Definable Hausdorff Gaps

Yurii Khomskii
Kurt Gödel Research Center

Trends in Set Theory, Warsaw, 7-11 July 2012

Definitions

Notation:

- $[\omega]^{\omega}: \quad\{a \subseteq \omega| | a \mid=\omega\}$
- $=$ *: equality modulo finite
- \subseteq^{*} : subset modulo finite

Definitions

Notation:

- $[\omega]^{\omega}: \quad\{a \subseteq \omega| | a \mid=\omega\}$
- $=$ *: equality modulo finite
- \subseteq^{*} : subset modulo finite

Definition

Let $A, B \subseteq[\omega]^{\omega}$.

- A and B are orthogonal $(A \perp B)$ if $\forall a \in A \forall b \in B\left(a \cap b={ }^{*} \varnothing\right)$ (such a pair (A, B) is called a pre-gap)

Definitions

Notation:

- $[\omega]^{\omega}: \quad\{a \subseteq \omega| | a \mid=\omega\}$
- $=$ *: equality modulo finite
- \subseteq^{*} : subset modulo finite

Definition

Let $A, B \subseteq[\omega]^{\omega}$.

- A and B are orthogonal $(A \perp B)$ if $\forall a \in A \forall b \in B\left(a \cap b={ }^{*} \varnothing\right)$ (such a pair (A, B) is called a pre-gap)
- A set $c \in[\omega]^{\omega}$ separates a pre-gap (A, B) if $\forall a \in A\left(a \subseteq^{*} c\right)$ and $\forall b \in B\left(b \cap c={ }^{*} \varnothing\right)$.

Definitions

Notation:

- $[\omega]^{\omega}: \quad\{a \subseteq \omega| | a \mid=\omega\}$
- $=$ *: equality modulo finite
- \subseteq^{*} : subset modulo finite

Definition

Let $A, B \subseteq[\omega]^{\omega}$.

- A and B are orthogonal $(A \perp B)$ if $\forall a \in A \forall b \in B\left(a \cap b={ }^{*} \varnothing\right)$ (such a pair (A, B) is called a pre-gap)
- A set $c \in[\omega]^{\omega}$ separates a pre-gap (A, B) if $\forall a \in A\left(a \subseteq^{*} c\right)$ and $\forall b \in B\left(b \cap c={ }^{*} \varnothing\right)$.
- A pair (A, B) is a gap if it is a pre-gap which cannot be separated.

Types of gaps

Theorem (Hausdorff 1936)
There exists an $\left(\omega_{1}, \omega_{1}\right)$-gap (A, B) : A and B well-ordered by \subseteq^{*}, with order-type ω_{1}.

Types of gaps

Theorem (Hausdorff 1936)

There exists an $\left(\omega_{1}, \omega_{1}\right)$-gap (A, B) : A and B well-ordered by \subseteq^{*}, with order-type ω_{1}.

Construction by induction on $\alpha<\omega_{1}$, sets A and B are not definable.

Types of gaps

Theorem (Hausdorff 1936)

There exists an $\left(\omega_{1}, \omega_{1}\right)$-gap (A, B) : A and B well-ordered by \subseteq^{*}, with order-type ω_{1}.

Construction by induction on $\alpha<\omega_{1}$, sets A and B are not definable.

Theorem (Todorčević 1996)
There exists a perfect gap (A, B) : both A and B are perfect sets.

Types of gaps

Theorem (Hausdorff 1936)

There exists an $\left(\omega_{1}, \omega_{1}\right)$-gap (A, B) : A and B well-ordered by \subseteq^{*}, with order-type ω_{1}.

Construction by induction on $\alpha<\omega_{1}$, sets A and B are not definable.

Theorem (Todorčević 1996)
There exists a perfect gap (A, B) : both A and B are perfect sets.

Proof.

$$
\begin{aligned}
& A:=\left\{\{x|n| x(n)=0\} \mid x \in 2^{\omega}\right\} \subseteq\left[\omega^{<\omega}\right]^{\omega} \\
& B:=\left\{\{x|n| x(n)=1\} \mid x \in 2^{\omega}\right\} \subseteq\left[\omega^{<\omega}\right]^{\omega} .
\end{aligned}
$$

\square

"Hausdorff gap"

Put conditions on (A, B) approaching Hausdorff.

"Hausdorff gap"

Put conditions on (A, B) approaching Hausdorff.

Definition

We will say that a gap (A, B) is a Hausdorff gap if A and B are σ-directed (every countable subset has an \subseteq^{*}-upper bound).

"Hausdorff gap"

Put conditions on (A, B) approaching Hausdorff.

Definition

We will say that a gap (A, B) is a Hausdorff gap if A and B are σ-directed (every countable subset has an \subseteq^{*}-upper bound).

Theorem (Todorčević 1996)
If either A or B is analytic then (A, B) cannot be a Hausdorff gap.

Proof

About the proof:

- A and B are $\boldsymbol{\sigma}$-separated if $\exists C$ countable s.t. $C \perp B$ and $\forall a \in A \exists c \in C\left(a \subseteq^{*} c\right)$

Proof

About the proof:

- A and B are σ-separated if $\exists C$ countable s.t. $C \perp B$ and $\forall a \in A \exists c \in C\left(a \subseteq^{*} c\right)$
- A tree S on $\omega^{\uparrow \omega}$ is an (A, B)-tree if
(1) $\forall \sigma \in S:\left\{i \mid \sigma^{\wedge}\langle i\rangle \in S\right\}$ has infinite intersection with some $b \in B$,
(2) $\forall x \in[S]: \operatorname{ran}(x) \subseteq^{*} a$ for some $a \in A$.

Proof

About the proof:

- A and B are σ-separated if $\exists C$ countable s.t. $C \perp B$ and $\forall a \in A \exists c \in C\left(a \subseteq^{*} c\right)$
- A tree S on $\omega^{\uparrow \omega}$ is an (A,B)-tree if
(1) $\forall \sigma \in S:\left\{i \mid \sigma^{\wedge}\langle i\rangle \in S\right\}$ has infinite intersection with some $b \in B$,
(2) $\forall x \in[S]: \operatorname{ran}(x) \subseteq^{*} a$ for some $a \in A$.

Point:

(1) If A is σ-directed, then " σ-separated" \rightarrow "separated".
(2) If B is σ-directed, then there is no (A, B)-tree.

Proof

About the proof:

- A and B are σ-separated if $\exists C$ countable s.t. $C \perp B$ and $\forall a \in A \exists c \in C\left(a \subseteq^{*} c\right)$
- A tree S on $\omega^{\uparrow \omega}$ is an (A, B)-tree if
(1) $\forall \sigma \in S:\left\{i \mid \sigma^{\wedge}\langle i\rangle \in S\right\}$ has infinite intersection with some $b \in B$,
(2) $\forall x \in[S]: \operatorname{ran}(x) \subseteq^{*} a$ for some $a \in A$.

Point:

(1) If A is σ-directed, then " σ-separated" \rightarrow "separated".
(2) If B is σ-directed, then there is no (A, B)-tree.

Theorem (Todorčević 1996)

If A is analytic then either there exists an (A, B)-tree or A and B are σ-separated.

Extending this result

We can extend this in various directions.
(1) Solovay's model
(2) Determinacy
(3) $\boldsymbol{\Sigma}_{2}^{1}$ and Π_{1}^{1} level

Extending this result

We can extend this in various directions.
(1) Solovay's model
(2) Determinacy
(3) $\boldsymbol{\Sigma}_{2}^{1}$ and Π_{1}^{1} level

Theorem

In the Solovay model $\left(L(\mathbb{R})\right.$ of $V^{\operatorname{Col}(\omega,<\kappa)}$ for κ inaccessible) there are no Hausdorff gaps.

Extending this result

We can extend this in various directions.
(1) Solovay's model
(2) Determinacy
(3) $\boldsymbol{\Sigma}_{2}^{1}$ and Π_{1}^{1} level

Theorem

In the Solovay model $\left(L(\mathbb{R})\right.$ of $V^{\operatorname{Col}(\omega,<\kappa)}$ for κ inaccessible) there are no Hausdorff gaps.

My proof: prove the dichotomy (either $\exists(A, B)$-tree or A and B are σ-separated) for all A, B in the Solovay model.

Extending this result

We can extend this in various directions.
(1) Solovay's model
(2) Determinacy
(3) $\boldsymbol{\Sigma}_{2}^{1}$ and Π_{1}^{1} level

Theorem

In the Solovay model $\left(L(\mathbb{R})\right.$ of $V^{\operatorname{Col}(\omega,<\kappa)}$ for κ inaccessible) there are no Hausdorff gaps.

My proof: prove the dichotomy (either $\exists(A, B)$-tree or A and B are σ-separated) for all A, B in the Solovay model.

Probably there are other proofs...

Determinacy

Theorem (Kh)

$A D_{\mathbb{R}} \Rightarrow$ there are no Hausdorff gaps.

Determinacy

Theorem (Kh)

$\mathrm{AD}_{\mathbb{R}} \Rightarrow$ there are no Hausdorff gaps.
Proof: For a pre-gap (A, B), define a game $G_{H}(A, B)$.

Determinacy

Theorem (Kh)

$A D_{\mathbb{R}} \Rightarrow$ there are no Hausdorff gaps.
Proof: For a pre-gap (A, B), define a game $G_{H}(A, B)$.

Definition

I :	c_{0}		$\left(s_{1}, c_{1}\right)$		$\left(s_{2}, c_{2}\right)$		\ldots
II :		i_{0}		i_{1}		i_{2}	

where $s_{n} \in \omega^{<\omega}, c_{n} \in[\omega]^{\omega}$ and $i_{n} \in \omega$. The conditions for player I:
(1) $\min \left(s_{n}\right)>\max \left(s_{n-1}\right)$ for all $n \geq 1$,
(2) $\min \left(c_{n}\right)>\max \left(s_{n}\right)$,
(3) all c_{n} have infinite intersection with some $b \in B$, and
(4) $i_{n} \in \operatorname{ran}\left(s_{n+1}\right)$ for all n.

Conditions for player II:
(1) $i_{n} \in c_{n}$ for all n.

If all five conditions are satisfied, let $s^{*}:=s_{1} \frown s_{2} \frown \ldots$. Player I wins iff $\operatorname{ran}\left(s^{*}\right) \in A$.

Determinacy

Definition

I :	c_{0}		$\left(s_{1}, c_{1}\right)$		$\left(s_{2}, c_{2}\right)$		\ldots
II :		i_{0}		i_{1}		i_{2}	

where $s_{n} \in \omega^{<\omega}, c_{n} \in[\omega]^{\omega}$ and $i_{n} \in \omega$. The conditions for player I:
(1) $\min \left(s_{n}\right)>\max \left(s_{n-1}\right)$ for all $n \geq 1$,
(2) $\min \left(c_{n}\right)>\max \left(s_{n}\right)$,
(3) all c_{n} have infinite intersection with some $b \in B$, and
(4) $i_{n} \in \operatorname{ran}\left(s_{n+1}\right)$ for all n.

Conditions for player II:
(1) $i_{n} \in c_{n}$ for all n.

If all five conditions are satisfied, let $s^{*}:=s_{1} \frown s_{2} \frown \ldots$. Player I wins iff $\operatorname{ran}\left(s^{*}\right) \in A$.

Determinacy

Definition

I :	c_{0}		$\left(s_{1}, c_{1}\right)$		$\left(s_{2}, c_{2}\right)$	\ldots	
II :		i_{0}		i_{1}		i_{2}	
\cdots							

where $s_{n} \in \omega^{<\omega}, c_{n} \in[\omega]^{\omega}$ and $i_{n} \in \omega$. The conditions for player I:
(1) $\min \left(s_{n}\right)>\max \left(s_{n-1}\right)$ for all $n \geq 1$,
(2) $\min \left(c_{n}\right)>\max \left(s_{n}\right)$,
(3) all c_{n} have infinite intersection with some $b \in B$, and
(4) $i_{n} \in \operatorname{ran}\left(s_{n+1}\right)$ for all n.

Conditions for player II:
(1) $i_{n} \in c_{n}$ for all n.

If all five conditions are satisfied, let $s^{*}:=s_{1} \frown s_{2} \frown \ldots$. Player I wins iff $\operatorname{ran}\left(s^{*}\right) \in A$.

- Player I wins $G_{H}(A, B) \Rightarrow$ there exists an (A, B)-tree.
- Player II wins $G_{\mathrm{H}}(A, B) \Rightarrow A$ and B are σ-separated.

Determinacy

Definition

I :	c_{0}		$\left(s_{1}, c_{1}\right)$		$\left(s_{2}, c_{2}\right)$	\ldots	
II :		i_{0}		i_{1}		i_{2}	
\cdots							

where $s_{n} \in \omega^{<\omega}, c_{n} \in[\omega]^{\omega}$ and $i_{n} \in \omega$. The conditions for player I:
(1) $\min \left(s_{n}\right)>\max \left(s_{n-1}\right)$ for all $n \geq 1$,
(2) $\min \left(c_{n}\right)>\max \left(s_{n}\right)$,
(3) all c_{n} have infinite intersection with some $b \in B$, and
(4) $i_{n} \in \operatorname{ran}\left(s_{n+1}\right)$ for all n.

Conditions for player II:
(1) $i_{n} \in c_{n}$ for all n.

If all five conditions are satisfied, let $s^{*}:=s_{1} \frown s_{2} \frown \ldots$. Player I wins iff $\operatorname{ran}\left(s^{*}\right) \in A$.

- Player I wins $G_{H}(A, B) \Rightarrow$ there exists an (A, B)-tree.
- Player II wins $G_{\mathrm{H}}(A, B) \Rightarrow A$ and B are σ-separated.

Unfortunately, I don't know how to do it with AD!

Back to low projective levels...

Back to low projective levels...

Notation:

- ($\boldsymbol{\Gamma}, \boldsymbol{\Gamma})$-Hausdorff gap: A, B are of complexity $\boldsymbol{\Gamma}$,
- ($\boldsymbol{\Gamma}, \cdot)$-Hausdorff gap: A is of complexity $\boldsymbol{\Gamma}, B$ is arbitrary.

Back to low projective levels...

Notation:

- ($\boldsymbol{\Gamma}, \boldsymbol{\Gamma}$)-Hausdorff gap: A, B are of complexity $\boldsymbol{\Gamma}$,
- ($\boldsymbol{\Gamma}, \cdot)$-Hausdorff gap: A is of complexity $\boldsymbol{\Gamma}, B$ is arbitrary.

Theorem (Kh)

The following are equivalent:
(1) there is no $\left(\Sigma_{2}^{1}, \cdot\right)$-Hausdorff gap
(2) there is no $\left(\boldsymbol{\Sigma}_{2}^{1}, \boldsymbol{\Sigma}_{2}^{1}\right)$-Hausdorff gap
(3) there is no $\left(\Pi_{1}^{1}, \cdot\right)$-Hausdorff gap
(9) there is no $\left(\Pi_{1}^{1}, \Pi_{1}^{1}\right)$-Hausdorff gap
(0) $\forall r\left(\aleph_{1}^{L[r]}<\aleph_{1}\right)$

Back to low projective levels...

Notation:

- ($\boldsymbol{\Gamma}, \boldsymbol{\Gamma}$)-Hausdorff gap: A, B are of complexity $\boldsymbol{\Gamma}$,
- ($\Gamma, \cdot)$-Hausdorff gap: A is of complexity $\boldsymbol{\Gamma}, B$ is arbitrary.

Theorem (Kh)

The following are equivalent:
(1) there is no $\left(\Sigma_{2}^{1}, \cdot\right)$-Hausdorff gap
(2) there is no $\left(\boldsymbol{\Sigma}_{2}^{1}, \boldsymbol{\Sigma}_{2}^{1}\right)$-Hausdorff gap
(3) there is no $\left(\Pi_{1}^{1}, \cdot\right)$-Hausdorff gap
(9) there is no $\left(\Pi_{1}^{1}, \Pi_{1}^{1}\right)$-Hausdorff gap
(6) $\forall r\left(\aleph_{1}^{L[r]}<\aleph_{1}\right)$

Non-trivial directions: $(4) \Rightarrow(5)$ and $(5) \Rightarrow(1)$.

Proof

(5) $\Rightarrow \mathbf{(1)}: \forall r\left(\aleph_{1}^{L[r]}<\aleph_{1}\right) \Rightarrow \nexists\left(\Sigma_{2}^{1}, \cdot\right)$-Hausdorff gap.

Proof

$\mathbf{(5)} \Rightarrow \mathbf{(1)}: \forall r\left(\aleph_{1}^{L[r]}<\aleph_{1}\right) \Rightarrow \nexists\left(\boldsymbol{\Sigma}_{2}^{1}, \cdot\right)$-Hausdorff gap.

- A and B are C-separated if $C \perp B$ and $\forall a \in A \exists c \in C\left(a \subseteq^{*} c\right)$.

Proof

(5) $\Rightarrow \mathbf{(1)}: \forall r\left(\aleph_{1}^{L[r]}<\aleph_{1}\right) \Rightarrow \nexists\left(\Sigma_{2}^{1}, \cdot\right)$-Hausdorff gap.

- A and B are C-separated if $C \perp B$ and $\forall a \in A \exists c \in C\left(a \subseteq^{*} c\right)$.

Lemma (Kh)

If A is $\Sigma_{2}^{1}(r)$ then either there exists an (A, B)-tree or A and B are C-separated by some $C \subseteq L[r]$.

Proof

(5) $\Rightarrow \mathbf{(1)}: \forall r\left(\aleph_{1}^{L[r]}<\aleph_{1}\right) \Rightarrow \nexists\left(\Sigma_{2}^{1}, \cdot\right)$-Hausdorff gap.

- A and B are C-separated if $C \perp B$ and $\forall a \in A \exists c \in C\left(a \subseteq^{*} c\right)$.

Lemma (Kh)

If A is $\Sigma_{2}^{1}(r)$ then either there exists an (A, B)-tree or A and B are C-separated by some $C \subseteq L[r]$.

Hence: if $\omega^{\omega} \cap L[r]$ is countable then C is countable, so " C-separated" \Rightarrow " σ-separated".

Proof (continued)

(4) \Rightarrow (5) : $\exists r\left(\aleph_{1}^{L[r]}=\aleph_{1}\right) \Rightarrow \exists\left(\Pi_{1}^{1}, \Pi_{1}^{1}\right)$-Hausdorff gap.

Proof (continued)

(4) $\Rightarrow \mathbf{(5)}: \exists r\left(\aleph_{1}^{L[r]}=\aleph_{1}\right) \Rightarrow \exists\left(\Pi_{1}^{1}, \Pi_{1}^{1}\right)$-Hausdorff gap.

For this, we use the original argument of Hausdorff.

Proof (continued)

(4) $\Rightarrow \mathbf{(5)}: \exists r\left(\aleph_{1}^{L[r]}=\aleph_{1}\right) \Rightarrow \exists\left(\Pi_{1}^{1}, \Pi_{1}^{1}\right)$-Hausdorff gap.

For this, we use the original argument of Hausdorff.

- $A=\left\{a_{\gamma} \mid \gamma<\omega_{1}\right\}, B=\left\{b_{\gamma} \mid \gamma<\omega_{1}\right\}$, well-ordered by \subseteq^{*}

Proof (continued)

(4) $\Rightarrow \mathbf{(5)}: \exists r\left(\aleph_{1}^{L[r]}=\aleph_{1}\right) \Rightarrow \exists\left(\Pi_{1}^{1}, \Pi_{1}^{1}\right)$-Hausdorff gap.

For this, we use the original argument of Hausdorff.

- $A=\left\{a_{\gamma} \mid \gamma<\omega_{1}\right\}, B=\left\{b_{\gamma} \mid \gamma<\omega_{1}\right\}$, well-ordered by \subseteq^{*}
- "Hausdorff's condition" (HC)

$$
\forall \alpha<\omega_{1} \forall k \in \omega\left(\left\{\gamma<\alpha \mid a_{\alpha} \cap b_{\gamma} \subseteq k\right\} \text { is finite }\right)
$$

Proof (continued)

(4) \Rightarrow (5) : $\exists r\left(\aleph_{1}^{L[r]}=\aleph_{1}\right) \Rightarrow \exists\left(\Pi_{1}^{1}, \Pi_{1}^{1}\right)$-Hausdorff gap.

For this, we use the original argument of Hausdorff.

- $A=\left\{a_{\gamma} \mid \gamma<\omega_{1}\right\}, B=\left\{b_{\gamma} \mid \gamma<\omega_{1}\right\}$, well-ordered by \subseteq^{*}
- "Hausdorff's condition" (HC)

$$
\forall \alpha<\omega_{1} \forall k \in \omega\left(\left\{\gamma<\alpha \mid a_{\alpha} \cap b_{\gamma} \subseteq k\right\} \text { is finite }\right)
$$

Point: A gap satisfying HC is indestructible, i.e., remains a gap in any larger model $W \supseteq V$ as long as $\aleph_{1}^{W}=\aleph_{1}^{V}$.

Proof (continued)

Lemma (Hausdorff): if initial segment (\{a, $\mid \gamma<\alpha\},\left\{b_{\gamma} \mid \gamma<\alpha\right\}$) satisfies HC, then we can find a_{α}, b_{α} so that ($\left\{a_{\gamma} \mid \gamma \leq \alpha\right\},\left\{b_{\gamma} \mid \gamma \leq \alpha\right\}$) still satisfies HC .

Proof (continued)

Lemma (Hausdorff): if initial segment (\{a, $\mid \gamma<\alpha\},\left\{b_{\gamma} \mid \gamma<\alpha\right\}$) satisfies HC, then we can find a_{α}, b_{α} so that ($\left\{a_{\gamma} \mid \gamma \leq \alpha\right\},\left\{b_{\gamma} \mid \gamma \leq \alpha\right\}$) still satisfies HC.

Do this in any $L[r]$, get Σ_{2}^{1} definitions for A and B (choose $<_{L[r]^{\text {least }}}$ a_{α}, b_{α}).

Proof (continued)

Lemma (Hausdorff): if initial segment (\{a, $\left.\mid \gamma<\alpha\},\left\{b_{\gamma} \mid \gamma<\alpha\right\}\right)$ satisfies HC, then we can find a_{α}, b_{α} so that ($\left\{a_{\gamma} \mid \gamma \leq \alpha\right\},\left\{b_{\gamma} \mid \gamma \leq \alpha\right\}$) still satisfies HC.

Do this in any $L[r]$, get Σ_{2}^{1} definitions for A and B (choose $<_{L[r]^{\text {least }}}$ a_{α}, b_{α}).
Assuming $\aleph_{1}^{L[r]}=\aleph_{1}$, we get a $\left(\Sigma_{2}^{1}(r), \Sigma_{2}^{1}(r)\right)$-Hausdorff gap (in V).

Miller's method

Method due to Arnold Miller for $\boldsymbol{\Pi}_{1}^{1}$ inductive constructions in L :

Miller's method

Method due to Arnold Miller for Π_{1}^{1} inductive constructions in L : Idea:

$$
\text { instead of: } \phi(x) \leftrightarrow \exists M(M \models \phi(x))
$$

Miller's method

Method due to Arnold Miller for Π_{1}^{1} inductive constructions in L : Idea:

$$
\begin{aligned}
\text { instead of: } \phi(x) & \leftrightarrow \exists M(M \models \phi(x)) \\
\text { write: } \phi(x) & \leftrightarrow M_{x} \models \phi(x)
\end{aligned}
$$

Miller's method

Method due to Arnold Miller for $\boldsymbol{\Pi}_{1}^{1}$ inductive constructions in L : Idea:

$$
\begin{aligned}
\text { instead of: } \phi(x) & \leftrightarrow \exists M(M \models \phi(x)) \\
\text { write: } \phi(x) & \leftrightarrow M_{x} \models \phi(x)
\end{aligned}
$$

where $x \mapsto M_{x}$ is a recursive function coding a countable model.

Miller's method

Method due to Arnold Miller for $\boldsymbol{\Pi}_{1}^{1}$ inductive constructions in L : Idea:

$$
\begin{aligned}
& \text { instead of: } \phi(x) \leftrightarrow \exists M(M \models \phi(x)) \\
& \text { write: } \phi(x) \leftrightarrow M_{x} \models \phi(x)
\end{aligned}
$$

where $x \mapsto M_{x}$ is a recursive function coding a countable model.
"The general principle is that if a transfinite construction can be done so that at each stage an arbitrary real can be encoded into the real constructed at that stage then the set being constructed will be Π_{1}^{1}. The reason is basically that then each element of the set can encode the entire construction up to that point at which it itself is constructed." Miller, 1981

Miller's method

Method due to Arnold Miller for $\boldsymbol{\Pi}_{1}^{1}$ inductive constructions in L : Idea:

$$
\begin{aligned}
& \text { instead of: } \phi(x) \leftrightarrow \exists M(M \models \phi(x)) \\
& \text { write: } \phi(x) \leftrightarrow M_{x} \models \phi(x)
\end{aligned}
$$

where $x \mapsto M_{x}$ is a recursive function coding a countable model.
"The general principle is that if a transfinite construction can be done so that at each stage an arbitrary real can be encoded into the real constructed at that stage then the set being constructed will be Π_{1}^{1}. The reason is basically that then each element of the set can encode the entire construction up to that point at which it itself is constructed." Miller, 1981

For more about this, please wait $\pm 10 \mathrm{~min}$!

Coding Lemma

Coding Lemma (Kh)

If an initial segment $\left(\left\{a_{\gamma} \mid \gamma<\alpha\right\},\left\{b_{\gamma} \mid \gamma<\alpha\right\}\right)$ satisfies HC , then we can find a_{α}, b_{α} so that $\left(\left\{a_{\gamma} \mid \gamma \leq \alpha\right\},\left\{b_{\gamma} \mid \gamma \leq \alpha\right\}\right)$ still satisfies HC, and additionally both a_{α} and b_{α} recursively code an arbitrary countable model M.

Coding Lemma

Coding Lemma (Kh)

If an initial segment $\left(\left\{a_{\gamma} \mid \gamma<\alpha\right\},\left\{b_{\gamma} \mid \gamma<\alpha\right\}\right)$ satisfies HC, then we can find a_{α}, b_{α} so that $\left(\left\{a_{\gamma} \mid \gamma \leq \alpha\right\},\left\{b_{\gamma} \mid \gamma \leq \alpha\right\}\right)$ still satisfies HC, and additionally both a_{α} and b_{α} recursively code an arbitrary countable model M.

Do this in $L[r]$ with $\aleph_{1}^{L[r]}=\aleph_{1}$, and obtain a $\left(\Pi_{1}^{1}(r), \Pi_{1}^{1}(r)\right)$-Hausdorff gap (in V).

Questions

Questions:

(1) Can we replace $A D_{\mathbb{R}}$ by $A D$?

Questions

Questions:

(1) Can we replace $A D_{\mathbb{R}}$ by $A D$?
(2) Can we get rid of Miller's method (purely methodological interest).

Questions

Questions:
(1) Can we replace $A D_{\mathbb{R}}$ by $A D$?
(2) Can we get rid of Miller's method (purely methodological interest).
(3) Higher projective levels (e.g. $\boldsymbol{\Sigma}_{n+1}^{1}$ vs. $\boldsymbol{\Pi}_{n}^{1}$)?

Dziękuję za uwagę!

Yurii Khomskii
yurii@deds.nl

嗇 Felix Hausdorff, Summen von \aleph_{1} Mengen, Fundamenta Mathematicae 26 (1936), pp. 241-255.

嗇 Arnold Miller, Infinite combinatorics and definability, Annals of Pure and Applied Logic 41 (1989), pp. 179-203.
Rtevo Todorčević, Analytic gaps, Fundamenta Mathematicae 150, No. 1 (1996), pp. 55-66.

