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Introduction

I will discuss some aspects of the ergodic theory of automorphism groups
of countable structures and its connections with finite Ramsey theory and
probability theory. This is joint work with Omer Angel and Russell Lyons.
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Fräıssé theory

Throughout I will consider countable first-order languages and countable
(finite or infinite) structures for such languages. Recall first some
standard concepts of Fräıssé theory.

Definition

A class K of finite structures of the same language is called a Fräıssé
class if it satisfies the following properties:

(HP) Hereditary property.

(JEP) Joint embedding property.

(AP) Amalgamation property.

It is countable (up to ∼=).

It is unbounded.
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Fräıssé theory

Joint embedding property (JEP)
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Fräıssé theory

Definition

A countable structure K is a Fräıssé structure if it satisfies the following
properties:

It is infinite.

It is locally finite.

It is ultrahomogeneous (i.e., an isomorphism between finite
substructures can be extended to an automorphism of the whole
structure).

Definition

For a structure A, its age, denoted by Age(A), is the class of finite
structures that can be embedded in A.
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Fräıssé theory

The age of a Fräıssé structure is a Fräıssé class and Fräıssé showed that
one can associate to each Fräıssé class K a canonical Fräıssé structure
K = Frlim(K), called its Fräıssé limit, which is the unique Fräıssé
structure whose age is equal to K. Therefore one has a canonical
one-to-one correspondence:

K 7→ Frlim(K)

between Fräıssé classes and Fräıssé structures whose inverse is:

K 7→ Age(K).
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Fräıssé theory

Examples

finite graphs � random graph

finite linear orderings � 〈Q, <〉
f.d. vector spaces � (countable) infinite-dimensional vector space
(over a finite field)

finite Boolean algebras � countable atomless Boolean algebra

finite rational metric spaces � rational Urysohn space
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Aut(A) as a topological group

For a countable structure A, we view Aut(A) as a topological group
with the pointwise convergence topology. It is not hard to check then
that it becomes a Polish group. In fact one can characterize these groups
as follows:

Theorem

For any Polish group G, the following are equivalent:

G is isomorphic to a closed subgroup of S∞, the permutation group
of N with the pointwise convergence topology.

G is non-Archimedean, i.e., admits a basis at the identity consisting
of open subgroups.

G ∼= Aut(A), for a countable structure A.

G ∼= Aut(K), for a Fräıssé structure K.
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Amenability of Aut(A)

We will now consider some aspects of the dynamics of automorphism
groups, especially the concept of amenability.

Definition

Let G be a topological group. A G-flow is a continuous action of G on a
compact Hausdorff space. A group G is called amenable if every G-flow
admits an invariant (Borel probability) measure. It is called extremely
amenable if every G-flow admits an invariant point.
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Extreme amenability and Ramsey theory

In a paper of K-Pestov-Todorcevic (2005) a duality theory was developed
that relates the Ramsey theory of Fräıssé classes (sometimes called
structural Ramsey theory) to the topological dynamics of the
automorphism groups of their Fräıssé limits.

Structural Ramsey theory is a vast generalization of the classical Ramsey
theorem to classes of finite structures. It was developed primarily in the
1970’s by: Graham, Leeb, Rothchild, Nešeťril-Rödl, Prömel, Voigt,
Abramson-Harrington, ...
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Extreme amenability and Ramsey theory

Definition

A class K of finite structures (in the same language) has the Ramsey
property (RP) if for any A ≤ B in K, and any n ≥ 1, there is C ≥ B in
K, such that

C → (B)A
n .

Examples of classes with Ramsey property:

finite linear orderings (Ramsey)

finite Boolean algebras (Graham-Rothschild)

finite-dimensional vector spaces over a given finite field
(Graham-Leeb-Rothschild)

finite ordered graphs (Nešeťril-Rödl)

finite rational metric spaces (Nešeťril)

However, the class of finite graphs does not have the Ramsey property!
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Extreme amenability and Ramsey theory

One of the consequences of the duality theory is the following
characterization of extreme amenability of automorphism groups.

Theorem (KPT)

The extremely amenable automorphism groups are exactly the
automorphism groups of ordered Fräıssé structures whose age satisfies
the Ramsey Property.

Examples

The automorphism groups of the following structures are extremely
amenable:

random ordered graph

(Pestov) rational order

lex. ordered infinite-dimensional vector space (over a finite field)

lex. ordered countable atomless Boolean algebra

rational ordered Urysohn space
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Hrushovski structures

Clearly every extremely amenable group is amenable. There are however
many amenable automorphism groups that are not extremely amenable.
Many such examples arise in the context of the Hrushovski Property.

Definition

Let K be a Fräıssé class of finite structures. We say that K is a
Hrushovski class if for any A in K there is B in K containing A such
that any partial automorphism of A extends to an automorphism of B.

Some basic examples of such classes are the pure sets, graphs
(Hrushovski), hypergraphs and Kn-free graphs (Herwig), rational valued
metric spaces (Solecki), finite dimensional vector spaces over finite fields,
etc.

Definition

Let K be a Fräıssé class of finite structures and K its Fräıssé limit. If K
is a Hrushovski class, then we say that K is a Hrushovski structure.
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Hrushovski structures

This turns out to be a property of automorphism groups:

Proposition (K-Rosendal)

Let K be a Fräıssé class of finite structures and K its Fräıssé limit.
Then the following are equivalent

K is a Hrushovski structure.

Aut(K) is compactly approximable, i.e., there is a increasing
sequence Kn of compact subgroups whose union is dense in the
automorphism group.

In particular the automorphism group of a Hrushovski structure is
amenable. Thus S∞ and the automorphism groups of the random graph,
random n-uniform hypergraph, random Kn-free graph, rational Urysohn
space, (countably) infinite-dimensional vector space over a finite field,
etc., are amenable (but not extremely amenable).
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Non-amenable groups

At the other end of the spectrum there are also automorphism groups
that are not amenable. These include the following:

Theorem (K-Sokić)

The automorphism groups of the random poset, random distributive
lattice and the dense local order are not amenable.
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Unique ergodicity

I am interested here in the ergodic theory of flows of automorphism
groups and especially in the phenomenon of unique ergodicity.
Let G be a topological group and X a G-flow. Consider G-invariant
(Borel probability) measures in such a flow.

Definition

A G-flow is uniquely ergodic if it admits a unique invariant measure
(which must then be ergodic).
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Unique ergodicity

Recall that a flow is called minimal if every orbit is dense or equivalently
if is has no proper subflows. Every flow contains a minimal subflow.

Definition

Let G be a topological group. We call G uniquely ergodic if every
minimal flow admits a unique invariant measure (which must then be
ergodic).

Remark: The assumption of minimality is necessary because in general a
flow has many minimal subflows which are of course pairwise disjoint.
Note also that every uniquely ergodic group is amenable.

Clearly every extremely amenable Polish group is uniquely ergodic and so
is every compact Polish group. On the other hand Weiss has shown that
no infinite countable (discrete) group can be uniquely ergodic and he
believes that this extends to Polish locally compact, non-compact groups
although this has not been verified in detail.
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Universal minimal flows

In order to understand better the concept of unique ergodicity we need to
discuss first the idea of a universal minimal flow.

A homomorphism between two G-flows X,Y is a continuous G-map
π : X → Y . If Y is minimal, then π must be onto. An isomorphism is a
bijective homomorphism.

Theorem

For any G, there is a minimal G-flow, M(G), called its universal minimal
flow with the following property: For any minimal G-flow X, there is a
homomorphism π : M(G)→ X. Moreover M(G) is uniquely determined
up to isomorphism by this property.
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A homomorphism between two G-flows X,Y is a continuous G-map
π : X → Y . If Y is minimal, then π must be onto. An isomorphism is a
bijective homomorphism.
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Universal minimal flows

The following is a consequence of the Hahn-Banach Theorem.

Proposition

Let G be an amenable group. Then G is uniquely ergodic iff M(G) is
uniquely ergodic.

So it is enough to concentrate on the universal minimal flow.
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Universal minimal flows

If G is compact, then M(G) = G. If G is non-compact but locally
compact, then M(G) is extremely complicated, e.g., it is non-metrizable.
However, by definition G is extremely amenable iff M(G) trivializes!

This leads to a general problem in topological dynamics:

For a given G, can one explicitly determine M(G) and show that it is
metrizable?

The first example of calculation of a metrizable but non-trivial universal
minimal flow is due to Pestov (1998): The universal minimal flow of
H+(T) is T. Two more examples were found later by Glasner-Weiss
(2002,2003): The universal minimal flow of S∞ is the space LO of linear
orderings of N. The universal minimal flow of H(2N) is the Uspenskii
space of maximal chains of closed subsets of the Cantor space. These all
used Ramsey techniques.
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Universal minimal flows of automorphism groups

The duality theory of K-Pestov-Todorcevic provides tools for computing
the universal minimal flows of automorphism groups of Fräıssé structures.
We will discuss this next.
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Order expansions of Fräıssé classes

Consider a Fräıssé class K in a language L. Let L∗ = L ∪ {<} be the
language obtained by adding a binary relation symbol < to L. A
structure A∗ for L∗ has the form A∗ = 〈A, <〉, where A is a structure
for L and < is a binary relation on A (= the universe of A). A class K∗
of finite structures on L∗ is called an order class if (〈A, <〉 ∈ K∗ ⇒ < is
a linear ordering on A). For such A∗ = 〈A, <〉, let A∗|L = A.

We say that a Fräıssé order class K∗ on L∗ is an order expansion of K if
K = K∗|L = {A∗|L : A∗ ∈ K∗}. In this case, if A ∈ K and
A∗ = 〈A, <〉 ∈ K∗, we say that < is a K∗-admissible ordering of A. The
order expansion K∗ of K is reasonable if for every A,B ∈ K, with
A ⊆ B and any K∗-admissible ordering < on A, there is a K∗-admissible
ordering <′ on B such that <⊆<′.
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Order expansions of Fräıssé classes

If K is a Fräıssé class with K = Flim(K) and K∗ is a reasonable, order
expansion of K, we denote by XK∗ the space of linear orderings < on K
such that for any finite substructure A of K, < |A is K∗-admissible on
A. We call these the K∗-admissible orderings on K. They form a
compact, metrizable, non-empty subspace of 2K2

(with the product
topology) on which the group G = Aut(K) acts continuously, thus XK∗
is a G-flow.
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Order expansions of Fräıssé classes

Examples

K = finite graphs, K = R; K∗ = finite ordered graphs. Then XK∗
is the space of all linear orderings of the random graph.

K = finite sets, K = 〈N〉; K∗ = finite orderings. Then XK∗ is the
space of all linear orderings on N .

K = f.d. vector spaces over a fixed finite field, K = V ∞; K∗ = lex.
ordered f.d. vector spaces. Then XK∗ is the space of all “lex.
orderings” on V ∞.

K = finite posets, K = P ; K∗ = finite posets with linear extensions.
Then XK∗ is the space of all linear extensions of the random poset.
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Order expansions of Fräıssé classes

Beyond the Ramsey Property, there is an additional property of classes of
finite structures that was introduced by Nešeťril and Rödl in the 1970’s
and played an important role in the structural Ramsey theory.

Definition

If K∗ is an order expansion of K, we say that K∗ satisfies the ordering
property (OP) if for every A ∈ K, there is B ∈ K such that for every
K∗-admissible orderings < on A and <′ on B, 〈A, <〉 can be embedded
in 〈B, <′〉.

In all the examples of the previous page we have the ordering property.
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Beyond the Ramsey Property, there is an additional property of classes of
finite structures that was introduced by Nešeťril and Rödl in the 1970’s
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Calculation of universal minimal flows

Theorem (KPT)

Let K be a Fräıssé class and K∗ a reasonable order expansion of K. Then
if G is the automorphism group of the Fräıssé limit of K the following are
equivalent:

XK∗ is the universal minimal flow of the automorphism group of G.

K∗ has the Ramsey Property and the Ordering Property.
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Calculation of universal minimal flows

Examples

K = finite graphs, K = R; K∗ = finite ordered graphs. Then the
space of all linear orderings of the random graph is the UMF of its
automorphism group.

K = finite sets, K = 〈N〉; K∗ = finite orderings. Then the space of
all linear orderings on N is the UMF of S∞(Glasner-Weiss).

K = f.d. vector spaces over a fixed finite field, K = V ∞; K∗ = lex.
ordered f.d. vector spaces. Then the space of all “lex. orderings” on
V ∞ is the UMF of its general linear group.

K = finite posets, K = P ; K∗ = finite posets with linear
extensions. Then the space of all linear extensions of the random
poset is the UMF of its automorphism group.
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Unique ergodicity revisited

Let K be a Fräıssé class and K∗ a reasonable order expansion of K that
has the Ramsey Property and the Ordering Property. We will say then
that K∗ is a companion of K. It was shown in the paper of KPT that
such a companion, when it exists, is essentially unique.

Thus we have seen that when K has a companion class K∗, and this
happens for many important examples, then the UMF of the
automorphism group G of its Fräıssé limit is the compact, metrizable
space XK∗ . Thus the unique ergodicity of G is equivalent to the unique
ergodicity of XK∗ . This can then be seen to be equivalent to the
following probabilistic notion.
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Unique ergodicity revisited

Definition

Let K∗ be a companion of K. A random, consistent K∗-admissible
ordering is a map that assigns to each structure A ∈ K a probability
measure µA on the (finite) space of K∗-admissible orderings on A, which
is isomorphism invariant and has the property that if A ⊆ B, then µB

projects by the restriction map to µA.

Example: graphs

We now have:

Proposition (AKL)

Let K∗ be a companion of K. Then amenability of the automorphism
group G of the Fräıssé limit of K is equivalent to the existence of a
random, consistent K∗-admissible ordering and unique ergodicity of G is
equivalent to the uniqueness of a random, consistent K∗-admissible
ordering.
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Unique ergodicity as a quantitative version of the Ordering
Property

Interestingly it turns out that unique ergodicity fits well in the framework
of the duality theory of KPT (which originally was developed in the
context of topological dynamics). In many cases it can simply be viewed
as a quantitative version of the Ordering Property.

Definition (AKL)

Let K∗ be a companion of K. We say that K∗ satisfies the Quantitative
Ordering Property (QOP) if the following holds:

There is an isomorphism invariant map that assigns to each structure
A∗ = 〈A, <〉 ∈ K∗ a real number ρ(A∗) in (0, 1] such that for every
A ∈ K and each ε > 0, there is a B ∈ K and a nonempty set of
embeddings E(A,B) of A into B with the property that for each
K∗-admissible ordering < of A and each K∗-admissible ordering <′ of B
the proportion of embeddings in E(A,B) that preserve <,<′ is equal to
ρ(〈A, <〉), within ε.
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Unique ergodicity as a quantitative version of the Ordering
Property

For example, if K is the class of finite graphs, one can establish QOP by
showing that for any finite graph A with n vertices and ε > 0, there is a
graph B, containing a copy of A, such that given any orderings < on A
and <′ on B, the proportion of all embeddings of A into B that
preserve the orderings <,<′ is, up to ε, equal to 1/n!.
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Unique ergodicity as a quantitative version of the Ordering
Property

Theorem (AKL)

Let K∗ be a companion of K, let G be the automorphism group of the
Fräıssé limit of K and assume that G is amenable. Then QOP implies
the unique ergodicity of G. Moreover, if K is a Hrushovski class, QOP is
equivalent to the unique ergodicity of G.
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Proving unique ergodicity

By more direct means (but still using the calculation of the UMF), one
can show that the following automorphism groups are uniquely ergodic:

S∞ (Glasner-Weiss)

The isometry group of the Baire space and various ultrametric
Urysohn spaces (AKL)

The general linear group of the (countably) infinite-dimensional
vector space over a finite field (AKL)

By applying now the preceding QOP criterion and probabilistic arguments
(deviation inequalities) one can now also show the following:

Theorem (AKL)

The automorphism groups of the following structures are uniquely ergodic

The random graph

The random Kn-free graph

The random n-uniform hypergraph

The rational Urysohn space
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Unique Ergodicity Problem

In fact I do not know any counterexample to the following problem:

Problem (Unique Ergodicity Problem)

Let G be an automorphism group of a countable structure with a
metrizable universal minimal flow. If G is amenable, then is it uniquely
ergodic?

In fact one can even consider an even stronger form of this problem:

Problem (Unique Ergodicity Problem-Strong Form)

Let G be an automorphism group of a countable structure with a
metrizable universal minimal flow. If G is amenable, then is it uniquely
ergodic and in every minimal G-flow the unique invariant measure is
supported by a single comeager orbit?

A positive answer to this stronger form has been obtained in many cases,
e.g., S∞ (Glasner-Weiss); the automorphism group of the random graph,
random n-uniform hypergraph, random Kn-free graph, rational Urysohn
space, etc. (AKL)
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