Rank of \mathcal{F} -limits of filter sequences

Adam Kwela

Institute of Mathematics, Polish Academy of Sciences

July 10, 2012

For a filter $\mathcal{F} \subset \mathcal{P}(I)$ on a countable set I, by \mathcal{F}^* we denote its dual ideal. dom (\mathcal{F}) is the domain of \mathcal{F} , i.e., I. \mathcal{F}_{Fr} is the Frechét filter (filter of all cofinite subsets of I).

For a filter $\mathcal{F} \subset \mathcal{P}(I)$ on a countable set I, by \mathcal{F}^* we denote its dual ideal. dom (\mathcal{F}) is the domain of \mathcal{F} , i.e., I. \mathcal{F}_{Fr} is the Frechét filter (filter of all cofinite subsets of I). A is Γ -separated from B, if there exists a subset $S \in \Gamma$ such that $A \subset S$ and $B \cap S = \emptyset$. For a filter $\mathcal{F} \subset \mathcal{P}(I)$ on a countable set I, by \mathcal{F}^* we denote its dual ideal. dom (\mathcal{F}) is the domain of \mathcal{F} , i.e., I. \mathcal{F}_{Fr} is the Frechét filter (filter of all cofinite subsets of I). A is Γ -separated from B, if there exists a subset $S \in \Gamma$ such that $A \subset S$ and $B \cap S = \emptyset$.

Definition (Debs and Saint Raymond, 2009)

Rank of an analytic filter \mathcal{F} is the ordinal:

$$\operatorname{rk}(\mathcal{F}) = \min \left\{ lpha < \omega_1 : \mathcal{F} \text{ is } \Sigma^0_{1+lpha} \text{-separated from } \mathcal{F}^*
ight\}$$

Theorem (Debs and Saint Raymond, 2009)

Let \mathcal{F} be an analytic filter and $\alpha < \omega_1$ be a countable ordinal. Then (a) $C_{\mathcal{F}}(X) \subset \mathcal{B}_{\alpha}(X)$ for any Polish space X if and only if $\operatorname{rk}(\mathcal{F}) \leq \alpha$. (b) $C_{\mathcal{F}}(X) \supset \mathcal{B}_{\alpha}(X)$ for any zero-dimensional Polish space X if and only if $\operatorname{rk}(\mathcal{F}) \geq \alpha$.

 $x \in X$ is a limit relatively to \mathcal{F} of a sequence $(x_i)_{i \in I} \subset X$, if $\{i \in I : \rho_X(x_i, x) < \epsilon\} \in \mathcal{F}$ for every $\epsilon > 0$.

 $C_{\mathcal{F}}(X)$ is the family of all real-valued functions on X, which can be represented as a pointwise limit relatively to \mathcal{F} of a sequence of continuous functions.

 $\mathcal{B}_{\alpha}(X)$ is the family of all real-valued functions on X of Borel class α .

Rank of Fubini sums

 $\sum_{i \in I} X_i$ is the disjoint sum of $(X_i)_{i \in I}$.

Definition

For a filter \mathcal{F} on I and a family of filters $(\mathcal{F}_i)_{i \in I}$, the collection of all sets of the form $\sum_{i \in F} F_i$, for $F \in \mathcal{F}$ and $F_i \in \mathcal{F}_i$, constitutes a basis of a filter on the set $\sum_{i \in I} \operatorname{dom}(\mathcal{F}_i)$. We call it the \mathcal{F} -Fubini sum of the family $(\mathcal{F}_i)_{i \in I}$ and denote it by $\mathcal{F} - \sum_{i \in I} \mathcal{F}_i$.

 $\Sigma_{i\in I}X_i$ is the disjoint sum of $(X_i)_{i\in I}$.

Definition

For a filter \mathcal{F} on I and a family of filters $(\mathcal{F}_i)_{i \in I}$, the collection of all sets of the form $\sum_{i \in F} F_i$, for $F \in \mathcal{F}$ and $F_i \in \mathcal{F}_i$, constitutes a basis of a filter on the set $\sum_{i \in I} \text{dom}(\mathcal{F}_i)$. We call it the \mathcal{F} -Fubini sum of the family $(\mathcal{F}_i)_{i \in I}$ and denote it by $\mathcal{F} - \sum_{i \in I} \mathcal{F}_i$.

Proposition (Debs and Saint Raymond, 2009)

Let \mathcal{G} be the \mathcal{F} -Fubini sum of $(\mathcal{F}_i)_{i \in I}$ and $J \subset I$ be an element of \mathcal{F} .

(a) If $\operatorname{rk}(\mathcal{F}) \geq \alpha$ and $\operatorname{rk}(\mathcal{F}_i) \geq \beta$ for all $i \in J$, then $\operatorname{rk}(\mathcal{G}) \geq \beta + \alpha$.

 $\Sigma_{i\in I}X_i$ is the disjoint sum of $(X_i)_{i\in I}$.

Definition

For a filter \mathcal{F} on I and a family of filters $(\mathcal{F}_i)_{i \in I}$, the collection of all sets of the form $\sum_{i \in F} F_i$, for $F \in \mathcal{F}$ and $F_i \in \mathcal{F}_i$, constitutes a basis of a filter on the set $\sum_{i \in I} \text{dom}(\mathcal{F}_i)$. We call it the \mathcal{F} -Fubini sum of the family $(\mathcal{F}_i)_{i \in I}$ and denote it by $\mathcal{F} - \sum_{i \in I} \mathcal{F}_i$.

Proposition (Debs and Saint Raymond, 2009)

Let \mathcal{G} be the \mathcal{F} -Fubini sum of $(\mathcal{F}_i)_{i \in I}$ and $J \subset I$ be an element of \mathcal{F} . (a) If $\operatorname{rk}(\mathcal{F}) \ge \alpha$ and $\operatorname{rk}(\mathcal{F}_i) \ge \beta$ for all $i \in J$, then $\operatorname{rk}(\mathcal{G}) \ge \beta + \alpha$. (b) If $\operatorname{rk}(\mathcal{F}) \le \alpha$ and $\operatorname{rk}(\mathcal{F}_i) \le \beta$ for all $i \in J$, then $\operatorname{rk}(\mathcal{G}) \le \beta + 1 + \alpha$.

- 4 同 6 4 日 6 4 日 6

 $\Sigma_{i\in I}X_i$ is the disjoint sum of $(X_i)_{i\in I}$.

Definition

For a filter \mathcal{F} on I and a family of filters $(\mathcal{F}_i)_{i \in I}$, the collection of all sets of the form $\sum_{i \in F} F_i$, for $F \in \mathcal{F}$ and $F_i \in \mathcal{F}_i$, constitutes a basis of a filter on the set $\sum_{i \in I} \text{dom}(\mathcal{F}_i)$. We call it the \mathcal{F} -Fubini sum of the family $(\mathcal{F}_i)_{i \in I}$ and denote it by $\mathcal{F} - \sum_{i \in I} \mathcal{F}_i$.

Proposition (Debs and Saint Raymond, 2009)

Let \mathcal{G} be the \mathcal{F} -Fubini sum of $(\mathcal{F}_i)_{i \in I}$ and $J \subset I$ be an element of \mathcal{F} .

(a) If $\operatorname{rk}(\mathcal{F}) \geq \alpha$ and $\operatorname{rk}(\mathcal{F}_i) \geq \beta$ for all $i \in J$, then $\operatorname{rk}(\mathcal{G}) \geq \beta + \alpha$. (b) If $\operatorname{rk}(\mathcal{F}) \leq \alpha$ and $\operatorname{rk}(\mathcal{F}_i) \leq \beta$ for all $i \in J$, then $\operatorname{rk}(\mathcal{G}) \leq \beta + 1 + \alpha$. (c) If $\mathcal{F} = \mathcal{F}_{Fr}$ and $\operatorname{rk}(\mathcal{F}_i) \leq \beta$ for all $i \in J$, then $\operatorname{rk}(\mathcal{G}) \leq \beta + 1$.

Definition

If \mathcal{F} is a filter on I and $(\mathcal{F}_i)_{i \in I}$ are filters on X, then

$$\lim_{\mathcal{F}} \mathcal{F}_i = \{ A \subset X : \{ i \in I : A \in \mathcal{F}_i \} \in \mathcal{F} \}$$

is a filter on X called the \mathcal{F} -limit of filters $(\mathcal{F}_i)_{i \in I}$.

Proposition

Let $J \subset I$ be an element of \mathcal{F} . If $\operatorname{rk}(\mathcal{F}) \leq \alpha$ and $\operatorname{rk}(\mathcal{F}_i) \leq \beta$ for all $i \in J$, then $\operatorname{rk}(\lim_{\mathcal{F}} \mathcal{F}_i) \leq \beta + 1 + \alpha$.

Proposition

Let $J \subset I$ be an element of \mathcal{F} . If $\operatorname{rk}(\mathcal{F}) \leq \alpha$ and $\operatorname{rk}(\mathcal{F}_i) \leq \beta$ for all $i \in J$, then $\operatorname{rk}(\lim_{\mathcal{F}} \mathcal{F}_i) \leq \beta + 1 + \alpha$.

Theorem (K. and Recław)

Let \mathcal{F} be a Borel filter on I of rank 1 and $J \in \mathcal{F}$. If $rk(\mathcal{F}_i) \leq \beta$ for all $i \in J$, then $rk(\lim_{\mathcal{F}} \mathcal{F}_i) \leq \beta + 1$.

Proposition

Let $J \subset I$ be an element of \mathcal{F} . If $\operatorname{rk}(\mathcal{F}) \leq \alpha$ and $\operatorname{rk}(\mathcal{F}_i) \leq \beta$ for all $i \in J$, then $\operatorname{rk}(\lim_{\mathcal{F}} \mathcal{F}_i) \leq \beta + 1 + \alpha$.

Theorem (K. and Recław)

Let \mathcal{F} be a Borel filter on I of rank 1 and $J \in \mathcal{F}$. If $rk(\mathcal{F}_i) \leq \beta$ for all $i \in J$, then $rk(\lim_{\mathcal{F}} \mathcal{F}_i) \leq \beta + 1$.

Corollary

Let \mathcal{F} be a Borel filter on I of rank 1 and $J \in \mathcal{F}$. If $rk(\mathcal{F}_i) = \beta$ for all $i \in J$, then $rk(\mathcal{F} - \sum_{i \in I} \mathcal{F}_i) = \beta + 1$.

For a filter \mathcal{F} , a set $Z = \{Z^k : k \in \omega\} \subset Fin \setminus \{\emptyset\}$ is called \mathcal{F} -universal, if for every element $M \in \mathcal{F}$, there is $k \in \omega$ such that $Z^k \subset M$.

For a filter \mathcal{F} , a set $Z = \{Z^k : k \in \omega\} \subset Fin \setminus \{\emptyset\}$ is called \mathcal{F} -universal, if for every element $M \in \mathcal{F}$, there is $k \in \omega$ such that $Z^k \subset M$.

 \mathcal{F} is ω -diagonalizable by \mathcal{F} -universal sets, if there are \mathcal{F} -universal sets $Z_n = \{Z_n^k : k \in \omega\}$ such that for every $M \in \mathcal{F}$ there is *n* such that for all but finitely many $k \ Z_n^k \cap M \neq \emptyset$.

For a filter \mathcal{F} , a set $Z = \{Z^k : k \in \omega\} \subset Fin \setminus \{\emptyset\}$ is called \mathcal{F} -universal, if for every element $M \in \mathcal{F}$, there is $k \in \omega$ such that $Z^k \subset M$.

 \mathcal{F} is ω -diagonalizable by \mathcal{F} -universal sets, if there are \mathcal{F} -universal sets $Z_n = \{Z_n^k : k \in \omega\}$ such that for every $M \in \mathcal{F}$ there is n such that for all but finitely many $k \ Z_n^k \cap M \neq \emptyset$.

Lemma (Laczkovich and Recław, 2009)

If \mathcal{F} is a Borel filter of rank 1, then there is a family $\{Z_n^k : k \in \omega\}_{n \in \omega}$ of \mathcal{F} -universal sets ω -diagonalizing \mathcal{F} .

For a filter \mathcal{F} , a set $Z = \{Z^k : k \in \omega\} \subset Fin \setminus \{\emptyset\}$ is called \mathcal{F} -universal, if for every element $M \in \mathcal{F}$, there is $k \in \omega$ such that $Z^k \subset M$.

 \mathcal{F} is ω -diagonalizable by \mathcal{F} -universal sets, if there are \mathcal{F} -universal sets $Z_n = \{Z_n^k : k \in \omega\}$ such that for every $M \in \mathcal{F}$ there is n such that for all but finitely many $k \ Z_n^k \cap M \neq \emptyset$.

Lemma (Laczkovich and Recław , 2009)

If \mathcal{F} is a Borel filter of rank 1, then there is a family $\{Z_n^k : k \in \omega\}_{n \in \omega}$ of \mathcal{F} -universal sets ω -diagonalizing \mathcal{F} .

Let $S_i \in \Pi^0_{1+\beta}(X)$ be sets separating the filters \mathcal{F}_i from their dual ideals. Define

$$S = \bigcup_{n \in \omega} \bigcup_{m \in \omega} \bigcap_{k > m} \bigcup_{i \in Z_n^k \cap J} S_i.$$

S is of additive class $1 + \beta + 1$ and separates $\lim_{\mathcal{F}} \mathcal{F}_i$ from its dual ideal.

Theorem (K. and Recław)

For every ordinals $\alpha, \beta < \omega_1$, there are \mathcal{F} of rank β and $(\mathcal{F}_i)_{i \in \text{dom}(\mathcal{F})}$ of ranks α such that $\lim_{\mathcal{F}} \mathcal{F}_i$ has rank 1.

Theorem (K. and Recław)

For every ordinals $\alpha, \beta < \omega_1$, there are \mathcal{F} of rank β and $(\mathcal{F}_i)_{i \in \text{dom}(\mathcal{F})}$ of ranks α such that $\lim_{\mathcal{F}} \mathcal{F}_i$ has rank 1.

Lemma (K. and Recław)

For every $\alpha < \omega_1$, there exist two filters \mathcal{G}_0 and \mathcal{G}_1 of rank α and such that $\mathcal{G}_0 \cap \mathcal{G}_1$ has rank 1.

Theorem (K. and Recław)

For every ordinals $\alpha, \beta < \omega_1$, there are \mathcal{F} of rank β and $(\mathcal{F}_i)_{i \in \text{dom}(\mathcal{F})}$ of ranks α such that $\lim_{\mathcal{F}} \mathcal{F}_i$ has rank 1.

Lemma (K. and Recław)

For every $\alpha < \omega_1$, there exist two filters \mathcal{G}_0 and \mathcal{G}_1 of rank α and such that $\mathcal{G}_0 \cap \mathcal{G}_1$ has rank 1.

Take any (non-maximal) filter \mathcal{F} of rank β and a set H such that $H \notin \mathcal{F}$ and dom $(\mathcal{F}) \setminus H \notin \mathcal{F}$. Set $\mathcal{F}_i = \mathcal{G}_0$ for $i \in H$ and $\mathcal{F}_i = \mathcal{G}_1$ for $i \notin H$. Then $\lim_{\mathcal{F}} \mathcal{F}_i$ is equal to $\mathcal{G}_0 \cap \mathcal{G}_1$.

Thank you for your attention!

a.kwela@impan.pl

Adam Kwela Rank of *F*-limits of filter sequences

э