J. Lopez-Abad

Instituto de Ciencias Matemáticas CSIC, Madrid This is a joint work with C. Ruiz-Bermejo and P. Tradacete (Madrid)

Trends in Set Theory 2012

-Introduction

A classical theorem of Mazur asserts that the convex hull of a compact set in a Banach space is again relatively compact.

Indeed, Krein-Šmulian's Theorem states that the same holds even for weakly compact sets.

There is a well-known property lying between these two main kinds of compactness:

Definition

A subset $A \subseteq X$ of a Banach space is called Banach-Saks if every sequence in A has a Cesàro convergent subsequence, i.e. every sequence $(x_n)_n$ in A has a subsequence $(x_{n_k})_k$ such that the sequence of means

-Introduction

A classical theorem of Mazur asserts that the convex hull of a compact set in a Banach space is again relatively compact. Indeed, Krein-Šmulian's Theorem states that the same holds even for weakly compact sets.

There is a well-known property lying between these two main kinds of compactness:

Definition

i.e. every sequence $(x_n)_n$ in A has a subsequence $(x_{n_k})_k$ such that the sequence of means

Introduction

A classical theorem of Mazur asserts that the convex hull of a compact set in a Banach space is again relatively compact. Indeed, Krein-Šmulian's Theorem states that the same holds even for weakly compact sets.

There is a well-known property lying between these two main kinds of compactness:

Definition

i.e. every sequence $(x_n)_n$ in A has a subsequence $(x_{n_k})_k$ such that the sequence of means

Introduction

A classical theorem of Mazur asserts that the convex hull of a compact set in a Banach space is again relatively compact. Indeed, Krein-Šmulian's Theorem states that the same holds even for weakly compact sets.

There is a well-known property lying between these two main kinds of compactness:

Definition

A subset $A \subseteq X$ of a Banach space is called Banach-Saks if every sequence in A has a Cesàro convergent subsequence, i.e. every sequence $(x_n)_n$ in A has a subsequence $(x_{n_k})_k$ such that the sequence of means

Introduction

A classical theorem of Mazur asserts that the convex hull of a compact set in a Banach space is again relatively compact. Indeed, Krein-Šmulian's Theorem states that the same holds even for weakly compact sets.

There is a well-known property lying between these two main kinds of compactness:

Definition

A subset $A \subseteq X$ of a Banach space is called Banach-Saks if every sequence in *A* has a Cesàro convergent subsequence, i.e. every sequence $(x_n)_n$ in *A* has a subsequence $(x_{n_k})_k$ such that the sequence of means

$$(\frac{1}{k}\sum_{i=1}^k x_{n_i})_k$$

A space has the Banach-Saks property when its unit ball is a Banach-Saks set.

Examples of Banach-Saks sets are

- 1 the unit balls of ℓ_p 's, 1
- 2 the unit basis of c_0 .

Typical example of a weakly-null sequence which is not a Banach-Saks set is the unit basis of the Shreier space.

A space has the Banach-Saks property when its unit ball is a Banach-Saks set. Examples of Banach-Saks sets are

- 1 the unit balls of ℓ_p 's, 1
- 2 the unit basis of c_0 .

Typical example of a weakly-null sequence which is not a Banach-Saks set is the unit basis of the Shreier space.

A space has the Banach-Saks property when its unit ball is a Banach-Saks set.

Examples of Banach-Saks sets are

1 the unit balls of ℓ_p 's, 1

2 the unit basis of c_0 .

Typical example of a weakly-null sequence which is not a Banach-Saks set is the unit basis of the Shreier space.

A space has the Banach-Saks property when its unit ball is a Banach-Saks set.

Examples of Banach-Saks sets are

- 1 the unit balls of ℓ_p 's, 1
- 2 the unit basis of c_0 .

Typical example of a weakly-null sequence which is not a Banach-Saks set is the unit basis of the Shreier space.

A space has the Banach-Saks property when its unit ball is a Banach-Saks set.

Examples of Banach-Saks sets are

- 1 the unit balls of ℓ_p 's, 1
- 2 the unit basis of c_0 .

Typical example of a weakly-null sequence which is not a Banach-Saks set is the unit basis of the Shreier space.

- Introduction

Question

Is the convex hull of a Banach-Saks set again Banach-Saks?

By Ramsey-like methods, we show that the answer is No:

Theorem (LA-Ruiz-Tradacete)

There is a family \mathcal{F} of finite subsets of \mathbb{N} such that the unit basis of a Shreier-like space $X_{\mathcal{F}}$ is a Banach-Saks set, but its convex hull is not.

On the opposite direction we prove that

Theorem (LA-Ruiz-Tradacete)

Question

Is the convex hull of a Banach-Saks set again Banach-Saks?

By Ramsey-like methods, we show that the answer is No:

Theorem (LA-Ruiz-Tradacete)

There is a family \mathcal{F} of finite subsets of \mathbb{N} such that the unit basis of a Shreier-like space $X_{\mathcal{F}}$ is a Banach-Saks set, but its convex hull is not.

On the opposite direction we prove that

Theorem (LA-Ruiz-Tradacete)

Question

Is the convex hull of a Banach-Saks set again Banach-Saks?

By Ramsey-like methods, we show that the answer is No:

Theorem (LA-Ruiz-Tradacete)

There is a family \mathcal{F} of finite subsets of \mathbb{N} such that the unit basis of a Shreier-like space $X_{\mathcal{F}}$ is a Banach-Saks set, but its convex hull is not.

On the opposite direction we prove that

Theorem (LA-Ruiz-Tradacete)

Question

Is the convex hull of a Banach-Saks set again Banach-Saks?

By Ramsey-like methods, we show that the answer is No:

Theorem (LA-Ruiz-Tradacete)

There is a family \mathcal{F} of finite subsets of \mathbb{N} such that the unit basis of a Shreier-like space $X_{\mathcal{F}}$ is a Banach-Saks set, but its convex hull is not.

On the opposite direction we prove that

Theorem (LA-Ruiz-Tradacete)

Question

Is the convex hull of a Banach-Saks set again Banach-Saks?

By Ramsey-like methods, we show that the answer is No:

Theorem (LA-Ruiz-Tradacete)

There is a family \mathcal{F} of finite subsets of \mathbb{N} such that the unit basis of a Shreier-like space $X_{\mathcal{F}}$ is a Banach-Saks set, but its convex hull is not.

On the opposite direction we prove that

Theorem (LA-Ruiz-Tradacete)

-Schreier families

Definition

Let \mathcal{F} be a family on \mathbb{N} , i.e. a collection of (finite) subsets of \mathbb{N} . Given $x \in c_{00}(\mathbb{N})$ we define

$$\|x\|_{\mathcal{F}} := \max\{\|x\|_{\infty}, \sup_{s\in\mathcal{F}}\sum_{k\in s}|(x)_k|\}.$$

The Shreier-like space $X_{\mathcal{F}}$ is the completion of $(c_{00}(\mathbb{N}), \|\cdot\|_{\mathcal{F}})$.

It is easy to see that the unit basis $(u_n)_n$ of $c_{00}(\mathbb{N})$ is a 1-unconditional Schauder basis of $X_{\mathcal{F}}$. The non-trivial spaces are coming from pre-compact families, i.e. such that $\overline{\mathcal{F}} \subseteq \mathsf{FIN}$.

-Schreier families

Definition

Let \mathcal{F} be a family on \mathbb{N} , i.e. a collection of (finite) subsets of \mathbb{N} . Given $x \in c_{00}(\mathbb{N})$ we define

$$\|x\|_{\mathcal{F}} := \max\{\|x\|_{\infty}, \sup_{s\in\mathcal{F}}\sum_{k\in s} |(x)_k|\}.$$

The Shreier-like space $X_{\mathcal{F}}$ is the completion of $(c_{00}(\mathbb{N}), \|\cdot\|_{\mathcal{F}})$.

It is easy to see that the unit basis $(u_n)_n$ of $c_{00}(\mathbb{N})$ is a 1-unconditional Schauder basis of $X_{\mathcal{F}}$. The non-trivial spaces are coming from pre-compact families, i.e. such that $\overline{\mathcal{F}} \subseteq \text{FIN}$.

-Schreier families

Definition

Let \mathcal{F} be a family on \mathbb{N} , i.e. a collection of (finite) subsets of \mathbb{N} . Given $x \in c_{00}(\mathbb{N})$ we define

$$\|x\|_{\mathcal{F}} := \max\{\|x\|_{\infty}, \sup_{s\in\mathcal{F}}\sum_{k\in s} |(x)_k|\}.$$

The Shreier-like space $X_{\mathcal{F}}$ is the completion of $(c_{00}(\mathbb{N}), \|\cdot\|_{\mathcal{F}})$.

It is easy to see that the unit basis $(u_n)_n$ of $c_{00}(\mathbb{N})$ is a 1-unconditional Schauder basis of $X_{\mathcal{F}}$. The non-trivial spaces are coming from pre-compact families, i.e. such that $\overline{\mathcal{F}} \subseteq \text{FIN}$.

-Schreier families

Definition

Let \mathcal{F} be a family on \mathbb{N} , i.e. a collection of (finite) subsets of \mathbb{N} . Given $x \in c_{00}(\mathbb{N})$ we define

$$\|x\|_{\mathcal{F}} := \max\{\|x\|_{\infty}, \sup_{s\in\mathcal{F}}\sum_{k\in s}|(x)_k|\}.$$

The Shreier-like space $X_{\mathcal{F}}$ is the completion of $(c_{00}(\mathbb{N}), \|\cdot\|_{\mathcal{F}})$.

It is easy to see that the unit basis $(u_n)_n$ of $c_{00}(\mathbb{N})$ is a 1-unconditional Schauder basis of $X_{\mathcal{F}}$.

The non-trivial spaces are coming from pre-compact families, i.e. such that $\overline{\mathcal{F}}\subseteq \mathsf{FIN}.$

-Schreier families

Definition

Let \mathcal{F} be a family on \mathbb{N} , i.e. a collection of (finite) subsets of \mathbb{N} . Given $x \in c_{00}(\mathbb{N})$ we define

$$\|x\|_{\mathcal{F}} := \max\{\|x\|_{\infty}, \sup_{s\in\mathcal{F}}\sum_{k\in s}|(x)_k|\}.$$

The Shreier-like space $X_{\mathcal{F}}$ is the completion of $(c_{00}(\mathbb{N}), \|\cdot\|_{\mathcal{F}})$.

It is easy to see that the unit basis $(u_n)_n$ of $c_{00}(\mathbb{N})$ is a 1-unconditional Schauder basis of $X_{\mathcal{F}}$. The non-trivial spaces are coming from pre-compact families, i.e. such that $\overline{\mathcal{F}} \subseteq FIN$.

Let $\mathcal{S} = \{ \textit{s} \in \mathsf{FIN} \, : \, |\textit{s}| \leq \min\textit{s} + 1 \}$ be the Schreier family.

Then the unit basis $\{u_n\}_n$ of X_S is a non-Banach-Saks:The main reason is that S is *large* in \mathbb{N} : For every $n \in \mathbb{N}$ and $M \subseteq \mathbb{N}$ there is $s \in S \cap [M]^n$.

Proposition (M. González, and J. Gutiérrez)

The convex hull of a Banach-Saks subset of X_S is a Banach-Saks set.

Let $S = \{s \in FIN : |s| \le \min s + 1\}$ be the Schreier family. Then the unit basis $\{u_n\}_n$ of X_S is a non-Banach-Saks:The main reason is that S is *large* in \mathbb{N} : For every $n \in \mathbb{N}$ and $M \subseteq \mathbb{N}$ there is $s \in S \cap [M]^n$. However,

Proposition (M. González, and J. Gutiérrez)

The convex hull of a Banach-Saks subset of X_S is a Banach-Saks set.

Let $S = \{s \in FIN : |s| \le \min s + 1\}$ be the Schreier family. Then the unit basis $\{u_n\}_n$ of X_S is a non-Banach-Saks:The main reason is that S is *large* in \mathbb{N} : For every $n \in \mathbb{N}$ and $M \subseteq \mathbb{N}$ there is $s \in S \cap [M]^n$.

However,

Proposition (M. González, and J. Gutiérrez)

The convex hull of a Banach-Saks subset of X_S is a Banach-Saks set.

Let $S = \{s \in \mathsf{FIN} : |s| \le \min s + 1\}$ be the Schreier family. Then the unit basis $\{u_n\}_n$ of X_S is a non-Banach-Saks:The main reason is that S is *large* in \mathbb{N} : For every $n \in \mathbb{N}$ and $M \subseteq \mathbb{N}$ there is $s \in S \cap [M]^n$. However,

Proposition (M. González, and J. Gutiérrez)

The convex hull of a Banach-Saks subset of X_S is a Banach-Saks set.

Let $S = \{s \in \mathsf{FIN} : |s| \le \min s + 1\}$ be the Schreier family. Then the unit basis $\{u_n\}_n$ of X_S is a non-Banach-Saks:The main reason is that S is *large* in \mathbb{N} : For every $n \in \mathbb{N}$ and $M \subseteq \mathbb{N}$ there is $s \in S \cap [M]^n$. However,

Proposition (M. González, and J. Gutiérrez)

The convex hull of a Banach-Saks subset of X_S is a Banach-Saks set.

Given two families ${\mathcal F}$ and ${\mathcal G}$ on ${\mathbb N},$ let

$$\mathcal{F} \oplus \mathcal{G} := \{ \boldsymbol{s} \cup t : \boldsymbol{s} \in \mathcal{G}, \ t \in \mathcal{F} \text{ and } \boldsymbol{s} < t \}$$
$$\mathcal{F} \otimes \mathcal{G} := \{ \bigcup_{i} \boldsymbol{s}_{i} : \{ \boldsymbol{s}_{i} \}_{i} \subseteq \mathcal{F}, \ \boldsymbol{s}_{i} < \boldsymbol{s}_{j} \text{ for } i < j, \text{ and } \{ \min \boldsymbol{s}_{i} \}_{i} \in \mathcal{G} \}.$$

Definition

For each $\alpha < \omega_1$, α limit, we fix a strictly increasing sequence $(\beta_n^{(\alpha)})_n$ such that $\sup_n \beta_n^{(\alpha)} = \alpha$. We define now (a) $S_0 := [\mathbb{N}]^{\leq 1}$. (b) $S_{\alpha+1} = S_\alpha \otimes S$. (c) $S_\alpha := \bigcup_{n \in \mathbb{N}} S_{\beta_n^{(\alpha)}} \upharpoonright \mathbb{N}/n$.

Then each \mathcal{S}_{lpha} is a compact, hereditary and spreading family.

<ロト < 同ト < 三ト < 三ト < 三 ・ への < つ > つ < つ

Given two families ${\mathcal F}$ and ${\mathcal G}$ on ${\mathbb N},$ let

$$\mathcal{F} \oplus \mathcal{G} := \{ \boldsymbol{s} \cup t : \boldsymbol{s} \in \mathcal{G}, \ t \in \mathcal{F} \text{ and } \boldsymbol{s} < t \}$$
$$\mathcal{F} \otimes \mathcal{G} := \{ \bigcup_{i} \boldsymbol{s}_{i} : \{ \boldsymbol{s}_{i} \}_{i} \subseteq \mathcal{F}, \ \boldsymbol{s}_{i} < \boldsymbol{s}_{j} \text{ for } i < j, \text{ and } \{ \min \boldsymbol{s}_{i} \}_{i} \in \mathcal{G} \}.$$

Definition

For each $\alpha < \omega_1$, α limit, we fix a strictly increasing sequence $(\beta_n^{(\alpha)})_n$ such that $\sup_n \beta_n^{(\alpha)} = \alpha$. We define now (a) $S_0 := [\mathbb{N}]^{\leq 1}$. (b) $S_{\alpha+1} = S_\alpha \otimes S$. (c) $S_\alpha := \bigcup_{n \in \mathbb{N}} S_{\beta_n^{(\alpha)}} \upharpoonright \mathbb{N}/n$.

Then each S_{α} is a compact, hereditary and spreading family.

Schreier families

Theorem

For every pre-compact family \mathcal{F} on \mathbb{N} there are $\alpha < \omega_1$, $n \in \mathbb{N}$ and $M \subseteq \mathbb{N}$ such that

$$\mathcal{S}_{\alpha}[M] \oplus [M]^{\leq n} \subseteq \mathcal{F}[M] \subseteq \mathcal{S}_{\alpha}[M] \oplus [M]^{\leq n+1},$$

where $\mathcal{F}[M] := \{ s \cap M : s \in \mathcal{F} \}.$

Schreier families

Theorem (LA-Ruiz-Tradacete)

The convex hull of a Banach-Saks subset of $X_{S_{\alpha}}$ is also a Banach-Saks set.

Some definitions.

Definition

- 1 By a *family on an infinite subset* $M \subseteq \mathbb{N}$ we mean a collection of finite subsets of M.
- 2 A family \mathcal{F} on M is called *large in* $N \subseteq M$ when for every infinite subset $P \subseteq N$ and every $n \in \mathbb{N}$ there is some $s \in \mathcal{F}$ such that $|s \cap P| \ge n$.
- 3 Given a partition (*I_n*)_n of N, a transversal (w.r.t. (*I_n*)_n) is a subset T of N such that |T ∩ *I_n*| ≤ 1 for every n ∈ N.

Some definitions.

Definition

- 1 By a *family on an infinite subset* $M \subseteq \mathbb{N}$ we mean a collection of finite subsets of M.
- 2 A family *F* on *M* is called *large in* N ⊆ M when for every infinite subset P ⊆ N and every n ∈ N there is some s ∈ F such that |s ∩ P| ≥ n.
- 3 Given a partition $(I_n)_n$ of N, *a transversal* (w.r.t. $(I_n)_n$) is a subset *T* of N such that $|T \cap I_n| \le 1$ for every *n* ∈ N.

Some definitions.

Definition

- 1 By a *family on an infinite subset* $M \subseteq \mathbb{N}$ we mean a collection of finite subsets of M.
- 2 A family \mathcal{F} on M is called *large in* $N \subseteq M$ when for every infinite subset $P \subseteq N$ and every $n \in \mathbb{N}$ there is some $s \in \mathcal{F}$ such that $|s \cap P| \ge n$.
- 3 Given a partition $(I_n)_n$ of N, *a transversal* (w.r.t. $(I_n)_n$) is a subset *T* of N such that $|T \cap I_n| \le 1$ for every *n* ∈ N.

Some definitions.

Definition

- 1 By a *family on an infinite subset* $M \subseteq \mathbb{N}$ we mean a collection of finite subsets of M.
- 2 A family \mathcal{F} on M is called *large in* $N \subseteq M$ when for every infinite subset $P \subseteq N$ and every $n \in \mathbb{N}$ there is some $s \in \mathcal{F}$ such that $|s \cap P| \ge n$.
- 3 Given a partition $(I_n)_n$ of N, a transversal (w.r.t. $(I_n)_n$) is a subset *T* of N such that $|T \cap I_n| \le 1$ for every *n* ∈ N.

Combinatorial reformulation of the general problem

Definition

A *T*-family is a family \mathcal{F} of finite subsets of \mathbb{N} such that there is a partition $\bigcup_n I_n$ of \mathbb{N} in finite pieces I_n and for each *n* probability measures μ_n on $\mathcal{P}(I_n)$ (i.e. a convex combination $(\lambda_k^{(n)})_{k \in I_n}$) with the following properties:

(a) There is some $\varepsilon > 0$ and some $M \subseteq \mathbb{N}$ such that the set

 $\mathcal{G}(\mathcal{F},\varepsilon) := \{ t \subseteq \mathbb{N} : \exists s \in \mathcal{F} \forall n \in t \ \mu_n(s \cap I_n) \ge \varepsilon \}$

is large in M.

(b) $\mathcal{F}[T] := \{s \cap T : s \in \mathcal{F}\}$ is not large in T for every transversal $T \subseteq I$.

Definition

A *T*-family is a family \mathcal{F} of finite subsets of \mathbb{N} such that there is a partition $\bigcup_n I_n$ of \mathbb{N} in finite pieces I_n and for each *n* probability measures μ_n on $\mathcal{P}(I_n)$ (i.e. a convex combination $(\lambda_k^{(n)})_{k \in I_n}$) with the following properties:

(a) There is some $\varepsilon > 0$ and some $M \subseteq \mathbb{N}$ such that the set

$$\mathcal{G}(\mathcal{F},\varepsilon) := \{ t \subseteq \mathbb{N} : \exists s \in \mathcal{F} \forall n \in t \ \mu_n(s \cap I_n) \ge \varepsilon \}$$

is large in M.

(b) $\mathcal{F}[T] := \{ s \cap T : s \in \mathcal{F} \}$ is not large in T for every transversal $T \subseteq I$.

Definition

A *T*-family is a family \mathcal{F} of finite subsets of \mathbb{N} such that there is a partition $\bigcup_n I_n$ of \mathbb{N} in finite pieces I_n and for each *n* probability measures μ_n on $\mathcal{P}(I_n)$ (i.e. a convex combination $(\lambda_k^{(n)})_{k \in I_n}$) with the following properties:

(a) There is some $\varepsilon > 0$ and some $M \subseteq \mathbb{N}$ such that the set

$$\mathcal{G}(\mathcal{F},\varepsilon) := \{ t \subseteq \mathbb{N} : \exists s \in \mathcal{F} \forall n \in t \ \mu_n(s \cap I_n) \ge \varepsilon \}$$

is large in *M*.

(b) $\mathcal{F}[T] := \{s \cap T : s \in \mathcal{F}\}$ is not large in T for every transversal $T \subseteq I$.

Theorem (LA-Ruiz-Tradacete)

TFAE:

- 1 The convex hull of every weakly-null Banach-Saks set is Banach-Saks.
- 2 There are no T-families.

Theorem (LA-Ruiz-Tradacete)

There is a T-family (where indeed the measures μ_n on I_n are the counting measures on I_n).

Combinatorial reformulation of the general problem

Theorem (LA-Ruiz-Tradacete)

TFAE:

1 The convex hull of every weakly-null Banach-Saks set is Banach-Saks.

There are no T-families.

Theorem (LA-Ruiz-Tradacete)

(where indeed the measures μ_n on I_n are the counting measures on I_n).

Combinatorial reformulation of the general problem

Theorem (LA-Ruiz-Tradacete)

TFAE:

- 1 The convex hull of every weakly-null Banach-Saks set is Banach-Saks.
- 2 There are no T-families.

Theorem (LA-Ruiz-Tradacete)

(where indeed the measures μ_n on I_n are the counting measures on I_n).

Combinatorial reformulation of the general problem

Theorem (LA-Ruiz-Tradacete)

TFAE:

- 1 The convex hull of every weakly-null Banach-Saks set is Banach-Saks.
- 2 There are no T-families.

Theorem (LA-Ruiz-Tradacete)

There is a T-family (where indeed the measures μ_n on I_n are the counting measures on I_n).

Combinatorial reformulation of the general problem

Theorem (LA-Ruiz-Tradacete)

TFAE:

- 1 The convex hull of every weakly-null Banach-Saks set is Banach-Saks.
- 2 There are no T-families.

Theorem (LA-Ruiz-Tradacete)

There is a T-family (where indeed the measures μ_n on I_n are the counting measures on I_n).

Combinatorial reformulation of the general problem

Proposition

Suppose that \mathcal{F} is a T-family on \mathbb{N} with respect to $(I_n)_n$ and $(\mu_n)_n$. Then

- The Every subsequence of the unit basis $\bar{u} = (u_n)_n$ of X_F has a further subsequence equivalent to the unit basis of c_0 ; hence $\{u_n\}_n$ is a Banach-Saks set.
- 2 *the set* $\{\mu_n * \bar{x}\}_n \subseteq \text{conv}(\{u_n\}_n)$ *is not Banach-Saks.*

Combinatorial reformulation of the general problem

Proposition

Suppose that \mathcal{F} is a T-family on \mathbb{N} with respect to $(I_n)_n$ and $(\mu_n)_n$. Then

- Every subsequence of the unit basis ū = (u_n)_n of X_F has a further subsequence equivalent to the unit basis of c₀; hence {u_n}_n is a Banach-Saks set.
- 2 *the set* $\{\mu_n * \bar{x}\}_n \subseteq \text{conv}(\{u_n\}_n)$ *is not Banach-Saks.*

- Combinatorial reformulation of the general problem

Proposition

Suppose that \mathcal{F} is a T-family on \mathbb{N} with respect to $(I_n)_n$ and $(\mu_n)_n$. Then

 Every subsequence of the unit basis ū = (u_n)_n of X_F has a further subsequence equivalent to the unit basis of c₀; hence {u_n}_n is a Banach-Saks set.

2 *the set* $\{\mu_n * \bar{x}\}_n \subseteq \text{conv}(\{u_n\}_n)$ *is not Banach-Saks.*

-Existence of T-families

Recall the following well-known fact:

Theorem (Gillis)

For every $\varepsilon > 0$, every $\delta > 0$ and every $m \in \mathbb{N}$ there is $n := n(\varepsilon, \delta, m)$ such that for every probability space $(\Omega, \mathcal{F}, \mu)$ and every sequence $(A_i)_{i < n}$ such that $\mu(A_i) \ge \varepsilon$ for all i < n, there is $s \in [n]^m$ such that

$$\mu(\bigcap_{i\in s}A_i)\geq (1-\delta)\varepsilon^m.$$

-Existence of T-families

Recall the following well-known fact:

Theorem (Gillis)

For every $\varepsilon > 0$, every $\delta > 0$ and every $m \in \mathbb{N}$ there is $n := n(\varepsilon, \delta, m)$ such that for every probability space $(\Omega, \mathcal{F}, \mu)$ and every sequence $(A_i)_{i < n}$ such that $\mu(A_i) \ge \varepsilon$ for all i < n, there is $s \in [n]^m$ such that

$$\mu(\bigcap_{i\in s} A_i) \ge (1-\delta)\varepsilon^m.$$

Existence of *T*-families

Question

Given $\varepsilon > 0$ and $m \in \mathbb{N}$, does there exist $n := n(\varepsilon, m)$ such that whenever $(\Omega, \mathcal{F}, \mu)$ is a probability space and $(A_{\{i,j\}})_{\{i,j\}\in[n]^2}$ are such that $\mu(A_{\{i,j\}}) > \varepsilon$ for all $\{i,j\} \in [n]^2$, then there is $s \in [n]^m$ such that $\bigcap_{\{i,j\}\in[s]^2} A_{\{i,j\}} \neq \emptyset$?

NO: Example by *Erdös and Hajnal*: Fix arbitrary n, r > 0. For each $i, j \in [n]^2$, let

$$A_{\{i,j\}} := \{(a_k)_{k < n} \in r^n : a_i \neq a_j\}.$$

Consider r^n with its counting probability measure, $\mu(s) = |s|/r^n$ for $s \subseteq r^n$. Then

1 $\mu(A_{\{i,j\}}) \ge 1 - 1/r$, and

2 $\bigcap_{\{i,j\} \in [s]^2} A_{\{i,j\}} = \emptyset$ for every $s \subseteq n$ with $|s| \ge r + 1$.

Existence of *T*-families

Question

Given $\varepsilon > 0$ and $m \in \mathbb{N}$, does there exist $n := n(\varepsilon, m)$ such that whenever $(\Omega, \mathcal{F}, \mu)$ is a probability space and $(A_{\{i,j\}})_{\{i,j\}\in[n]^2}$ are such that $\mu(A_{\{i,j\}}) > \varepsilon$ for all $\{i,j\} \in [n]^2$, then there is $s \in [n]^m$ such that $\bigcap_{\{i,j\}\in[s]^2} A_{\{i,j\}} \neq \emptyset$?

NO: Example by *Erdös and Hajnal*: Fix arbitrary n, r > 0. For each $i, j \in [n]^2$, let

$$A_{\{i,j\}} := \{(a_k)_{k < n} \in r^n : a_i \neq a_j\}.$$

Consider r^n with its counting probability measure, $\mu(s) = |s|/r^n$ for $s \subseteq r^n$. Then

1 $\mu(A_{\{i,j\}}) \ge 1 - 1/r$, and

2 $\bigcap_{\{i,j\} \in [s]^2} A_{\{i,j\}} = \emptyset$ for every $s \subseteq n$ with $|s| \ge r + 1$.

Existence of T-families

Question

Given $\varepsilon > 0$ and $m \in \mathbb{N}$, does there exist $n := n(\varepsilon, m)$ such that whenever $(\Omega, \mathcal{F}, \mu)$ is a probability space and $(A_{\{i,j\}})_{\{i,j\}\in[n]^2}$ are such that $\mu(A_{\{i,j\}}) > \varepsilon$ for all $\{i,j\} \in [n]^2$, then there is $s \in [n]^m$ such that $\bigcap_{\{i,j\}\in[s]^2} A_{\{i,j\}} \neq \emptyset$?

NO: Example by *Erdös and Hajnal*: Fix arbitrary n, r > 0. For each $i, j \in [n]^2$, let

$$A_{\{i,j\}} := \{(a_k)_{k < n} \in r^n : a_i \neq a_j\}.$$

Consider r^n with its counting probability measure, $\mu(s) = |s|/r^n$ for $s \subseteq r^n$. Then

1 $\mu(A_{\{i,j\}}) \ge 1 - 1/r$, and

2 $\bigcap_{\{i,j\}\in[s]^2} A_{\{i,j\}} = \emptyset$ for every $s \subseteq n$ with $|s| \ge r + 1$.

Existence of T-families

Question

Given $\varepsilon > 0$ and $m \in \mathbb{N}$, does there exist $n := n(\varepsilon, m)$ such that whenever $(\Omega, \mathcal{F}, \mu)$ is a probability space and $(A_{\{i,j\}})_{\{i,j\}\in[n]^2}$ are such that $\mu(A_{\{i,j\}}) > \varepsilon$ for all $\{i,j\} \in [n]^2$, then there is $s \in [n]^m$ such that $\bigcap_{\{i,j\}\in[s]^2} A_{\{i,j\}} \neq \emptyset$?

NO: Example by *Erdös and Hajnal*: Fix arbitrary n, r > 0. For each $i, j \in [n]^2$, let

$$A_{\{i,j\}} := \{(a_k)_{k < n} \in r^n : a_i \neq a_j\}.$$

Consider r^n with its counting probability measure, $\mu(s) = |s|/r^n$ for $s \subseteq r^n$. Then

- 1 $\mu(A_{\{i,j\}}) \ge 1 1/r$, and
- 2 $\bigcap_{\{i,j\}\in[s]^2} A_{\{i,j\}} = \emptyset$ for every $s \subseteq n$ with $|s| \ge r + 1$.

Existence of T-families

Question

Given $\varepsilon > 0$ and $m \in \mathbb{N}$, does there exist $n := n(\varepsilon, m)$ such that whenever $(\Omega, \mathcal{F}, \mu)$ is a probability space and $(A_{\{i,j\}})_{\{i,j\}\in[n]^2}$ are such that $\mu(A_{\{i,j\}}) > \varepsilon$ for all $\{i,j\} \in [n]^2$, then there is $s \in [n]^m$ such that $\bigcap_{\{i,j\}\in[s]^2} A_{\{i,j\}} \neq \emptyset$?

NO: Example by *Erdös and Hajnal*: Fix arbitrary n, r > 0. For each $i, j \in [n]^2$, let

$$A_{\{i,j\}} := \{(a_k)_{k < n} \in r^n : a_i \neq a_j\}.$$

Consider r^n with its counting probability measure, $\mu(s) = |s|/r^n$ for $s \subseteq r^n$. Then

- 1 $\mu(A_{\{i,j\}}) \ge 1 1/r$, and
 - 2 $\bigcap_{\{i,j\}\in[s]^2} A_{\{i,j\}} = \emptyset$ for every $s \subseteq n$ with $|s| \ge r+1$.

-Existence of T-families

Question

Given $\varepsilon > 0$ and $m \in \mathbb{N}$, does there exist $n := n(\varepsilon, m)$ such that whenever $(\Omega, \mathcal{F}, \mu)$ is a probability space and $(A_{\{i,j\}})_{\{i,j\}\in[n]^2}$ are such that $\mu(A_{\{i,j\}}) > \varepsilon$ for all $\{i,j\} \in [n]^2$, then there is $s \in [n]^m$ such that $\bigcap_{\{i,j\}\in[s]^2} A_{\{i,j\}} \neq \emptyset$?

NO: Example by *Erdös and Hajnal*: Fix arbitrary n, r > 0. For each $i, j \in [n]^2$, let

$$A_{\{i,j\}} := \{(a_k)_{k < n} \in r^n : a_i \neq a_j\}.$$

Consider r^n with its counting probability measure, $\mu(s) = |s|/r^n$ for $s \subseteq r^n$. Then

1
$$\mu(A_{\{i,j\}}) \ge 1 - 1/r$$
, and
2 $\bigcap_{\{i,j\}\in[s]^2} A_{\{i,j\}} = \emptyset$ for every $s \subseteq n$ with $|s| \ge r + 1$.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 = のへで