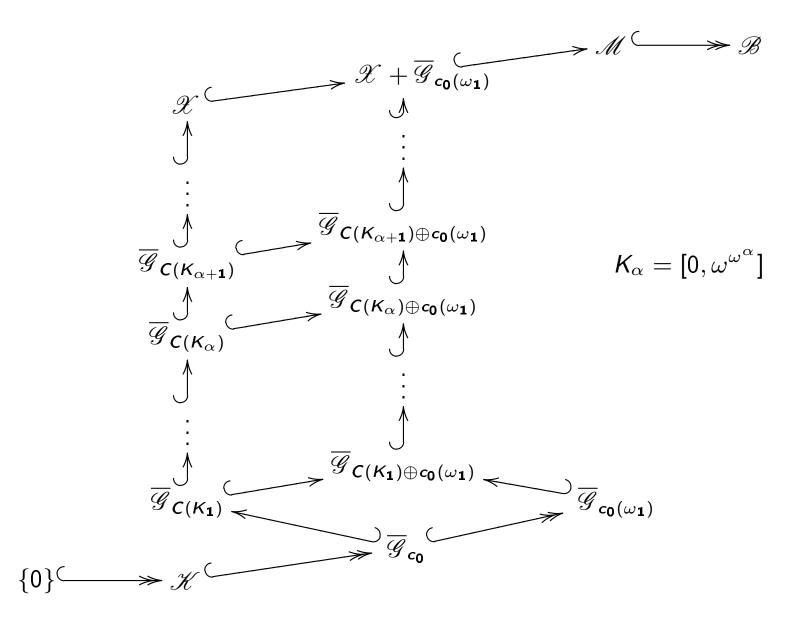
$$\|x\|_{\mathscr{J}_{p}} = 2^{-1/p} \sup \left\{ \left(|x(\alpha_{n}) - x(\alpha_{0})|^{p} + \sum_{j=1}^{n} |x(\alpha_{j}) - x(\alpha_{j-1})|^{p} \right)^{1/p} : n \in \mathbb{N} \text{ and} \\ 0 \leq \alpha_{0} < \alpha_{1} < \ldots < \alpha_{n} < \eta \right\}, \\ 0 \leq \alpha_{0} < \alpha_{1} < \ldots < \alpha_{n} < \eta \right\},$$

Partial structure of the lattice of closed ideals of $\mathscr{B} = \mathscr{B}(C[0, \omega_1])$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Partial structure of the lattice of closed ideals of $\mathscr{B} = \mathscr{B}(C[0, \omega_1])$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 少へ⊙

A similar statement for the long James space is true as well but a bit trickier to state.

A similar statement for the long James space is true as well but a bit trickier to state.

Observation: The ideal $\mathcal{M} = \mathcal{WCG}(C[0, \omega_1])$ has codimension one. Can we heuristically infer that $[0, \omega_1]$ is close to an Eberlein compact space?

A similar statement for the long James space is true as well but a bit trickier to state.

Observation: The ideal $\mathcal{M} = \mathcal{WCG}(C[0, \omega_1])$ has codimension one. Can we heuristically infer that $[0, \omega_1]$ is close to an Eberlein compact space?

Another notable example: P. Koszmider has constructed under CH a C(K)-space such that K is not Eberlein and $\mathscr{X}(C(K))$ has codimension 1 in $\mathscr{B}(C(K))$. In particlar, $\mathscr{X}(C(K)) = \mathscr{WCG}(C(K))$.

A similar statement for the long James space is true as well but a bit trickier to state.

Observation: The ideal $\mathcal{M} = \mathcal{WCG}(C[0, \omega_1])$ has codimension one. Can we heuristically infer that $[0, \omega_1]$ is close to an Eberlein compact space?

Another notable example: P. Koszmider has constructed under CH a C(K)-space such that K is not Eberlein and $\mathscr{X}(C(K))$ has codimension 1 in $\mathscr{B}(C(K))$. In particlar, $\mathscr{X}(C(K)) = \mathscr{WCG}(C(K))$.

Question The above space K is an example of a Mrówka space, that is, the Stone space of a Boolean subalgebra of $\wp(\omega)$ generated by some uncountable almost disjoint family (and finite sets). Is for every Mrówka space K the ideal $\mathscr{WCG}(C(K))$ maximal ideal of $\mathscr{B}(C(K))$.