Constructing Lindelöf, non D-spaces

Dániel Soukup, Paul Szeptycki

University of Toronto, York University

Trends in Set Theory, Warsaw, Poland, 2012

Dániel Soukup (U of T)

Constructing Lindelöf, non D-spaces

2012, Warsaw

Definition

An **open neighborhood assignment** (ONA, in short) on a space (X, τ) is a map $U : X \to \tau$ such that $x \in U(x)$ for every $x \in X$.

X is **compact** \Leftrightarrow for every ONA U on X there is a **finite** $D \subseteq X$ such that $X = \bigcup U[D]$

Definition

An **open neighborhood assignment** (ONA, in short) on a space (X, τ) is a map $U : X \to \tau$ such that $x \in U(x)$ for every $x \in X$.

X is **compact** \Leftrightarrow for every ONA U on X there is a **finite** $D \subseteq X$ such that $X = \bigcup U[D]$

Definition

An open neighborhood assignment (ONA, in short) on a space (X, τ) is a map $U: X \to \tau$ such that $x \in U(x)$ for every $x \in X$.

X is **compact** \Leftrightarrow for every ONA U on X there is a **finite** $D \subseteq X$ such that $X = \bigcup U[D]$

Definition

An open neighborhood assignment (ONA, in short) on a space (X, τ) is a map $U: X \to \tau$ such that $x \in U(x)$ for every $x \in X$.

X is **compact** \Leftrightarrow for every ONA U on X there is a **finite** $D \subseteq X$ such that $X = \bigcup U[D]$

2 / 11

Definition

An open neighborhood assignment (ONA, in short) on a space (X, τ) is a map $U: X \to \tau$ such that $x \in U(x)$ for every $x \in X$.

X is **compact** \Leftrightarrow for every ONA U on X there is a **finite** $D \subseteq X$ such that $X = \bigcup U[D]$

X is a D-space iff for every neighborhood assignment U, there is a closed and discrete $D \subseteq X$ (i.e. locally finite) such that $X = \bigcup U[D]$.

- every σ -compact or metric space is a D-space
- ω₁ is not a *D*-space (every closed discrete set is finite, however non compact)

Main Problem (E. van Douwen, 1975)

X is a D-space iff for every neighborhood assignment U, there is a closed and discrete $D \subseteq X$ (i.e. locally finite) such that $X = \bigcup U[D]$.

• every σ -compact or metric space is a D-space

ω₁ is not a *D*-space (every closed discrete set is finite, however non compact)

Main Problem (E. van Douwen, 1975)

X is a D-space iff for every neighborhood assignment U, there is a closed and discrete $D \subseteq X$ (i.e. locally finite) such that $X = \bigcup U[D]$.

• every σ -compact or metric space is a D-space

ω₁ is not a *D*-space (every closed discrete set is finite, however non compact)

Main Problem (E. van Douwen, 1975)

X is a D-space iff for every neighborhood assignment U, there is a closed and discrete $D \subseteq X$ (i.e. locally finite) such that $X = \bigcup U[D]$.

- every σ -compact or metric space is a D-space
- ω₁ is not a *D*-space (every closed discrete set is finite, however non compact)

3 / 11

Main Problem (E. van Douwen, 1975)

X is a D-space iff for every neighborhood assignment U, there is a closed and discrete $D \subseteq X$ (i.e. locally finite) such that $X = \bigcup U[D]$.

- every σ -compact or metric space is a D-space
- ω₁ is not a *D*-space (every closed discrete set is finite, however non compact)

2012. Warsaw

3 / 11

Main Problem (E. van Douwen, 1975)

X is Menger iff for every sequence of open covers $\{\mathcal{U}_n : n \in \omega\}$ there are $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ such that $\bigcup \{\cup \mathcal{V}_n : n \in \omega\} = X$.

Theorem (L. Aurichi)

Every Menger space is a D-space.

Corollary

Every Lindelöf space of size less than \mathfrak{d} is a D-space.

X is Menger iff for every sequence of open covers $\{U_n : n \in \omega\}$ there are $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ such that $\bigcup \{\cup \mathcal{V}_n : n \in \omega\} = X$.

Theorem (L. Aurichi)

Every Menger space is a D-space.

Corollary

Every Lindelöf space of size less than \mathfrak{d} is a D-space.

X is Menger iff for every sequence of open covers $\{U_n : n \in \omega\}$ there are $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ such that $\bigcup \{\cup \mathcal{V}_n : n \in \omega\} = X$.

Theorem (L. Aurichi)

Every Menger space is a D-space.

Corollary

Every Lindelöf space of size less than \mathfrak{d} is a D-space.

(日本) (日本)

X is Menger iff for every sequence of open covers $\{U_n : n \in \omega\}$ there are $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ such that $\bigcup \{\cup \mathcal{V}_n : n \in \omega\} = X$.

Theorem (L. Aurichi)

Every Menger space is a D-space.

Corollary

Every Lindelöf space of size less than ∂ is a D-space.

・ 母 ・ ・ ヨ ・ ・

Consistently, all **(sub)paracompact spaces of size** $\leq \omega_1$ are D-spaces.

Definition

X is **productively Lindelöf** iff $X \times Y$ is Lindelöf for every Lindelöf space Y.

Theorem (F. Tall)

Under CH , regular, productively Lindelöf spaces are D-spaces.

Consistently, all (sub)paracompact spaces of size $\leq \omega_1$ are D-spaces.

Definition

X is **productively Lindelöf** iff $X \times Y$ is Lindelöf for every Lindelöf space Y.

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

5 / 11

Theorem (F. Tall)

Under CH , regular, productively Lindelöf spaces are D-spaces.

Consistently, all (sub)paracompact spaces of size $\leq \omega_1$ are D-spaces.

Definition

X is **productively Lindelöf** iff $X \times Y$ is Lindelöf for every Lindelöf space Y.

Theorem (F. Tall)

Under CH, regular, productively Lindelöf spaces are D-spaces.

Consistently, all (sub)paracompact spaces of size $\leq \omega_1$ are D-spaces.

Definition

X is **productively Lindelöf** iff $X \times Y$ is Lindelöf for every Lindelöf space Y.

Theorem (F. Tall)

Under CH , regular, productively Lindelöf spaces are D-spaces.

Theorem (S.-Szeptycki)

Under \Diamond , there is a **Hausdorff**, **hereditarily Lindelöf non** D-**space** of size ω_1 .

Remark: it is consistent that \clubsuit holds, 2^{ω} is arbitrarily large and every T_1 Lindelöf space of size less than 2^{ω} is a *D*-space.

Theorem (S.-Szeptycki)

Under \Diamond , there is a **Hausdorff**, hereditarily Lindelöf non D-space of size ω_1 .

Remark: it is consistent that \clubsuit holds, 2^{ω} is arbitrarily large and every T_1 Lindelöf space of size less than 2^{ω} is a *D*-space.

Theorem (S.-Szeptycki)

Under \Diamond , there is a **Hausdorff**, hereditarily Lindelöf non *D*-space of size ω_1 .

Remark: it is consistent that \clubsuit holds, 2^{ω} is arbitrarily large and every T_1 Lindelöf space of size less than 2^{ω} is a *D*-space.

- $\mathcal{U} = \{U_\gamma: \gamma < \omega_1\}$ subsets of ω_1 such that $\gamma \in U_{\gamma}$,
- a map φ from ω_1 to a second countable Hausdorff space (Y, ρ) .

au is generated by $\mathcal{U}\cup arphi^{-1}[
ho]$ as a subbase. We want:

- $\gamma
 ightarrow U_\gamma$ to show that X is not a D-space,
- the proper inductive hypothesises to guarantee that X is hereditarily Lindelöf.

Note: X will be Hausdorff as we "refine" by ρ .

- $\mathcal{U} = \{U_{\gamma} : \gamma < \omega_1\}$ subsets of ω_1 such that $\gamma \in U_{\gamma}$,
- a map φ from ω_1 to a second countable Hausdorff space (Y, ρ) .
- au is generated by $\mathcal{U}\cup arphi^{-1}[
 ho]$ as a subbase. We want:
 - $\gamma
 ightarrow U_\gamma$ to show that X is not a D-space,
 - the proper inductive hypothesises to guarantee that X is hereditarily Lindelöf.

Note: X will be Hausdorff as we "refine" by ρ .

• $\mathcal{U} = \{ U_{\gamma} : \gamma < \omega_1 \}$ subsets of ω_1 such that $\gamma \in U_{\gamma}$,

• a map φ from ω_1 to a second countable Hausdorff space (Y, ρ) .

au is generated by $\mathcal{U}\cup arphi^{-1}[
ho]$ as a subbase. We want:

- $\gamma
 ightarrow U_\gamma$ to show that X is not a D-space,
- the proper inductive hypothesises to guarantee that X is hereditarily Lindelöf.

Note: X will be Hausdorff as we "refine" by ρ .

- $\mathcal{U} = \{U_\gamma: \gamma < \omega_1\}$ subsets of ω_1 such that $\gamma \in U_\gamma$,
- a map φ from ω_1 to a second countable Hausdorff space (Y, ρ) .

au is generated by $\mathcal{U}\cup arphi^{-1}[
ho]$ as a subbase. We want:

- $\gamma
 ightarrow U_\gamma$ to show that X is not a D-space,
- the proper inductive hypothesises to guarantee that X is hereditarily Lindelöf.

Note: X will be Hausdorff as we "refine" by ρ .

- $\mathcal{U} = \{U_\gamma: \gamma < \omega_1\}$ subsets of ω_1 such that $\gamma \in U_\gamma$,
- a map φ from ω_1 to a second countable Hausdorff space (Y, ρ) .

au is generated by $\mathcal{U}\cup arphi^{-1}[
ho]$ as a subbase. We want:

- $\gamma
 ightarrow U_\gamma$ to show that X is not a D-space,
- the proper inductive hypothesises to guarantee that X is hereditarily Lindelöf.

Note: X will be Hausdorff as we "refine" by ρ .

- $\mathcal{U} = \{U_\gamma: \gamma < \omega_1\}$ subsets of ω_1 such that $\gamma \in U_\gamma$,
- a map φ from ω_1 to a second countable Hausdorff space (Y, ρ) .
- au is generated by $\mathcal{U}\cup arphi^{-1}[
 ho]$ as a subbase. We want:
 - $\gamma
 ightarrow U_\gamma$ to show that X is not a D-space,
 - the proper inductive hypothesises to guarantee that X is hereditarily Lindelöf.

Note: X will be Hausdorff as we "refine" by ρ .

- $\mathcal{U} = \{U_\gamma: \gamma < \omega_1\}$ subsets of ω_1 such that $\gamma \in U_\gamma$,
- a map φ from ω_1 to a second countable Hausdorff space (Y, ρ) .
- au is generated by $\mathcal{U}\cup arphi^{-1}[
 ho]$ as a subbase. We want:
 - $\gamma
 ightarrow U_\gamma$ to show that X is not a D-space,
 - the proper inductive hypothesises to guarantee that X is hereditarily Lindelöf.

Note: X will be Hausdorff as we "refine" by ρ .

- $\mathcal{U} = \{U_\gamma: \gamma < \omega_1\}$ subsets of ω_1 such that $\gamma \in U_{\gamma}$,
- a map φ from ω_1 to a second countable Hausdorff space (Y, ρ) .
- au is generated by $\mathcal{U}\cup arphi^{-1}[
 ho]$ as a subbase. We want:
 - $\gamma
 ightarrow U_\gamma$ to show that X is not a D-space,
 - the proper inductive hypothesises to guarantee that X is hereditarily Lindelöf.

Note: X will be Hausdorff as we "refine" by ho.

- $\mathcal{U} = \{U_\gamma: \gamma < \omega_1\}$ subsets of ω_1 such that $\gamma \in U_{\gamma}$,
- a map φ from ω_1 to a second countable Hausdorff space (Y, ρ) .
- au is generated by $\mathcal{U}\cup arphi^{-1}[
 ho]$ as a subbase. We want:
 - $\gamma
 ightarrow U_\gamma$ to show that X is not a D-space,
 - the proper inductive hypothesises to guarantee that X is hereditarily Lindelöf.

Note: X will be Hausdorff as we "refine" by ρ .

List $[\omega_1]^{\leq \omega}$ as $\{\mathcal{C}_{\alpha}\}_{\alpha < \omega_1}$. In the α th step of the induction, we will

- construct the initial segment $U_{\gamma} \cap (\alpha + 1)$ for $\gamma \leq \alpha$,
- decide if $\alpha \in U_{\gamma}$ or $\alpha \notin U_{\gamma}$ for $\gamma \leq \alpha$,
- if C_{α} is closed discrete (where?) then $\alpha \notin U_{\gamma}$ for $\gamma \in C_{\alpha}$.

Use the ◊-sequence to

- guess countable segments of open covers from the final topology,
- make the corresponding countable subfamilies cover by

List $[\omega_1]^{\leq \omega}$ as $\{C_{\alpha}\}_{\alpha < \omega_1}$. In the α th step of the induction, we will

- construct the initial segment $U_{\gamma} \cap (\alpha + 1)$ for $\gamma \leq \alpha$,
- decide if $\alpha \in U_{\gamma}$ or $\alpha \notin U_{\gamma}$ for $\gamma \leq \alpha$,
- if C_{α} is closed discrete (where?) then $\alpha \notin U_{\gamma}$ for $\gamma \in C_{\alpha}$.

Use the ◊-sequence to

- guess countable segments of open covers from the final topology,
- make the corresponding countable subfamilies cover by

About the construction Building $\gamma \rightarrow U_{\gamma}$

List $[\omega_1]^{\leq \omega}$ as $\{\mathcal{C}_{\alpha}\}_{\alpha < \omega_1}$. In the lphath step of the induction, we will

- construct the initial segment $U_{\gamma} \cap (\alpha + 1)$ for $\gamma \leq \alpha$,
- decide if $\alpha \in U_{\gamma}$ or $\alpha \notin U_{\gamma}$ for $\gamma \leq \alpha$,
- if C_{α} is closed discrete (where?) then $\alpha \notin U_{\gamma}$ for $\gamma \in C_{\alpha}$.

Use the ◊-sequence to

- guess countable segments of open covers from the final topology,
- make the corresponding countable subfamilies cover by

About the construction Building $\gamma \rightarrow U_{\gamma}$

List $[\omega_1]^{\leq \omega}$ as $\{\mathcal{C}_{\alpha}\}_{\alpha < \omega_1}$. In the α th step of the induction, we will

- construct the initial segment $U_{\gamma} \cap (\alpha + 1)$ for $\gamma \leq \alpha$,
- decide if $\alpha \in U_{\gamma}$ or $\alpha \notin U_{\gamma}$ for $\gamma \leq \alpha$,
- if C_{α} is closed discrete (where?) then $\alpha \notin U_{\gamma}$ for $\gamma \in C_{\alpha}$.

Use the ◊-sequence to

- guess countable segments of open covers from the final topology,
- make the corresponding countable subfamilies cover by

List $[\omega_1]^{\leq \omega}$ as $\{\mathcal{C}_{\alpha}\}_{\alpha < \omega_1}$. In the α th step of the induction, we will

- construct the initial segment U_γ ∩ (α + 1) for γ ≤ α,
 decide if α ∈ U_γ or α ∉ U_γ for γ ≤ α,
- if C_{α} is closed discrete (where?) then $\alpha \notin U_{\gamma}$ for $\gamma \in C_{\alpha}$.

Use the ◊-sequence to

- guess countable segments of open covers from the final topology,
- make the corresponding countable subfamilies cover by

- construct the initial segment $U_{\gamma} \cap (\alpha + 1)$ for $\gamma \leq \alpha$,
- decide if $\alpha \in U_{\gamma}$ or $\alpha \notin U_{\gamma}$ for $\gamma \leq \alpha$,
- if C_{α} is closed discrete (where?) then $\alpha \notin U_{\gamma}$ for $\gamma \in C_{\alpha}$.

Use the ◊-sequence to

- guess countable segments of open covers from the final topology,
- make the corresponding countable subfamilies cover by

- construct the initial segment $U_{\gamma} \cap (\alpha + 1)$ for $\gamma \leq \alpha$,
- decide if $\alpha \in U_{\gamma}$ or $\alpha \notin U_{\gamma}$ for $\gamma \leq \alpha$,
- if C_{α} is closed discrete (where?) then $\alpha \notin U_{\gamma}$ for $\gamma \in C_{\alpha}$.

Use the $\diamondsuit\mbox{-sequence}$ to

- guess countable segments of open covers from the final topology,
- make the corresponding countable subfamilies cover by

- construct the initial segment $U_{\gamma} \cap (\alpha + 1)$ for $\gamma \leq \alpha$,
- decide if $\alpha \in U_{\gamma}$ or $\alpha \notin U_{\gamma}$ for $\gamma \leq \alpha$,
- if C_{α} is closed discrete (where?) then $\alpha \notin U_{\gamma}$ for $\gamma \in C_{\alpha}$.

Use the $\diamondsuit\mbox{-sequence}$ to

- guess countable segments of open covers from the final topology,
- make the corresponding countable subfamilies cover by

- construct the initial segment $U_{\gamma} \cap (\alpha + 1)$ for $\gamma \leq \alpha$,
- decide if $\alpha \in U_{\gamma}$ or $\alpha \notin U_{\gamma}$ for $\gamma \leq \alpha$,
- if C_{α} is closed discrete (where?) then $\alpha \notin U_{\gamma}$ for $\gamma \in C_{\alpha}$.

Use the $\diamondsuit\mbox{-sequence}$ to

- guess countable segments of open covers from the final topology,
- make the corresponding countable subfamilies cover by

- construct the initial segment $U_{\gamma} \cap (\alpha + 1)$ for $\gamma \leq \alpha$,
- decide if $\alpha \in U_{\gamma}$ or $\alpha \notin U_{\gamma}$ for $\gamma \leq \alpha$,
- if C_{α} is closed discrete (where?) then $\alpha \notin U_{\gamma}$ for $\gamma \in C_{\alpha}$.

Use the $\Diamond\mbox{-sequence}$ to

- guess countable segments of open covers from the final topology,
- make the corresponding countable subfamilies cover by

The above constructed space X has the following further properties:

- X is dually second countable,
- every finite power of X is Lindelöf.

Theorem (S.-Szeptycki)

Under \Diamond , there is a Hausdorff, hereditarily Lindelöf **non** D**-space which is the union of two** D-**spaces**.

The above constructed space X has the following further properties:

- X is dually second countable,
- every finite power of X is Lindelöf.

Theorem (S.-Szeptycki)

Under \Diamond , there is a Hausdorff, hereditarily Lindelöf **non** D**-space which is the union of two** D-**spaces**.

The above constructed space X has the following further properties:

- X is dually second countable,
- every finite power of X is Lindelöf.

Theorem (S.-Szeptycki)

Under \Diamond , there is a Hausdorff, hereditarily Lindelöf **non** D**-space which is the union of two** D-**spaces**.

The above constructed space X has the following further properties:

- X is dually second countable,
- every finite power of X is Lindelöf.

Theorem (S.-Szeptycki)

Under \Diamond , there is a Hausdorff, hereditarily Lindelöf **non** D**-space which is the union of two** D**-spaces**.

The above constructed space X has the following further properties:

- X is dually second countable,
- every finite power of X is Lindelöf.

Theorem (S.-Szeptycki)

Under \Diamond , there is a Hausdorff, hereditarily Lindelöf **non** *D***-space which is the union of two** *D***-spaces**.

The above constructed space X has the following further properties:

- X is dually second countable,
- every finite power of X is Lindelöf.

Theorem (S.-Szeptycki)

Under \Diamond , there is a Hausdorff, hereditarily Lindelöf **non** *D***-space which is the union of two** *D***-spaces**.

- Let S be the Sorgenfrey line. Is S^{ω} a D-space?
- Is every butterfly space over a separable metric space a D-space?
- Is every paracompact, monotonically normal space a D-space?
- Suppoes that X is regular and X^{ω} is hereditarily Lindelöf. Is X a D-space?
- Is every hereditarily Lindelöf/MN/ σ -discrete space dually discrete?
- Suppose that $A \times B$ is Lindelöf for all $A \subseteq X$ and $B \subseteq Y$. Is $X \times Y$ hereditarily Lindelöf? If X = Y?

- Let S be the Sorgenfrey line. Is S^{ω} a D-space?
- Is every butterfly space over a separable metric space a D-space?
- Is every paracompact, monotonically normal space a D-space?
- Suppose that X is regular and X^{ω} is hereditarily Lindelöf. Is X a D-space?
- Is every hereditarily Lindelöf/MN/ σ -discrete space dually discrete?
- Suppose that $A \times B$ is Lindelöf for all $A \subseteq X$ and $B \subseteq Y$. Is $X \times Y$ hereditarily Lindelöf? If X = Y?

- Let S be the Sorgenfrey line. Is S^{ω} a D-space?
- Is every butterfly space over a separable metric space a D-space?
- Is every paracompact, monotonically normal space a D-space?
- Suppose that X is regular and X^{ω} is hereditarily Lindelöf. Is X a D-space?
- Is every hereditarily Lindelöf/MN/ σ -discrete space dually discrete?
- Suppose that $A \times B$ is Lindelöf for all $A \subseteq X$ and $B \subseteq Y$. Is $X \times Y$ hereditarily Lindelöf? If X = Y?

- Let S be the Sorgenfrey line. Is S^{ω} a D-space?
- Is every butterfly space over a separable metric space a D-space?
- Is every paracompact, monotonically normal space a D-space?
- Suppoes that X is regular and X^{ω} is hereditarily Lindelöf. Is X a D-space?
- Is every hereditarily Lindelöf/MN/ σ -discrete space dually discrete?
- Suppose that $A \times B$ is Lindelöf for all $A \subseteq X$ and $B \subseteq Y$. Is $X \times Y$ hereditarily Lindelöf? If X = Y?

- Let S be the Sorgenfrey line. Is S^{ω} a D-space?
- Is every butterfly space over a separable metric space a D-space?
- Is every paracompact, monotonically normal space a D-space?
- Suppose that X is regular and X^{ω} is hereditarily Lindelöf. Is X a D-space?
- Is every hereditarily Lindelöf/MN/ σ -discrete space dually discrete?
- Suppose that $A \times B$ is Lindelöf for all $A \subseteq X$ and $B \subseteq Y$. Is $X \times Y$ hereditarily Lindelöf? If X = Y?

The following are still unknown:

- Let S be the Sorgenfrey line. Is S^{ω} a D-space?
- Is every butterfly space over a separable metric space a D-space?
- Is every paracompact, monotonically normal space a D-space?
- Suppose that X is regular and X^{ω} is hereditarily Lindelöf. Is X a D-space?
- Is every hereditarily Lindelöf/MN/ σ -discrete space dually discrete?
- Suppose that $A \times B$ is Lindelöf for all $A \subseteq X$ and $B \subseteq Y$. Is $X \times Y$ hereditarily Lindelöf? If X = Y?

2012, Warsaw

10 / 11

The following are still unknown:

- Let S be the Sorgenfrey line. Is S^{ω} a D-space?
- Is every butterfly space over a separable metric space a D-space?
- Is every paracompact, monotonically normal space a D-space?
- Suppose that X is regular and X^{ω} is hereditarily Lindelöf. Is X a D-space?
- Is every hereditarily Lindelöf/MN/σ-discrete space dually discrete?
- Suppose that $A \times B$ is Lindelöf for all $A \subseteq X$ and $B \subseteq Y$. Is $X \times Y$ hereditarily Lindelöf? If X = Y?

2012, Warsaw

10 / 11

- Let S be the Sorgenfrey line. Is S^{ω} a D-space?
- Is every butterfly space over a separable metric space a D-space?
- Is every paracompact, monotonically normal space a D-space?
- Suppose that X is regular and X^{ω} is hereditarily Lindelöf. Is X a D-space?
- Is every hereditarily Lindelöf/MN/σ-discrete space dually discrete?
- Suppose that $A \times B$ is Lindelöf for all $A \subseteq X$ and $B \subseteq Y$. Is $X \times Y$ hereditarily Lindelöf? If X = Y?

Dániel Soukup (U of T)

Thank you for your attention!