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Mathematisches Institut
Rheinische Friedrich-Wilhelms-Universität Bonn

http://www.math.uni-bonn.de/people/pluecke/

Warsaw, 07/09/2012

http://www.math.uni-bonn.de/people/pluecke/


Introduction Generalized Baire spaces

Let κ be an infinite cardinal,

κκ be the set of all functions f ∶ κÐ→ κ and
<κκ be the set of all functions f with dom(f) ∈ κ and ran(f) ⊆ κ.

The generalized Baire space of κ is the set κκ equipped with the topology
whose basic open sets are of the form

Us = {f ∈ κκ ∣ s ⊆ f}

for some s ∈ <κκ. Note that closed sets in this topology are of the form

[T ] = {f ∈ κκ ∣ (∀α < κ) f ↾ α ∈ T}

for some subtree T of <κκ.

We call a subset of (κκ)n a Σ1
1-subset if it is the projection of a closed

subset of (κκ)n+1. Given 0 < 1 < ω, we define Σ1
n-, Π1

n- and ∆1
n-subsets

in the usual way.
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Introduction Generalized Baire spaces

We want to study the generalized Baire spaces of uncountable regular
cardinals κ with κ = κ<κ

and the Σ1
1-subsets of these spaces.

The following proposition shows that this class is both interesting and rich.

Proposition

Let κ be an uncountable regular cardinal with κ = κ<κ. The following
statements are equivalent for a subset A of κκ.

A is a Σ1
1-subset of κκ.

A is definable in the structure ⟨H(κ+), ∈⟩ by a Σ1-formula with
parameters.
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Introduction Coding subsets of κκ

The initial motivation of this work was to find generalizations of the following
coding result due to Leo Harrington

to uncountable regular cardinals κ and
<κ-closed forcings that satisfy the κ+-chain condition.

Theorem (L. Harrington, 1977)

Assume ω1 = ωL
1 . For every subset A of ωω, there is a partial order P with the

following properties.

P satisfies the countable chain condition.

If G is P-generic over V, then A is a Π1
2-subset of ωω in V[G].

This is achieved by the following result.

Theorem (P.L., 2012)

Let κ be a regular uncountable cardinal with κ = κ<κ. For every subset A of κκ,
there is a partial order P that satisfies the following statements.

P is <κ-closed, satisfies the κ+-chain condition and has cardinality 2κ.

If G is P-generic over V, then A is a ∆1
1-subset of κκ in V[G].
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Introduction Coding subsets of κκ

In contrast to previous coding results for subsets of κκ,

we do not need to
assume that “ 2κ = κ+ ” holds.

The proof of this result relies on a technique called generic tree coding. In
the remainder of this talk, I want to give a brief introduction to this
technique. The following theorem sums up its properties.

Theorem

Let κ be a regular uncountable cardinal with κ = κ<κ. For every subset A
of κκ, there is a partial order P that satisfies the following statements.

P is <κ-closed, satisfies the κ+-chain condition and has cardinality 2κ.

If Q̇ is a P-name with

1lP ⊩ “ Q̇ is a σ-strategically closed partial order

and forcing with Q̇ preserves the regularity of κ̌”.

and G ∗H is (P ∗ Q̇)-generic over V, then A is a Σ1
1-subset of κκ in

V[G][H].
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Introduction Coding subsets of κκ

Given a nonempty subset A of κκ

and an enumeration ⟨sβ ∣ β < κ⟩ of <κκ,
we define P to be the partial order consisting of conditions

p = ⟨Tp, fp, hp⟩

with the following properties.

Tp is a subtree of <κ2 that satisfies the following statements.
Tp has cardinality less than κ.
If t ∈ Tp with lh(t) + 1 < ht(Tp), then t has two immediate successors
in Tp.

fp ∶ A
part
ÐÐ→ [Tp] is a partial function such that dom(fp) is a

nonempty set of cardinality less than κ.

hp ∶ A
part
ÐÐ→ κ is a partial function with the following properties.

dom(hp) = dom(fp).
For all x ∈ dom(hp) and α,β < ht(Tp) with α = ≺hp(x), β≻, we have

sβ ⊆ x ⇐⇒ fp(x)(α) = 1.

We order P by end-extensions of trees and extensions of branches and
functions.
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Introduction Coding subsets of κκ

If G ∗H is (P ∗ Q̇)-generic over V,

then the following statements hold.

T = ⋃{Tp ∣ p ∈ G} is a subtree of <κ2 of height κ with [T ] ∩V = ∅,

If we define F (x) = ⋃{fp(x) ∣ p ∈ G, x ∈ dom(x)} for all x ∈ A, then
F ∶ AÐ→ [T ]V[G][H] is a bijection.

If we define H = ⋃{hp ∣ p ∈ G}, then H ∶ AÐ→ κ is a function with

sβ ⊆ x ⇐⇒ F (x)(≺H(x), β≻) = 1

for all x ∈ A and β < κ.

This yields the following Σ1
1-definition of A in V[G][H]:

x ∈ A ⇐⇒ (∃y ∈ [T ])(∃γ < κ)(∀β < κ) [sβ ⊆ x←→ y(≺γ, β≻) = 1] .
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Introduction Coding subsets of κκ

This result has several applications.

As above, we let κ denote a regular
uncountable cardinal with κ = κ<κ.

If A is an arbitrary set, then there is a <κ-closed partial order P such
that P satisfies the κ+-chain condition and 1lP ⊩ “ Ǎ ∈ L(P(κ̌))”.

Generic absoluteness for Σ1
3-formulas over κκ under <κ-closed

forcings that satisfy the κ+-chain condition is inconsistent.
(It is consistent to have such absoluteness for Σ1

2-formulas over κκ).

There is a <κ-closed partial order P satisfying the κ+-chain condition
such that forcing with P preserves the value of 2κ and adds a
∆1

2-definable well-ordering of κκ.
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(It is consistent to have such absoluteness for Σ1

2-formulas over κκ).

There is a <κ-closed partial order P satisfying the κ+-chain condition
such that forcing with P preserves the value of 2κ and adds a
∆1

2-definable well-ordering of κκ.
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Generic absoluteness for Σ1
3-formulas over κκ under <κ-closed

forcings that satisfy the κ+-chain condition is inconsistent.
(It is consistent to have such absoluteness for Σ1

2-formulas over κκ).

There is a <κ-closed partial order P satisfying the κ+-chain condition
such that forcing with P preserves the value of 2κ

and adds a
∆1

2-definable well-ordering of κκ.



Introduction Coding subsets of κκ

This result has several applications. As above, we let κ denote a regular
uncountable cardinal with κ = κ<κ.

If A is an arbitrary set, then there is a <κ-closed partial order P such
that P satisfies the κ+-chain condition and 1lP ⊩ “ Ǎ ∈ L(P(κ̌))”.
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I close by presenting a version of the above result for large cardinals.

Theorem (S. Friedman & P.L.)

There is a ZFC-preserving class forcing P definable without parameters
that satisfies the following statements.

Let κ be a cardinal with the property that there is no singular limit of
inaccessible cardinals ν with ν+ < κ ≤ 2ν . Then forcing with P does
not collapse κ and, if κ is regular, then P preserves the regularity of κ.

P preserves the inaccessibility of inaccessible cardinals and the
supercompactness of supercompact cardinals.

If α is an inaccessible cardinal and G is P generic over V, then
(2α)V = (2α)V[G].
If κ is an inaccessible cardinal and A is a subset of κκ, then there is a
condition p in P with the property that A is a Σ1

1-subset of κκ in
V[G] whenever G is P-generic over V with p ∈ G.
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Thank you for listening!
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