Universality properties of ℓ_{∞}/c_0

Mikołaj Krupski (Polish Academy of Sciences)

joint work with Witold Marciszewski (University of Warsaw)

TRENDS IN SET THEORY Warsaw, July 2012

Mikołaj Krupski (Polish Academy of Sciences) Universality properties of ℓ_{∞}/c_0

.

K denotes a compact Hausdorff space, C(K) the Banach space of continuous real-valued functions on K with the supremum norm.

K denotes a compact Hausdorff space, C(K) the Banach space of continuous real-valued functions on *K* with the supremum norm. ℓ_{∞}/c_0 consists of elements of the form $[x] = \{y \in \ell_{\infty} : (x - y) \in c_0\}$, where $x \in \ell_{\infty}$.

K denotes a compact Hausdorff space, C(K) the Banach space of continuous real-valued functions on K with the supremum norm. ℓ_{∞}/c_0 consists of elements of the form $[x] = \{y \in \ell_{\infty} : (x - y) \in c_0\}$, where $x \in \ell_{\infty}$. $\ell_{\infty}/c_0 \equiv C(\beta \omega \setminus \omega)$.

K denotes a compact Hausdorff space, C(K) the Banach space of continuous real-valued functions on K with the supremum norm. ℓ_{∞}/c_0 consists of elements of the form $[x] = \{y \in \ell_{\infty} : (x - y) \in c_0\}$, where $x \in \ell_{\infty}$. $\ell_{\infty}/c_0 \equiv C(\beta \omega \setminus \omega)$.

Uniform Eberlein compacta and Corson compacta

K denotes a compact Hausdorff space, *C*(*K*) the Banach space of continuous real-valued functions on *K* with the supremum norm. ℓ_{∞}/c_0 consists of elements of the form $[x] = \{y \in \ell_{\infty} : (x - y) \in c_0\}$, where $x \in \ell_{\infty}$. $\ell_{\infty}/c_0 \equiv C(\beta \omega \setminus \omega)$.

Uniform Eberlein compacta and Corson compacta

A compact space K is uniform Eberlein if

$$\mathcal{K} \hookrightarrow \mathcal{B}(\Gamma) = \{x \in [-1,1]^{\Gamma} : \sum_{\gamma \in \Gamma} |x_{\gamma}| \leqslant 1\}$$

for some index set Γ .

K denotes a compact Hausdorff space, *C*(*K*) the Banach space of continuous real-valued functions on *K* with the supremum norm. ℓ_{∞}/c_0 consists of elements of the form $[x] = \{y \in \ell_{\infty} : (x - y) \in c_0\}$, where $x \in \ell_{\infty}$. $\ell_{\infty}/c_0 \equiv C(\beta \omega \setminus \omega)$.

Uniform Eberlein compacta and Corson compacta

A compact space K is uniform Eberlein if

$$\mathcal{K} \hookrightarrow \mathcal{B}(\Gamma) = \{x \in [-1,1]^{\Gamma} : \sum_{\gamma \in \Gamma} |x_{\gamma}| \leqslant 1\}$$

for some index set Γ . A compact space *K* is *Corson* if

$$\mathcal{K} \hookrightarrow \{x \in [-1,1]^{\Gamma} : |\{\gamma \in \Gamma : x_{\gamma} \neq 0\}| \leqslant \aleph_0\}$$

for some index set Γ .

Let \mathcal{K} be some class of compact spaces of weight $\leq \mathfrak{c}$. Is it true that $C(\mathcal{K})$ embeds isomorphically (isometrically) into ℓ_{∞}/c_0 for any $\mathcal{K} \in \mathcal{K}$?

Let \mathcal{K} be some class of compact spaces of weight $\leq \mathfrak{c}$. Is it true that $C(\mathcal{K})$ embeds isomorphically (isometrically) into ℓ_{∞}/c_0 for any $\mathcal{K} \in \mathcal{K}$?

Theorem (Parovičenko)

For any compact space K of weight $\leq \aleph_1$, C(K) embeds isometrically into ℓ_{∞}/c_0 .

Let \mathcal{K} be some class of compact spaces of weight $\leq \mathfrak{c}$. Is it true that $C(\mathcal{K})$ embeds isomorphically (isometrically) into ℓ_{∞}/c_0 for any $\mathcal{K} \in \mathcal{K}$?

Theorem (Parovičenko)

For any compact space K of weight $\leq \aleph_1$, C(K) embeds isometrically into ℓ_{∞}/c_0 . In particular, under CH General Problem trivializes.

Let \mathcal{K} be some class of compact spaces of weight $\leq \mathfrak{c}$. Is it true that $C(\mathcal{K})$ embeds isomorphically (isometrically) into ℓ_{∞}/c_0 for any $\mathcal{K} \in \mathcal{K}$?

Theorem (Parovičenko)

For any compact space K of weight $\leq \aleph_1$, C(K) embeds isometrically into ℓ_{∞}/c_0 . In particular, under CH General Problem trivializes.

Theorem (Brech-Koszmider)

Consistently, there is a uniform Eberlein compactum K such that C(K) does not embed isomorphically into ℓ_{∞}/c_0 .

- 4 同 2 4 回 2 4 回 2 4

A cardinal κ is *Kunen* if each subset of $\kappa \times \kappa$ belongs to the σ -field generated by sets of the form $A \times B$, for $A, B \subseteq \kappa$.

A cardinal κ is *Kunen* if each subset of $\kappa \times \kappa$ belongs to the σ -field generated by sets of the form $A \times B$, for $A, B \subseteq \kappa$.

(i) If κ is a Kunen cardinal then $\kappa \leq \mathfrak{c}$,

A cardinal κ is *Kunen* if each subset of $\kappa \times \kappa$ belongs to the σ -field generated by sets of the form $A \times B$, for $A, B \subseteq \kappa$.

(i) If κ is a Kunen cardinal then κ ≤ c,
(ii) ℵ₁ is a Kunen cardinal,

A cardinal κ is *Kunen* if each subset of $\kappa \times \kappa$ belongs to the σ -field generated by sets of the form $A \times B$, for $A, B \subseteq \kappa$.

- (i) If κ is a Kunen cardinal then $\kappa \leqslant \mathfrak{c}$,
- (ii) \aleph_1 is a Kunen cardinal,
- (iii) (Kunen) consistently $\mathfrak c$ is not a Kunen cardinal

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (Todorčević 2011)

If \mathfrak{c} is not a Kunen cardinal, then there is a Corson compactum K of weight $\leq \mathfrak{c}$ such that C(K) does not embed isometrically into ℓ_{∞}/c_0 .

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (Todorčević 2011)

If \mathfrak{c} is not a Kunen cardinal, then there is a Corson compactum K of weight $\leq \mathfrak{c}$ such that C(K) does not embed isometrically into ℓ_{∞}/c_0 .

Theorem

If \mathfrak{c} is not a Kunen cardinal, then there is a uniform Eberlein compactum K of weight $\leq \mathfrak{c}$ such that C(K) does not embed isometrically into ℓ_{∞}/c_0 .

・ 同 ト ・ ヨ ト ・ ヨ ト …

Sketch of the proof.

・ロン ・部 と ・ ヨン ・ ヨン …

æ

Sketch of the proof. Since c is not Kunen, there is $E \subseteq \mathbb{R}^2$, $E \notin \mathcal{P}(\mathbb{R}) \otimes \mathcal{P}(\mathbb{R})$.

▲御▶ ▲ 臣▶ ▲ 臣▶ …

Sketch of the proof. Since c is not Kunen, there is $E \subseteq \mathbb{R}^2$, $E \notin \mathcal{P}(\mathbb{R}) \otimes \mathcal{P}(\mathbb{R})$. WLOG, we may assume that $\forall a, b \in E \ a < b$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Sketch of the proof. Since c is not Kunen, there is $E \subseteq \mathbb{R}^2$, $E \notin \mathcal{P}(\mathbb{R}) \otimes \mathcal{P}(\mathbb{R})$. WLOG, we may assume that $\forall a, b \in E \ a < b$. Consider the space

$$\mathcal{K}_2(E) = \{\chi_A \in \{0,1\}^{\mathbb{R}} : A \in [\mathbb{R}]^{\leq 2}, \forall a, b \in A \ a < b \Rightarrow (a,b) \in E\}.$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Sketch of the proof. Since c is not Kunen, there is $E \subseteq \mathbb{R}^2$, $E \notin \mathcal{P}(\mathbb{R}) \otimes \mathcal{P}(\mathbb{R})$. WLOG, we may assume that $\forall a, b \in E \ a < b$. Consider the space

$$\mathcal{K}_2(\mathcal{E}) = \{ \chi_{\mathcal{A}} \in \{0,1\}^{\mathbb{R}} : \mathcal{A} \in [\mathbb{R}]^{\leq 2}, \forall \mathbf{a}, \mathbf{b} \in \mathcal{A} \ \mathbf{a} < \mathbf{b} \Rightarrow (\mathbf{a}, \mathbf{b}) \in \mathcal{E} \}.$$

It is not difficult to see that $K_2(E)$ is a uniform Eberlein compactum.

Sketch of the proof. Since c is not Kunen, there is $E \subseteq \mathbb{R}^2$, $E \notin \mathcal{P}(\mathbb{R}) \otimes \mathcal{P}(\mathbb{R})$. WLOG, we may assume that $\forall a, b \in E \ a < b$. Consider the space

$$\mathcal{K}_2(\mathcal{E}) = \{ \chi_{\mathcal{A}} \in \{0,1\}^{\mathbb{R}} : \mathcal{A} \in [\mathbb{R}]^{\leq 2}, \forall \mathbf{a}, \mathbf{b} \in \mathcal{A} \ \mathbf{a} < \mathbf{b} \Rightarrow (\mathbf{a}, \mathbf{b}) \in \mathcal{E} \}.$$

It is not difficult to see that $K_2(E)$ is a uniform Eberlein compactum.

Now (by Todorčević 2011) we show that $C(K_2(E))$ does not embed isometrically into ℓ_{∞}/c_0 .

If c is not a Kunen cardinal then there exists a uniform Eberlein compact space K such that the space C(K) embeds isomorphically, but fails to embed isometrically into ℓ_{∞}/c_0 .

く 同 と く ヨ と く ヨ と …

If c is not a Kunen cardinal then there exists a uniform Eberlein compact space K such that the space C(K) embeds isomorphically, but fails to embed isometrically into ℓ_{∞}/c_0 .

Proof

If c is not a Kunen cardinal then there exists a uniform Eberlein compact space K such that the space C(K) embeds isomorphically, but fails to embed isometrically into ℓ_{∞}/c_0 .

Proof

The space $K_2(E)$ considered in the proof of the previous theorem is a uniform Eberlein compactum such that $C(K_2(E))$ does not embed isometrically into ℓ_{∞}/c_0 .

伺 と く ヨ と く ヨ と

If c is not a Kunen cardinal then there exists a uniform Eberlein compact space K such that the space C(K) embeds isomorphically, but fails to embed isometrically into ℓ_{∞}/c_0 .

Proof

The space $K_2(E)$ considered in the proof of the previous theorem is a uniform Eberlein compactum such that $C(K_2(E))$ does not embed isometrically into ℓ_{∞}/c_0 . However, it embeds isomorphically into ℓ_{∞}/c_0 , since it is isomorphic to $c_0(\mathfrak{c})$ (Marciszewski 2003).

Is it true that any uniform Eberlein compactum of weight $\leq \kappa$ is a continuous image of $A(\kappa)^{\omega}$, where $A(\kappa)$ denotes the one point compactification of a discrete space of size κ ?

Is it true that any uniform Eberlein compactum of weight $\leq \kappa$ is a continuous image of $A(\kappa)^{\omega}$, where $A(\kappa)$ denotes the one point compactification of a discrete space of size κ ?

Answer (Bell 1996)

There is a uniform Eberlein compactum of weight ω_1 which is not a continuous image of $A(\omega_1)^\omega$

Is it true that any uniform Eberlein compactum of weight $\leq \kappa$ is a continuous image of $A(\kappa)^{\omega}$, where $A(\kappa)$ denotes the one point compactification of a discrete space of size κ ?

Answer (Bell 1996)

There is a uniform Eberlein compactum of weight ω_1 which is not a continuous image of $A(\omega_1)^\omega$

We can also distinguish uniform Eberlein compacta of weight $\leq \mathfrak{c}$ from the class of continuous images of $A(\mathfrak{c})^{\omega}$ in terms of isometric embeddings function spaces into ℓ_{∞}/c_0 .

Is it true that any uniform Eberlein compactum of weight $\leq \kappa$ is a continuous image of $A(\kappa)^{\omega}$, where $A(\kappa)$ denotes the one point compactification of a discrete space of size κ ?

Answer (Bell 1996)

There is a uniform Eberlein compactum of weight ω_1 which is not a continuous image of $A(\omega_1)^{\omega}$

We can also distinguish uniform Eberlein compacta of weight $\leq \mathfrak{c}$ from the class of continuous images of $A(\mathfrak{c})^{\omega}$ in terms of isometric embeddings function spaces into ℓ_{∞}/c_0 . Indeed, $A(\mathfrak{c})^{\omega}$ is a continuous image of $\beta \omega \setminus \omega$ and since $\ell_{\infty}/c_0 \equiv C(\beta \omega \setminus \omega)$, any continuous image of $A(\mathfrak{c})^{\omega}$ embeds isometrically into ℓ_{∞}/c_0 .

- 4 同 2 4 日 2 4 日 2

Is it true that any uniform Eberlein compactum of weight $\leq \kappa$ is a continuous image of $A(\kappa)^{\omega}$, where $A(\kappa)$ denotes the one point compactification of a discrete space of size κ ?

Answer (Bell 1996)

There is a uniform Eberlein compactum of weight ω_1 which is not a continuous image of $A(\omega_1)^{\omega}$

We can also distinguish uniform Eberlein compacta of weight $\leq \mathfrak{c}$ from the class of continuous images of $A(\mathfrak{c})^{\omega}$ in terms of isometric embeddings function spaces into ℓ_{∞}/c_0 . Indeed, $A(\mathfrak{c})^{\omega}$ is a continuous image of $\beta \omega \setminus \omega$ and since $\ell_{\infty}/c_0 \equiv C(\beta \omega \setminus \omega)$, any continuous image of $A(\mathfrak{c})^{\omega}$ embeds isometrically into ℓ_{∞}/c_0 . On the other hand, if \mathfrak{c} is not a Kunen cardinal, then there is a uniform Eberlein compactum K such that C(K) does not embed isometrically into ℓ_{∞}/c_0 .

For a binary relation $E \subseteq \mathbb{R}^2$ and integer $n \ge 2$, denote by $E^{[n]}$ the following set

$$E^{[n]} = \{ (x_1, \dots, x_n) \in \mathbb{R}^n : \forall i < j \ (x_i, x_j) \in E \text{ and } x_i \neq x_j \}$$

For a binary relation $E \subseteq \mathbb{R}^2$ and integer $n \ge 2$, denote by $E^{[n]}$ the following set

$$E^{[n]} = \{(x_1, \dots, x_n) \in \mathbb{R}^n : \forall i < j \ (x_i, x_j) \in E \text{ and } x_i \neq x_j\}$$

Theorem (Todorčević 2011)

Suppose that for every Corson compact space K of weight $\leq \mathfrak{c}$, the space C(K) embeds isomorphically into ℓ_{∞}/c_0 . Then for every binary relation $E \subseteq \mathbb{R}^2$ and for all but finitely many positive integers n, the set $E^{[n]}$ can be separated from $(E^c)^{[n]}$ by a member of $\mathcal{P}^n(\mathbb{R})$

For a binary relation $E \subseteq \mathbb{R}^2$ and integer $n \ge 2$, denote by $E^{[n]}$ the following set

$$E^{[n]} = \{ (x_1, \dots, x_n) \in \mathbb{R}^n : \forall i < j \ (x_i, x_j) \in E \text{ and } x_i \neq x_j \}$$

Theorem (Todorčević 2011)

Suppose that for every Corson compact space K of weight $\leq c$, the space C(K) embeds isomorphically into ℓ_{∞}/c_0 . Then for every binary relation $E \subseteq \mathbb{R}^2$ and for all but finitely many positive integers n, the set $E^{[n]}$ can be separated from $(E^c)^{[n]}$ by a member of $\mathcal{P}^n(\mathbb{R})$

Theorem

Suppose that for every uniform Eberlein compact space K of weight $\leq c$, the space C(K) embeds isomorphically into ℓ_{∞}/c_0 . Then for every binary relation $E \subseteq \mathbb{R}^2$ and for all but finitely many positive integers n, the set $E^{[n]}$ can be separated from $(E^c)^{[n]}$ by a member of $\mathcal{P}^n(\mathbb{R})$