Recent developments in the Fraïssé-Jónsson theory

Wiesław Kubiś

Czech Academy of Sciences (CZECH REPUBLIC) and Jan Kochanowski University, Kielce (POLAND) http://www.ujk.edu.pl/~wkubis/

> Trends in Set Theory Warszawa, 9 June 2012

W.Kubiś (http://www.pu.kielce.pl/~wkubis/)

Fraïssé-Jónsson theory

9 June 2012 1 / 38

Outline

The setup

- Fraïssé sequences
- Existence
- Universality
- Uniqueness
- A counterexample for uniqueness
- On the Cantor set
- 3 Retracts of Fraïssé limits
- Metric categories
- 5 Uncountable Fraïssé sequences
 - The singular case

- Fraïssé 1954; Jónsson 1960
- Droste & Göbel 1989: Category-theoretic approach
- Irwin & Solecki 2006: Reversed Fraïssé limits

- Fraïssé 1954; Jónsson 1960
- Droste & Göbel 1989: Category-theoretic approach
- Irwin & Solecki 2006: Reversed Fraïssé limits

- Fraïssé 1954; Jónsson 1960
- Droste & Göbel 1989: Category-theoretic approach

Irwin & Solecki 2006: Reversed Fraïssé limits

- Fraïssé 1954; Jónsson 1960
- Droste & Göbel 1989: Category-theoretic approach
- Irwin & Solecki 2006: Reversed Fraïssé limits

General assumptions

We fix a category \mathfrak{K} of "small" objects, satisfying the following conditions:

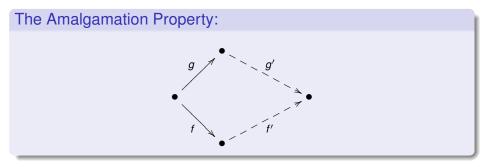
- A has the Amalgamation Property.
- ② \Re has a weakly initial object 0, that is, $\Re(0, x) \neq \emptyset$ for every \Re -object x.

The Amalgamation Property:

General assumptions

We fix a category \mathfrak{K} of "small" objects, satisfying the following conditions:

- A has the Amalgamation Property.
- ② \Re has a weakly initial object 0, that is, $\Re(0, x) \neq \emptyset$ for every \Re -object x.



Fraïssé sequences

A sequence

$U_0 \longrightarrow U_1 \longrightarrow U_2 \longrightarrow \cdots$

is Fraïssé

if for every *n*, for every \Re -arrow $f: u_n \to y$ there exist $m \ge n$ and a \Re -arrow $g: y \to u_m$ such that $g \circ f = u_n^m$.

Fraïssé sequences

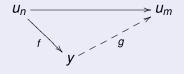
Crucial definition:

A sequence

$$U_0 \longrightarrow U_1 \longrightarrow U_2 \longrightarrow \cdots$$

is Fraïssé

if for every *n*, for every \Re -arrow $f: u_n \to y$ there exist $m \ge n$ and a \Re -arrow $g: y \to u_m$ such that $g \circ f = u_n^m$.



W.Kubiś ((http://www	.pu.kielce.i	ol/∼w	kubis/\

Existence

Theorem

Let $\kappa \ge \aleph_0$ be a regular cardinal. Assume \Re is κ -bounded and dominated by $\leqslant \kappa$ arrows. Then \Re has a Fraïssé sequence of length κ .

Definition

A category \Re is κ -bounded if every sequence of length $< \kappa$ has an upper bound in \Re .

An upper bound for a sequence $\vec{x} : \delta \to \Re$ is a \Re -object y and a collection of \Re -arrows $f_{\xi} : x_{\xi} \to y$ such that

$$f_{\xi} = f_{\eta} \circ x_{\xi}^{\eta}$$

whenever $\xi < \eta < \varrho$.

Existence

Theorem

Let $\kappa \ge \aleph_0$ be a regular cardinal. Assume \Re is κ -bounded and dominated by $\leqslant \kappa$ arrows. Then \Re has a Fraïssé sequence of length κ .

Definition

A category \mathfrak{K} is κ -bounded if every sequence of length $< \kappa$ has an upper bound in \mathfrak{K} .

An upper bound for a sequence $\vec{x} : \delta \to \Re$ is a \Re -object y and a collection of \Re -arrows $f_{\xi} : x_{\xi} \to y$ such that

$$f_{\xi} = f_{\eta} \circ x_{\xi}^{\eta}$$

whenever $\xi < \eta < \varrho$.

Existence

Theorem

Let $\kappa \ge \aleph_0$ be a regular cardinal. Assume \Re is κ -bounded and dominated by $\leqslant \kappa$ arrows. Then \Re has a Fraïssé sequence of length κ .

Definition

A category \Re is κ -bounded if every sequence of length $< \kappa$ has an upper bound in \Re .

An upper bound for a sequence $\vec{x} : \delta \to \mathfrak{K}$ is a \mathfrak{K} -object y and a collection of \mathfrak{K} -arrows $f_{\xi} : x_{\xi} \to y$ such that

$$f_{\xi} = f_{\eta} \circ \mathbf{x}^{\eta}_{\xi}$$

whenever $\xi < \eta < \varrho$.

< ロ > < 同 > < 回 > < 回 >

Universality

Theorem

Let \vec{u} be a Fraïssé sequence in \Re . Let \vec{x} be a continuous sequence of length \leq length(\vec{u}). Then there exists an arrow

$$\vec{f}: \vec{x} \to \vec{u}$$

in the category of *R*-sequences.

Definition

A sequence \vec{x} is continuous if for every limit ordinal $\delta < \text{length}(\vec{x})$, it holds that $x_{\delta} = \lim(x \upharpoonright \delta)$.

A (1) > A (2) > A

Universality

Theorem

Let \vec{u} be a Fraïssé sequence in \Re . Let \vec{x} be a continuous sequence of length \leq length(\vec{u}). Then there exists an arrow

$$\vec{f}: \vec{x} \to \vec{u}$$

in the category of *R*-sequences.

Definition

A sequence \vec{x} is continuous if for every limit ordinal $\delta < \text{length}(\vec{x})$, it holds that $x_{\delta} = \lim(x \upharpoonright \delta)$.

Theorem (Uniqueness)

Let \vec{u} and \vec{v} be continuous Fraïssé sequences of the same regular length. Then

 $\vec{u} \approx \vec{v}$

in the category of sequences.

Theorem (Homogeneity)

Let \vec{u} be a continuous Fraïssé sequence and let $i: a \to \vec{u}, j: b \to \vec{u}$ be such that a, b are \Re -objects. Then for every isomorphism $h: a \to b$ there exists an automorphism $H: \vec{u} \to \vec{u}$ for which the diagram

is commutative.

W.Kubiś (http://www.pu.kielce.pl/~wkubis/)

Theorem (Uniqueness)

Let \vec{u} and \vec{v} be continuous Fraïssé sequences of the same regular length. Then

 $\vec{u} \approx \vec{v}$

in the category of sequences.

Theorem (Homogeneity)

Let \vec{u} be a continuous Fraïssé sequence and let $i: a \to \vec{u}, j: b \to \vec{u}$ be such that a, b are \Re -objects. Then for every isomorphism $h: a \to b$ there exists an automorphism $H: \vec{u} \to \vec{u}$ for which the diagram

is commutative.

W.Kubiś (http://www.pu.kielce.pl/~wkubis/)

A counterexample

Theorem

There exists a category of countable binary trees with uncountably many pairwise incomparable Fraïssé sequences of length ω_1 .

Objects: Countable complete binary trees

Arrows: Embeddings onto initial segments

< 6 k

A counterexample

Theorem

There exists a category of countable binary trees with uncountably many pairwise incomparable Fraïssé sequences of length ω_1 .

- Objects: Countable complete binary trees
- Arrows: Embeddings onto initial segments

Embedding-Projection Pairs

Definition (cf. Droste & Göbel 1989)

Fix a category \Re . The category $\ddagger \Re$ of embedding-projection pairs is defined as follows:

• The objects of ‡R are the objects of R.

• An arrow from *a* to *b* is a pair $\langle e, r \rangle$, where $e: a \rightarrow b, r: b \rightarrow a$ are \mathfrak{K} -arrows satisfying

 $r \circ e = id_a$.

A (1) > A (2) > A

Embedding-Projection Pairs

Definition (cf. Droste & Göbel 1989)

Fix a category \Re . The category $\ddagger \Re$ of embedding-projection pairs is defined as follows:

- The objects of ‡R are the objects of R.
- An arrow from *a* to *b* is a pair $\langle e, r \rangle$, where $e: a \rightarrow b, r: b \rightarrow a$ are \mathfrak{K} -arrows satisfying

$$r \circ e = id_a$$
.

The Cantor Set

Theorem

There exists a continuous function $u: 2^{\omega} \rightarrow 2^{\omega}$ with the following property:

Given a continuous map f: K → L between 0-dimensional compact metric spaces, there exist embeddings i: K → 2^ω, j: L → 2^ω and retractions r: 2^ω → K, s: 2^ω → L such that the diagrams

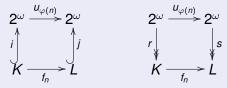
commute.

イロト イ団ト イヨト イヨト

Theorem

There exists a sequence of continuous maps $\{u_n : 2^{\omega} \to 2^{\omega}\}_{n \in \omega}$ with the following property:

Given a sequence of continuous maps {*f_n*: *K* → *L*}_{*n∈ω*} between 0-dimensional compact metric spaces, there exist embeddings i: *K* → 2^ω, *j*: *L* → 2^ω, retractions *r*: 2^ω → *K*, *s*: 2^ω → *L*, and a strictly increasing function φ: ω → ω, such that for each *n* ∈ ω the diagrams



are commutative.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Assume CH. There exists a Banach space V of density \aleph_1 and with the following properties:

1 V contains isometric copies of all Banach spaces of density $\leq \aleph_1$

Every linear isometry between separable subspaces of V extends to an auto-isometry of V.

Theorem (Brech & Koszmider 2011)

It is consistent with ZFC that there is no isomorphically universal Banach space for density *ε*.

Theorem

Assume CH. There exists a Banach space V of density \aleph_1 and with the following properties:

- V contains isometric copies of all Banach spaces of density $\leq \aleph_1$.
- Every linear isometry between separable subspaces of V extends to an auto-isometry of V.

Theorem (Brech & Koszmider 2011)

It is consistent with ZFC that there is no isomorphically universal Banach space for density *ε*.

< 6 b

(1)

Theorem

Assume CH. There exists a Banach space V of density \aleph_1 and with the following properties:

- V contains isometric copies of all Banach spaces of density $\leq \aleph_1$.
- Every linear isometry between separable subspaces of V extends to an auto-isometry of V.

Theorem (Brech & Koszmider 2011)

It is consistent with ZFC that there is no isomorphically universal Banach space for density *ε*.

Theorem

Assume CH. There exists a Banach space V of density \aleph_1 and with the following properties:

- V contains isometric copies of all Banach spaces of density $\leq \aleph_1$.
- Every linear isometry between separable subspaces of V extends to an auto-isometry of V.

Theorem (Brech & Koszmider 2011)

It is consistent with ZFC that there is no isomorphically universal Banach space for density c.

A B F A B F

A D M A A A M M

Theorem

If CH holds then there exists a complementably universal Banach space for Schauder bases of length ω_1 .

Theorem (Pełczyński 1969)

The class of separable Banach spaces with Schauder bases has a complementably universal object.

A (1) > A (2) > A

Theorem

If CH holds then there exists a complementably universal Banach space for Schauder bases of length ω_1 .

Theorem (Pełczyński 1969)

The class of separable Banach spaces with Schauder bases has a complementably universal object.

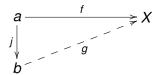
Retracts of Fraïssé limits

æ

Injectivity

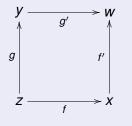
Definition

Let $\mathfrak{K} \subseteq \mathfrak{L}$ be two categories. An \mathfrak{L} -object X is $\langle \mathfrak{K}, \mathfrak{L} \rangle$ -injective if for every \mathfrak{K} -arrow $j : a \to b$, for every \mathfrak{L} -arrow $f : a \to X$ there is an \mathfrak{L} -arrow $g : b \to X$ such that $g \upharpoonright a = f$.



- A - E - N

A pushout square



W.Kubiś (http://www.pu.kielce.pl/~wkubis/)

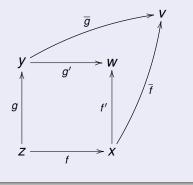
Fraïssé-Jónsson theory

9 June 2012 17 / 38

æ

イロト イヨト イヨト イヨト

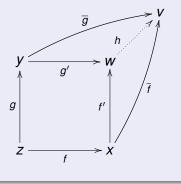
A pushout square



æ

イロト イヨト イヨト イヨト

A pushout square



æ

イロト イヨト イヨト イヨト

Definition

A pair of categories $\mathfrak{K} \subseteq \mathfrak{L}$ is nice if for every \mathfrak{K} -arrow $i: c \to a$, for every \mathfrak{L} -arrow $f: c \to b$, there exist an \mathfrak{L} -arrow $g: a \to w$ and a \mathfrak{K} -arrow $j: b \to w$ for which the diagram

is a pushout square in \mathfrak{L} .

Theorem

Let $\Re \subseteq \mathfrak{L}$ be a nice pair of categories and let \vec{u} be a Fraïssé sequence in \Re . For a \Re -sequence \vec{x} , the following properties are equivalent:

- x is a retract of u.
- 2 \vec{x} is $\langle \mathfrak{K}, \mathfrak{L} \rangle$ -injective.

Special cases: Dolinka 2011

Corollary

Let X be a Polish metric space. Then X is a non-expansive retract of the Urysohn space \mathbb{U} if and only if X is finitely hyperconvex.

• • • • • • • • • • • •

Let $\Re \subseteq \mathfrak{L}$ be a nice pair of categories and let \vec{u} be a Fraïssé sequence in \Re . For a \Re -sequence \vec{x} , the following properties are equivalent:

- x is a retract of u.
- 2 \vec{x} is $\langle \mathfrak{K}, \mathfrak{L} \rangle$ -injective.

Special cases: Dolinka 2011

Corollary

Let X be a Polish metric space. Then X is a non-expansive retract of the Urysohn space \mathbb{U} if and only if X is finitely hyperconvex.

Let $\Re \subseteq \mathfrak{L}$ be a nice pair of categories and let \vec{u} be a Fraïssé sequence in \Re . For a \Re -sequence \vec{x} , the following properties are equivalent:

- x is a retract of u.
- 2 \vec{x} is $\langle \mathfrak{K}, \mathfrak{L} \rangle$ -injective.

Special cases: Dolinka 2011

Corollary

Let X be a Polish metric space. Then X is a non-expansive retract of the Urysohn space \mathbb{U} if and only if X is finitely hyperconvex.

A (10) A (10) A (10)

A structure X is homomorphism homogeneous with respect to its "small" substructures if every homomorphism between "small" substructures of X extends to an endomorphism of X.

Theorem

Let \mathscr{F} be a nice Fraïssé class with $U = \text{Flim}(\mathscr{F})$. Given a countable structure in $\overline{\mathscr{F}}$, the following properties are equivalent:

- X is homomorphism homogeneous with respect to F.
- There exists a nice subcategory \$\mathcal{F}_0\$ of \$\mathcal{F}\$ such that X is a retract of Flim(\$\mathcal{F}_0\$).

< ロ > < 同 > < 回 > < 回 >

A structure X is homomorphism homogeneous with respect to its "small" substructures if every homomorphism between "small" substructures of X extends to an endomorphism of X.

Theorem

Let \mathscr{F} be a nice Fraïssé class with $U = \text{Flim}(\mathscr{F})$. Given a countable structure in $\overline{\mathscr{F}}$, the following properties are equivalent:

- \bigcirc X is homomorphism homogeneous with respect to ${\mathscr F}$.
- There exists a nice subcategory \$\mathcal{F}_0\$ of \$\mathcal{F}\$ such that X is a retract of Flim(\$\mathcal{F}_0\$).

・ロト ・四ト ・ヨト ・ヨト

A structure X is homomorphism homogeneous with respect to its "small" substructures if every homomorphism between "small" substructures of X extends to an endomorphism of X.

Theorem

Let \mathscr{F} be a nice Fraïssé class with $U = \text{Flim}(\mathscr{F})$. Given a countable structure in $\overline{\mathscr{F}}$, the following properties are equivalent:

- X is homomorphism homogeneous with respect to F.
- 2 There exists a nice subcategory \mathcal{F}_0 of \mathcal{F} such that X is a retract of Flim(\mathcal{F}_0).

A structure X is homomorphism homogeneous with respect to its "small" substructures if every homomorphism between "small" substructures of X extends to an endomorphism of X.

Theorem

Let \mathscr{F} be a nice Fraïssé class with $U = \text{Flim}(\mathscr{F})$. Given a countable structure in $\overline{\mathscr{F}}$, the following properties are equivalent:

- X is homomorphism homogeneous with respect to F.
- There exists a nice subcategory \$\mathcal{F}_0\$ of \$\mathcal{F}\$ such that X is a retract of Flim(\$\mathcal{F}_0\$).

Metric categories

・ロト ・日下 ・ ヨト ・

Motivation:

Theorem (Gurarii 1966)

There exists a separable Banach space \mathbb{G} satisfying the following condition.

Given finite dimensional spaces E ⊆ F, given an isometric embedding f: E → G, for every ε > 0 there exists an extension g: F → G of f such that ||g|| · ||g⁻¹|| < 1 + ε.</p>

Theorem (Lusky 1976)

The Gurariĭ space is unique up to a linear isometry.

イロト イ団ト イヨト イヨト

Motivation:

Theorem (Gurarii 1966)

There exists a separable Banach space \mathbb{G} satisfying the following condition.

Given finite dimensional spaces E ⊆ F, given an isometric embedding f: E → G, for every ε > 0 there exists an extension g: F → G of f such that ||g|| · ||g⁻¹|| < 1 + ε.</p>

Theorem (Lusky 1976)

The Gurariĭ space is unique up to a linear isometry.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma (Solecki & K. 2011)

Let $f: X \to Y$ be an ε -isometric embedding of finite dimensional Banach spaces. Then there exist a finite dimensional Banach space Z and isometric embeddings $i: X \to Z, j: Y \to Z$ such that

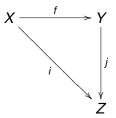
$$\|\mathbf{j}\circ\mathbf{f}-\mathbf{i}\|<\varepsilon.$$

A (10) A (10)

Lemma (Solecki & K. 2011)

Let $f: X \to Y$ be an ε -isometric embedding of finite dimensional Banach spaces. Then there exist a finite dimensional Banach space Z and isometric embeddings $i: X \to Z, j: Y \to Z$ such that

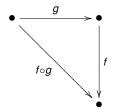
$$\|\mathbf{j}\circ\mathbf{f}-\mathbf{i}\|<\varepsilon.$$



Metric categories

A *metric* on a category \mathfrak{K} is a function $\mu \colon \mathfrak{K} \to [0, +\infty]$ satisfying the following conditions:

 $\begin{array}{ll} (\mathsf{M}_1) \ \mu(\mathsf{id}_x) = 0 \text{ for every object } x. \\ (\mathsf{M}_2) \ \mu(f \circ g) \leqslant \mu(f) + \mu(g). \\ (\mathsf{M}_3) \ \mu(g) \leqslant \mu(f \circ g) + \mu(f). \end{array}$



We further assume that \Re is enriched over metric spaces.

That is, for each \Re -objects a, b a metric ϱ is defined on $\Re(a, b)$ so that

$$(\mathsf{M}_4) \ \varrho(f \circ h, g \circ h) \leqslant \varrho(f, g)$$

 $(\mathsf{M}_5) \ \varrho(\boldsymbol{k} \circ \boldsymbol{f}, \boldsymbol{k} \circ \boldsymbol{g}) \leqslant \varrho(\boldsymbol{f}, \boldsymbol{g})$

Moreover, the compatibility of μ and ϱ says:

(M₆) μ is uniformly continuous with respect to ρ .

Prototype example

Let \mathfrak{K} be the category of metric spaces with non-expansive maps and define

 $u(f) = \log \operatorname{Lip}(f^{-1}).$

A (10) A (10)

We further assume that \Re is enriched over metric spaces.

That is, for each \Re -objects a, b a metric ϱ is defined on $\Re(a, b)$ so that

$$(\mathsf{M}_4) \ \varrho(f \circ h, g \circ h) \leqslant \varrho(f, g)$$

$$(\mathsf{M}_5) \ \varrho(k \circ f, k \circ g) \leqslant \varrho(f, g)$$

Moreover, the compatibility of μ and ϱ says:

(M₆) μ is uniformly continuous with respect to ρ .

Prototype example

Let $\mathfrak K$ be the category of metric spaces with non-expansive maps and define

$$u(f) = \log \operatorname{Lip}(f^{-1}).$$

The Law of Return

Given $\varepsilon > 0$, there is $\eta > 0$, such that whenever *f* is a \Re -arrow with $\mu(f) < \eta$, then there exist \Re -arrows *g*, *h* with $\mu(g)$ and $\mu(h)$ arbitrarily small and

 $\varrho(\boldsymbol{g}\circ\boldsymbol{f},\boldsymbol{h})<\varepsilon$

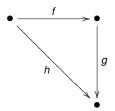
holds.

The Law of Return

Given $\varepsilon > 0$, there is $\eta > 0$, such that whenever *f* is a \Re -arrow with $\mu(f) < \eta$, then there exist \Re -arrows *g*, *h* with $\mu(g)$ and $\mu(h)$ arbitrarily small and

$$\varrho(\boldsymbol{g}\circ\boldsymbol{f},\boldsymbol{h})<\varepsilon$$

holds.



A sequence \vec{x} is Cauchy if

$$(\forall \varepsilon > 0)(\exists n_0)(\forall m \ge n \ge n_0) \ \mu(x_n^m) < \varepsilon.$$

Denote by $\sigma \Re$ the category of all Cauchy sequences in \Re .

Claim

The functions μ and ϱ naturally extend from \Re to $\sigma \Re$.

A sequence \vec{x} is Cauchy if

$$(\forall \varepsilon > 0)(\exists n_0)(\forall m \ge n \ge n_0) \ \mu(x_n^m) < \varepsilon.$$

Denote by $\sigma \Re$ the category of all Cauchy sequences in \Re .

Claim

The functions μ and ϱ naturally extend from \Re to $\sigma \Re$.

A Cauchy sequence $\vec{u} \colon \omega \to \mathfrak{K}$ is Fraïssé if

Given *ε* > 0, there are *η* > 0 and *n*₀ such that whenever *n* ≥ *n*₀ and *f*: *u_n* → *y* is a *β*-arrow satisfying μ(f) < η, there exist *m* > *n* and a *β*-arrow *g*: *y* → *u_m* such that μ(g) is arbitrarily small and

 $\varrho(\boldsymbol{g}\circ\boldsymbol{f},\boldsymbol{u}_n^m)<\varepsilon.$

Assume $\langle \mathfrak{K}, \mu, \varrho \rangle$ is dominated by countably many arrows. Then there exists a Fraïssé sequence in \mathfrak{K} .

Theorem

Assume $\langle \mathfrak{K}, \mu, \varrho \rangle$ satisfies the Law of Return and let \vec{u} be a Fraïssé sequence in \mathfrak{K} . Then:

- For every Cauchy sequence \vec{x} there exists an arrow $F : \vec{x} \to \vec{u}$ such that $\mu(F) = 0$.
- ② For every other Fraïssé sequence v there exists an isomorphism H: u → v such that µ(H) = 0.

Assume $\langle \mathfrak{K}, \mu, \varrho \rangle$ is dominated by countably many arrows. Then there exists a Fraïssé sequence in \mathfrak{K} .

Theorem

Assume $\langle \mathfrak{K}, \mu, \varrho \rangle$ satisfies the Law of Return and let \vec{u} be a Fraïssé sequence in \mathfrak{K} . Then:

- For every Cauchy sequence \vec{x} there exists an arrow $F : \vec{x} \to \vec{u}$ such that $\mu(F) = 0$.
- Por every other Fraïssé sequence v there exists an isomorphism H: ũ → v such that μ(H) = 0.

< 回 > < 三 > < 三 >

Assume $\langle \mathfrak{K}, \mu, \varrho \rangle$ is dominated by countably many arrows. Then there exists a Fraïssé sequence in \mathfrak{K} .

Theorem

Assume $\langle \mathfrak{K}, \mu, \varrho \rangle$ satisfies the Law of Return and let \vec{u} be a Fraïssé sequence in \mathfrak{K} . Then:

- For every Cauchy sequence \vec{x} there exists an arrow $F : \vec{x} \to \vec{u}$ such that $\mu(F) = 0$.
 - Por every other Fraïssé sequence v there exists an isomorphism H: u → v such that µ(H) = 0.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assume $\langle \mathfrak{K}, \mu, \varrho \rangle$ is dominated by countably many arrows. Then there exists a Fraïssé sequence in \mathfrak{K} .

Theorem

Assume $\langle \mathfrak{K}, \mu, \varrho \rangle$ satisfies the Law of Return and let \vec{u} be a Fraïssé sequence in \mathfrak{K} . Then:

- For every Cauchy sequence \vec{x} there exists an arrow $F : \vec{x} \to \vec{u}$ such that $\mu(F) = 0$.
- For every other Fraïssé sequence v there exists an isomorphism
 H: u→ v such that µ(H) = 0.

A B F A B F

An application

Theorem (Garbulińska & K. 2012)

There exists a linear operator u_{∞} : $\mathbb{G} \to \mathbb{G}$ with $||u_{\infty}|| = 1$ and with the following property:

Given a linear operator T: X → Y between separable Banach spaces with ||T|| ≤ 1, there exist isometric embeddings i: X → G and j: Y → G for which the following diagram commutes.

3

Uncountable Fraïssé classes (joint with Antonio Avilés)

A (1) > A (2) > A

A natural question

Assume \mathscr{F} is an uncountable class of finite models with the pushout property. Does there exist an \mathscr{F} -universal and \mathscr{F} -homogeneous structure?

If so, could it be a Fraïssé-Jónsson limit?

Motivation:

 A. AVILÉS, C. BRECH, A Boolean algebra and a Banach space obtained by push-out iteration, Topology Appl. 158 (2011) 1534–1550

A natural question

Assume \mathscr{F} is an uncountable class of finite models with the pushout property. Does there exist an \mathscr{F} -universal and \mathscr{F} -homogeneous structure? If so, could it be a Fraïssé-Jónsson limit?

Motivation:

 A. AVILÉS, C. BRECH, A Boolean algebra and a Banach space obtained by push-out iteration, Topology Appl. 158 (2011) 1534–1550

< ロ > < 同 > < 回 > < 回 >

A natural question

Assume \mathscr{F} is an uncountable class of finite models with the pushout property. Does there exist an \mathscr{F} -universal and \mathscr{F} -homogeneous structure? If so, could it be a Fraïssé-Jónsson limit?

Motivation:

 A. AVILÉS, C. BRECH, A Boolean algebra and a Banach space obtained by push-out iteration, Topology Appl. 158 (2011) 1534–1550

Assume $\mathscr{F} \subseteq \mathfrak{C}$ and \mathfrak{C} is a category with the pushout property. A \mathfrak{C} -arrow $f: x \to y$ is called an \mathscr{F} -cell if there are \mathfrak{C} -arrows $i: r \to x$, $j: s \to y$ and an \mathscr{F} -arrow $g: r \to s$ for which the square

is a pushout in C.

An \mathscr{F} -cell complex is a continuous sequence $\vec{x} : \delta \to \mathfrak{C}$ such that x_0 is an object of \mathscr{F} and $x_{\alpha}^{\alpha+1}$ is an \mathscr{F} -cell for every $\alpha < \delta$.

Source:

• M. HOVEY, *Model Categories*, Mathematical Surveys and Monographs, Vol. 63, AMS, Providence, RI, 1999

< □ > < 同 > < 回 > < 回

An \mathscr{F} -cell complex is a continuous sequence $\vec{x} : \delta \to \mathfrak{C}$ such that x_0 is an object of \mathscr{F} and $x_{\alpha}^{\alpha+1}$ is an \mathscr{F} -cell for every $\alpha < \delta$.

Source:

• M. HOVEY, *Model Categories*, Mathematical Surveys and Monographs, Vol. 63, AMS, Providence, RI, 1999

Denote by $\mathfrak{K}_{\delta}(\mathscr{F})$ the subcategory of \mathfrak{C} whose arrows are \mathscr{F} -cell complexes of length δ . Write

$$\mathfrak{K}_{<\kappa}(\mathscr{F}) = igcup_{\delta<\kappa} \mathfrak{K}_{\delta}(\mathscr{F}).$$

Theorem (Avilés & K.)

Assume κ is an infinite regular cardinal and \mathfrak{C} is κ -continuous. Then the category $\mathfrak{K}_{<\kappa}(\mathscr{F})$ has a Fraïssé sequence of length κ .

Denote by $\mathfrak{K}_{\delta}(\mathscr{F})$ the subcategory of \mathfrak{C} whose arrows are \mathscr{F} -cell complexes of length δ . Write

$$\mathfrak{K}_{<\kappa}(\mathscr{F}) = igcup_{\delta<\kappa} \mathfrak{K}_{\delta}(\mathscr{F}).$$

Theorem (Avilés & K.)

Assume κ is an infinite regular cardinal and \mathfrak{C} is κ -continuous. Then the category $\mathfrak{K}_{<\kappa}(\mathscr{F})$ has a Fraïssé sequence of length κ .

イロン イ理 とくほ とくほ とう

Theorem (Avilés & K.)

Assume $\kappa \ge |\mathscr{F}|$ and $\mathfrak{C} \supseteq \mathscr{F}$ is κ -continuous. There exists a unique $\mathfrak{K}_{\kappa}(\mathscr{F})$ -object U which is $\mathfrak{K}_{<\kappa}(\mathscr{F})$ -homogeneous and $\mathfrak{K}_{\kappa}(\mathscr{F})$ -universal. In particular, U is \mathscr{F} -homogeneous.

イロン イ理 とくほ とくほ とう

Example

$\bullet \ \mathfrak{C} = \mathsf{Boolean}$ algebras with monomorphisms.

• $\mathscr{F} = finite$ Boolean algebras.

Claim

The objects of $\Re_{\kappa}(\mathscr{F})$ are projective Boolean algebras of size $\leq \kappa$.

Theorem (Shchepin 1976)

Let λ be an infinite cardinal. The free Boolean algebra with λ generators is the unique homogeneous projective Boolean algebra of cardinality λ .

A (1) > A (2) > A

Example

- $\bullet \ \mathfrak{C} = \mathsf{Boolean}$ algebras with monomorphisms.
- $\mathscr{F} = finite$ Boolean algebras.

Claim

The objects of $\mathfrak{K}_{\kappa}(\mathscr{F})$ are projective Boolean algebras of size $\leqslant \kappa$.

Theorem (Shchepin 1976)

Let λ be an infinite cardinal. The free Boolean algebra with λ generators is the unique homogeneous projective Boolean algebra of cardinality λ .

< ロ > < 同 > < 回 > < 回 >

Example

- $\mathfrak{C} = \mathsf{Boolean}$ algebras with monomorphisms.
- $\mathscr{F} = finite$ Boolean algebras.

Claim

The objects of $\mathfrak{K}_{\kappa}(\mathscr{F})$ are projective Boolean algebras of size $\leqslant \kappa$.

Theorem (Shchepin 1976)

Let λ be an infinite cardinal. The free Boolean algebra with λ generators is the unique homogeneous projective Boolean algebra of cardinality λ .

イロト イ団ト イヨト イヨト

THE END

æ

イロト イヨト イヨト イヨト