Separating the bounding and dominating numbers for classes of uncountable structures

Philipp Schlicht, Universität Bonn Katherine Thompson, Technische Universität Wien

> Trends in Set Theory, Warszawa 10 July 2012

Setting

Let $\kappa \leq \lambda$ always denote uncountable regular cardinals with $\lambda^{<\lambda} = \lambda$.

Let us consider a class of structures, each of size λ , which do not have specific substructures of size κ , such as

- trees of size λ without branches of length $\kappa,$
- posets of size λ without increasing κ -chains or chains of size κ ,
- graphs of size λ without cliques of size κ .

We consider the quasi-order on the class defined by embeddings or (for trees) strict order-preserving maps.

The original motivation comes from subtrees of $\lambda^{<\lambda}$ without cofinal branches. Universal families of such trees are useful for studying Π_1^1 subsets of λ .

Universal families

A structure $M \in C$ is universal for a class C if every $N \in C$ embeds into M.

A family $F \subseteq C$ is universal for C if every $N \in C$ embeds into some $M \in F$.

Fact

Suppose Φ is a countable complete first-order theory (and $\lambda^{<\lambda} = \lambda$). Then Φ has a λ -saturated and hence universal model of size λ .

The classes which we study are not first-order axiomatizable.

Let T_{λ} denote the class of trees of height and width $\leq \lambda$ without cofinal branches.

Fact (Todorcevic)

Let σT denote the set of linearly ordered downwards closed subsets of T ordered by extension, for $T \in T_{\lambda}$. Then there is no strict order-preserving map $\sigma T \to T$. Hence there is no universal tree in T_{λ} (assuming $\lambda^{<\lambda} = \lambda$).

Bounding and dominating numbers

Definition

The bounding number b = b(C) is the least size of an unbounded family in C.

The dominating number or universality number d = d(C) is the least size of a universal family in C.

Note that $b = cf(b) \leq cf(d) \leq d$.

When λ structures can be glued together to a single structure in the class, we have $b(\mathcal{C}) \ge \lambda^+$.

The Cohen model

Adding $\mu>\lambda^+$ Cohen subsets of λ over a model of $2^\lambda=\lambda^+$

- does not add trees in T_{λ} dominating T_{λ}^{V} and
- adds trees that are not dominated by any tree in T_{λ}^{V} .

So $b(T_{\lambda}) = \lambda^+$ and $d(T_{\lambda}) = 2^{\lambda}$ in the extension.

Previous results

The bounding and dominating number for a class can be changed simultaneously by iteratively adding dominating structures.

Theorem (Mekler-Väänänen)

For any regular μ with $\lambda^+ \leq \mu \leq 2^{\lambda}$, there is a $< \lambda$ -closed λ^+ -c.c. extension with $b(T_{\lambda}) = d(T_{\lambda}) = \mu$.

Theorem (Komjath-Shelah)

Let C denote the class of graphs of size λ without cliques of size κ . There is a λ -strategically closed λ^+ -c.c. extension with $d(C) = \lambda^+$ and 2^{λ} large.

Previous results continued

Notice that the bounding and dominating numbers cannot be separated for cardinals of countable cofinality.

Theorem (Dzamonja-Väänänen) If $cf(\mu) = \omega$, then $b(T_{\mu}) = d(T_{\mu}) = \mu^+$.

Theorem (Hajnal-Komjath)

For the class C of graphs of size λ without cliques of size ω , $d(C) = \lambda^+$.

Results

Suppose that Q is a poset with $b(Q) \ge \lambda^+$ (and $\lambda^{<\lambda} = \lambda$).

Theorem

There is a $<\lambda$ -closed λ^+ -c.c. extension with $b(T_\lambda) = b(Q)$ and $d(T_\lambda) = d(Q)$.

Theorem

Let C denote the class of posets of size λ without increasing λ -chains. There is a $<\lambda$ -closed λ^+ -c.c. extension with b(C) = b(Q) and d(C) = d(Q).

Proposition

There is a $< \lambda$ -closed λ^+ -c.c. forcing adding a dominating poset of size λ without chains of size λ .

Nonlinear iterations

Definition

Let Q be a wellfounded poset and $Q \downarrow a = \{q \in Q \mid q < a\}$. A nonlinear iteration along Q with $< \lambda$ -support is a sequence $(P_a, P_a : a \in Q)$ such that for $p \in P_a$

- $supt(p) \subseteq Q \downarrow a$, $|supt(p)| < \lambda$,
- p(b) is a P_b -name for a condition in \dot{P}_b for all $b \in Q \downarrow a$,

and $p \leqslant q$ if

- $supt(q) \subseteq supt(p)$,
- $p \upharpoonright (Q \downarrow a) \Vdash_{P_a} p(a) \leqslant_{\dot{P}_a} q(a)$ for all $a \in supt(q)$.

Hechler used a nonlinear iteration to change the bounding and dominating numbers of $({}^{\omega}\omega, <^*)$. Cummings and Shelah generalized this to $({}^{\lambda}\lambda, <^*)$, assuming that $\lambda^{<\lambda} = \lambda$.

Changing the bounding and dominating numbers

Strategy:

- Define a forcing to add a structure $D \in C$ which dominates C^V .
- Iterate the one-step forcing along a given poset Q with $b(Q) \ge \lambda^+$, adding a structure D_a for each $a \in Q$.

• Prove that $a \neq b$ implies that D_a does not embed into D_b .

Then $b(\mathcal{C}) = b(Q)$ and $d(\mathcal{C}) = d(Q)$ in the extension.

The Forcings

The conditions of the one-step forcing consist of

- $\bullet\,$ an approximation of size $<\lambda$ to the dominating structure,
- $\bullet\,$ partial embeddings of from $<\lambda$ structures into the approximation, and

• < λ subsets of the approximation which cannot be extended.

The last condition ensures that the dominating structure is in the class.

Iteration

- All our forcings are equivalent to forcings consisting of functions $p: Ord \rightarrow \lambda$ of size $< \lambda$ so that $p \leq q$ depends only on the common support and is absolute. These forcings are $< \lambda$ -closed and λ^+ -c.c.
- The class of these forcings (and equivalent forcings) is closed under $< \lambda$ -support (nonlinear) iteration.
- Another way to see that the iterations are $< \lambda$ -closed λ^+ -c.c. is that they satisfy the properties for the iteration for Shelah's generalized Martin's axiom.

Covering properties

Let $b_{weak}(T_{\lambda})$ and $d_{weak}(T_{\lambda})$ denote the bounding and dominating numbers with respect to strict order-preserving maps (equal to $b(T_{\lambda}), d(T_{\lambda})$ in our models).

Definition

Let $\operatorname{cov}_{\lambda}^+$ $(\operatorname{cov}_{\lambda}^-)$ denote the least μ such that every (some) $\Pi_1^1 \setminus \Sigma_1^1$ subset of $^{\lambda}\lambda$ can be covered by μ many Σ_1^1 sets.

Then
$$b_{weak}(T_{\lambda}) \leq cov_{\lambda}^{-} \leq cov_{\lambda}^{+} = d_{weak}(T_{\lambda}).$$

Question

Is always $b_{weak}(T_{\lambda}) = cov_{\lambda}^{-}$?

In the Cohen model $cov_{\lambda}^{-} = \lambda^{+}$ and $cov_{\lambda}^{+} = 2^{\lambda}$.

Try to find a forcing for adding a dominating *c.c.c.* poset of size λ .

Thank you for listening!

