On a Topological Choice Principle by Murray Bell

Paul Howard ${ }^{1}$ Eleftherios Tachtsis ${ }^{2}$
${ }^{1}$ Dept. of Mathematics
Eastern Michigan University
Ypsilanti, MI, U.S.A.
${ }^{2}$ Dept. of Statistics \& Actuarial-Financial Mathematics
University of the Aegean
Samos, GREECE

Trends in Set Theory, Warsaw, July 8-11, 2012

Statement of Bell's choice principle and open problem

In Arnold W. Miller's paper "Some interesting problems" (1993, [9]), the following topological choice principle as well as the related open problem are attributed to Murray Bell.

Statement of Bell's choice principle and open problem

In Arnold W. Miller's paper "Some interesting problems" (1993, [9]), the following topological choice principle as well as the related open problem are attributed to Murray Bell.

- (C): For every family $\mathcal{A}=\left\{A_{i}: i \in I\right\}$ of non-empty sets there is a function f with domain \mathcal{A} such that $\forall i \in I, f\left(A_{i}\right)$ is a compact Hausdorff topology on A_{i}.

In Arnold W. Miller's paper "Some interesting problems" (1993, [9]), the following topological choice principle as well as the related open problem are attributed to Murray Bell.

- (C): For every family $\mathcal{A}=\left\{A_{i}: i \in I\right\}$ of non-empty sets there is a function f with domain \mathcal{A} such that $\forall i \in I, f\left(A_{i}\right)$ is a compact Hausdorff topology on A_{i}.
- Bell's Problem: Is (C) equivalent to the Axiom of Choice $A C$? If not, what principles of choice is (C) equivalent to?

In Arnold W. Miller's paper "Some interesting problems" (1993, [9]), the following topological choice principle as well as the related open problem are attributed to Murray Bell.

- (C): For every family $\mathcal{A}=\left\{A_{i}: i \in I\right\}$ of non-empty sets there is a function f with domain \mathcal{A} such that $\forall i \in I, f\left(A_{i}\right)$ is a compact Hausdorff topology on A_{i}.
- Bell's Problem: Is (C) equivalent to the Axiom of Choice $A C$? If not, what principles of choice is (C) equivalent to?
- Both questions of the problem are still unresolved.

Some Easy Observations:

Some Easy Observations:

- (C) is provable in ZFC.

Some Easy Observations:

- (C) is provable in ZFC.
- (C), restricted to families of finite sets, is provable in ZF.

Some Easy Observations:

- (C) is provable in ZFC.
- (C), restricted to families of finite sets, is provable in ZF.
- (C) is not provable in ZF:

Some Easy Observations:

- (C) is provable in ZFC.
- (C), restricted to families of finite sets, is provable in ZF.
- (C) is not provable in ZF:
- Indeed, since in ZF, BPI (the Boolean Prime Ideal Theorem) is equivalent to the statement "The Tychonoff product of compact Hausdorff spaces is compact" (H. Rubin and D. Scott, 1954, [10]), it follows that, in ZF,

$$
\mathrm{AC} \Leftrightarrow(\mathrm{C})+\mathrm{BPI} .
$$

Some Easy Observations:

- (C) is provable in ZFC.
- (C), restricted to families of finite sets, is provable in ZF.
- (C) is not provable in ZF:
- Indeed, since in ZF, BPI (the Boolean Prime Ideal Theorem) is equivalent to the statement "The Tychonoff product of compact Hausdorff spaces is compact" (H. Rubin and D. Scott, 1954, [10]), it follows that, in ZF,

$$
\mathrm{AC} \Leftrightarrow(\mathrm{C})+\mathrm{BPI} .
$$

- On the other hand, BPI does not imply AC in ZF (J. D. Halpern and A. Lévy, 1967, [2]).

The difficulty in deciding the placement of (C) in the hierarchy of choice forms

The difficulty in deciding the placement of (C) in the hierarchy of choice forms

Let $\mathcal{A}=\left\{A_{i}: i \in I\right\}$ be a family of infinite sets.

- If one does not assume the full $A C$, it is difficult to come up with a compact Hausdorff topology T_{i} on A_{i}, which is different from the Alexandroff one-point compactification, or which has only one non-isolated point (i.e., T_{i} is an Alexandroff topology).

The difficulty in deciding the placement of (C) in the hierarchy of choice forms

Let $\mathcal{A}=\left\{A_{i}: i \in I\right\}$ be a family of infinite sets.

- If one does not assume the full AC, it is difficult to come up with a compact Hausdorff topology T_{i} on A_{i}, which is different from the Alexandroff one-point compactification, or which has only one non-isolated point (i.e., T_{i} is an Alexandroff topology).
- One might think of extending (using some weak form of AC) a definable compact T_{1} topology on A_{i} to a compact Hausdorff topology. But, even in ZFC, this may not be feasible (e.g., the one-point compactification of \mathbb{Q} with its standard topology).

The difficulty in deciding the placement of (C) in the hierarchy of choice forms

Let $\mathcal{A}=\left\{A_{i}: i \in I\right\}$ be a family of infinite sets.

- If one does not assume the full AC, it is difficult to come up with a compact Hausdorff topology T_{i} on A_{i}, which is different from the Alexandroff one-point compactification, or which has only one non-isolated point (i.e., T_{i} is an Alexandroff topology).
- One might think of extending (using some weak form of AC) a definable compact T_{1} topology on A_{i} to a compact Hausdorff topology. But, even in ZFC, this may not be feasible (e.g., the one-point compactification of \mathbb{Q} with its standard topology).
- Close to this, Herrlich and Keremedis, 2011, [3], showed that if for every set X, every compact R_{1} topology on X (i.e., its T_{0}-identification is Hausdorff) can be extended to a compact Hausdorff topology, then (C) holds.
- Some form of choice could be derived from (C), if we could decide whether some points in A_{i} (with an assigned, by (C), compact Hausdorff topology T_{i}) satisfy a certain (topological) property P_{i}, while others don't satisfy P_{i}. For example,
- Some form of choice could be derived from (C), if we could decide whether some points in A_{i} (with an assigned, by (C), compact Hausdorff topology T_{i}) satisfy a certain (topological) property P_{i}, while others don't satisfy P_{i}. For example,
- If $\forall i \in I,\left(A_{i}, T_{i}\right)$ has isolated points, then a Kinna-Wagner selection function could be defined for the family $\mathcal{A}=\left\{A_{i}: i \in I\right\}$.
- Some form of choice could be derived from (C), if we could decide whether some points in A_{i} (with an assigned, by (C), compact Hausdorff topology T_{i}) satisfy a certain (topological) property P_{i}, while others don't satisfy P_{i}. For example,
- If $\forall i \in I,\left(A_{i}, T_{i}\right)$ has isolated points, then a Kinna-Wagner selection function could be defined for the family $\mathcal{A}=\left\{A_{i}: i \in I\right\}$.
- If $\forall i \in I,\left(A_{i}, T_{i}\right)$ is a scattered space, then a multiple choice function could be defined for \mathcal{A} (using the height of each A_{i}).
- Some form of choice could be derived from (C), if we could decide whether some points in A_{i} (with an assigned, by (C), compact Hausdorff topology T_{i}) satisfy a certain (topological) property P_{i}, while others don't satisfy P_{i}. For example,
- If $\forall i \in I,\left(A_{i}, T_{i}\right)$ has isolated points, then a Kinna-Wagner selection function could be defined for the family $\mathcal{A}=\left\{A_{i}: i \in I\right\}$.
- If $\forall i \in I,\left(A_{i}, T_{i}\right)$ is a scattered space, then a multiple choice function could be defined for \mathcal{A} (using the height of each A_{i}).
- If $\forall i \in I,\left|A_{i}\right|=\aleph_{0}$, and we could prove that (A_{i}, T_{i}) is metrizable, hence scattered, then again a multiple choice function could be defined for \mathcal{A}.
- Some form of choice could be derived from (C), if we could decide whether some points in A_{i} (with an assigned, by (C), compact Hausdorff topology T_{i}) satisfy a certain (topological) property P_{i}, while others don't satisfy P_{i}. For example,
- If $\forall i \in I,\left(A_{i}, T_{i}\right)$ has isolated points, then a Kinna-Wagner selection function could be defined for the family $\mathcal{A}=\left\{A_{i}: i \in I\right\}$.
- If $\forall i \in I,\left(A_{i}, T_{i}\right)$ is a scattered space, then a multiple choice function could be defined for \mathcal{A} (using the height of each A_{i}).
- If $\forall i \in I,\left|A_{i}\right|=\aleph_{0}$, and we could prove that (A_{i}, T_{i}) is metrizable, hence scattered, then again a multiple choice function could be defined for \mathcal{A}. However, in ZF, a countable compact Hausdorff space may fail to be metrizable (K. Keremedis, E. Tachtsis, 2007, [8]).
- If $\forall i \in I, A_{i}$ were an amorphous set (i.e., an infinite set that cannot be partitioned into two infinite sets), then T_{i} is an Alexandroff topology on A_{i} and we could define a choice function on \mathcal{A}.
- If $\forall i \in I, A_{i}$ were an amorphous set (i.e., an infinite set that cannot be partitioned into two infinite sets), then T_{i} is an Alexandroff topology on A_{i} and we could define a choice function on \mathcal{A}.

However, in the presence of (C), no such sets exist:

Theorem

(Herrlich, Keremedis, [3]) In ZF, (C) implies that there are no amorphous sets.

- If $\forall i \in I, A_{i}$ were an amorphous set (i.e., an infinite set that cannot be partitioned into two infinite sets), then T_{i} is an Alexandroff topology on A_{i} and we could define a choice function on \mathcal{A}.

However, in the presence of (C), no such sets exist:

Theorem

(Herrlich, Keremedis, [3]) In ZF, (C) implies that there are no amorphous sets.

- Due to the non-constructive character of (C) and due to the fact that we may know nothing on the nature of the sets in an infinite family, upon which (C) is applied, it seems reasonable to think that further suitable assumptions must be added to (C) in order to derive certain choice forms.

Our Approach to Bell's Problem

Our Approach to Bell's Problem

- It is known that the Multiple Choice Axiom MC is equivalent to $A C$ in $Z F$. Hence, in $Z F, M C \Rightarrow(C)$.

Our Approach to Bell's Problem

- It is known that the Multiple Choice Axiom MC is equivalent to $A C$ in $Z F$. Hence, in $Z F, M C \Rightarrow(C)$.
- However, MC does not imply AC in ZFA set theory (ZF with the Axiom of Extensionality weakened to permit the existence of atoms). Therefore, the natural question that comes up is the following:

Our Approach to Bell's Problem

- It is known that the Multiple Choice Axiom MC is equivalent to $A C$ in ZF. Hence, in ZF, $M C \Rightarrow(C)$.
- However, MC does not imply AC in ZFA set theory (ZF with the Axiom of Extensionality weakened to permit the existence of atoms). Therefore, the natural question that comes up is the following:
- Is (C) provable in ZFA + MC?

Our Approach to Bell's Problem

- It is known that the Multiple Choice Axiom MC is equivalent to $A C$ in $Z F$. Hence, in $Z F, M C \Rightarrow(C)$.
- However, MC does not imply AC in ZFA set theory (ZF with the Axiom of Extensionality weakened to permit the existence of atoms). Therefore, the natural question that comes up is the following:
- Is (C) provable in ZFA + MC?
- The answer is an emphatic NO!

To argue on this, we consider the following weak choice principles:

To argue on this, we consider the following weak choice principles:

- UF (ω) : There is a free ultrafilter on ω.

To argue on this, we consider the following weak choice principles:

- UF (ω) : There is a free ultrafilter on ω.
- PKW ${ }^{\aleph 0}$, Partial Kinna-Wagner Principle: For every denumerable family \mathcal{A} of sets each with at least two elements, there is an infinite subfamily $\mathcal{B} \subseteq \mathcal{A}$ and a function f with domain \mathcal{B} such that $\forall x \in \mathcal{B}, \emptyset \neq f(x) \subsetneq x$.

To argue on this, we consider the following weak choice principles:

- UF (ω) : There is a free ultrafilter on ω.
- PKW ${ }^{\aleph_{0}}$, Partial Kinna-Wagner Principle: For every denumerable family \mathcal{A} of sets each with at least two elements, there is an infinite subfamily $\mathcal{B} \subseteq \mathcal{A}$ and a function f with domain \mathcal{B} such that $\forall x \in \mathcal{B}, \emptyset \neq f(x) \subsetneq x$.
- $\operatorname{PAC}_{n}^{\aleph_{0}}($ where $n \in \mathbb{N})$: For every denumerable family \mathcal{A} of non-empty sets each with at most n elements, there is an infinite subfamily of \mathcal{A} with a choice function.

To argue on this, we consider the following weak choice principles:

- UF (ω) : There is a free ultrafilter on ω.
- PKW ${ }^{\circ}$, Partial Kinna-Wagner Principle: For every denumerable family \mathcal{A} of sets each with at least two elements, there is an infinite subfamily $\mathcal{B} \subseteq \mathcal{A}$ and a function f with domain \mathcal{B} such that $\forall x \in \mathcal{B}, \emptyset \neq f(x) \subsetneq x$.
- $\mathrm{PAC}_{n}^{\aleph_{0}}($ where $n \in \mathbb{N})$: For every denumerable family \mathcal{A} of non-empty sets each with at most n elements, there is an infinite subfamily of \mathcal{A} with a choice function.

Theorem

The following implications hold in ZF:
(1) (C) $+U F(\omega)$ implies PKW ${ }^{\aleph_{0}}$.
(2) (C) $+U F(\omega)$ implies "For every integer $n \geq 2, P A C_{n}^{\mathbb{X}_{0}}$ ".

Proof.

(1) By way of contradiction, assume the existence of a disjoint family $\mathcal{A}=\left\{A_{i}: i \in \omega\right\}$, where $\forall i \in \omega,\left|A_{i}\right| \geq 2$, without a partial Kinna-Wagner (pKW) function. For each $X \subseteq \bigcup \mathcal{A}$, let T_{X} be a compact Hausdorff topology on X. By induction we define a partial choice function for \mathcal{A}.

Proof.

(1) By way of contradiction, assume the existence of a disjoint family $\mathcal{A}=\left\{A_{i}: i \in \omega\right\}$, where $\forall i \in \omega,\left|A_{i}\right| \geq 2$, without a partial Kinna-Wagner (pKW) function. For each $X \subseteq \bigcup \mathcal{A}$, let T_{X} be a compact Hausdorff topology on X. By induction we define a partial choice function for \mathcal{A}.

- First, let \mathcal{F}_{0} be a free ultrafilter on ω and let

$$
\mathcal{H}_{0}=\left\{\bigcup\left\{A_{n}: n \in F\right\}: F \in \mathcal{F}_{0}\right\} .
$$

Proof.

(1) By way of contradiction, assume the existence of a disjoint family $\mathcal{A}=\left\{A_{i}: i \in \omega\right\}$, where $\forall i \in \omega,\left|A_{i}\right| \geq 2$, without a partial Kinna-Wagner (pKW) function. For each $X \subseteq \bigcup \mathcal{A}$, let T_{X} be a compact Hausdorff topology on X. By induction we define a partial choice function for \mathcal{A}.

- First, let \mathcal{F}_{0} be a free ultrafilter on ω and let

$$
\mathcal{H}_{0}=\left\{\bigcup\left\{A_{n}: n \in F\right\}: F \in \mathcal{F}_{0}\right\} .
$$

Since \mathcal{A} has no pKW-function, \mathcal{H}_{0} is a base for some free ultrafilter \mathcal{G}_{0} on $\bigcup \mathcal{A}$. By compactness and Hausdorfness of $\left(\bigcup \mathcal{A}, T_{\cup \mathcal{A}}\right), \exists!n_{0} \in \omega$ and $\exists!y_{n_{0}} \in A_{n_{0}}$ such that $\mathcal{G}_{0} \rightarrow y_{n_{0}}$.

Proof.

(1) By way of contradiction, assume the existence of a disjoint family $\mathcal{A}=\left\{A_{i}: i \in \omega\right\}$, where $\forall i \in \omega,\left|A_{i}\right| \geq 2$, without a partial Kinna-Wagner (pKW) function. For each $X \subseteq \bigcup \mathcal{A}$, let T_{X} be a compact Hausdorff topology on X. By induction we define a partial choice function for \mathcal{A}.

- First, let \mathcal{F}_{0} be a free ultrafilter on ω and let

$$
\mathcal{H}_{0}=\left\{\bigcup\left\{A_{n}: n \in F\right\}: F \in \mathcal{F}_{0}\right\} .
$$

Since \mathcal{A} has no pKW-function, \mathcal{H}_{0} is a base for some free ultrafilter \mathcal{G}_{0} on $\bigcup \mathcal{A}$. By compactness and Hausdorfness of $\left(\bigcup \mathcal{A}, T_{\cup \mathcal{A}}\right), \exists!n_{0} \in \omega$ and $\exists!y_{n_{0}} \in A_{n_{0}}$ such that $\mathcal{G}_{0} \rightarrow y_{n_{0}}$.

- Assume that we have chosen integers $n_{0}<n_{1}<\ldots<n_{k}$ and elements $y_{n_{i}} \in A_{n_{i}}$ for $i=0,1, \ldots, k$.
- Consider the compact Hausdorff space $\left(X_{k+1}, T_{X_{k+1}}\right)$, where $X_{k+1}=(\bigcup \mathcal{A}) \backslash\left(\bigcup_{i \leq n_{k}} A_{i}\right)$. The set

$$
\mathcal{H}_{k+1}=\left\{\bigcup\left\{A_{n}: n \in F \backslash\left(n_{k}+1\right)\right\}: F \in \mathcal{F}_{0}\right\}
$$

is a base for some free ultrafilter \mathcal{G}_{k+1} on X_{k+1}. Hence, there is a unique element $y_{n_{k+1}} \in A_{n_{k+1}}$, where n_{k+1} is an integer greater than n_{k}, such that $\mathcal{G}_{k+1} \rightarrow y_{n_{k+1}}$.

- Consider the compact Hausdorff space $\left(X_{k+1}, T_{X_{k+1}}\right)$, where $X_{k+1}=(\bigcup \mathcal{A}) \backslash\left(\bigcup_{i \leq n_{k}} A_{i}\right)$. The set

$$
\mathcal{H}_{k+1}=\left\{\bigcup\left\{A_{n}: n \in F \backslash\left(n_{k}+1\right)\right\}: F \in \mathcal{F}_{0}\right\}
$$

is a base for some free ultrafilter \mathcal{G}_{k+1} on X_{k+1}. Hence, there is a unique element $y_{n_{k+1}} \in A_{n_{k+1}}$, where n_{k+1} is an integer greater than n_{k}, such that $\mathcal{G}_{k+1} \rightarrow y_{n_{k+1}}$.

Then $f=\left\{\left(i, y_{n_{i}}\right): i \in \omega\right\}$ is a partial choice function of \mathcal{A}, a contradiction.

- Consider the compact Hausdorff space $\left(X_{k+1}, T_{X_{k+1}}\right)$, where $X_{k+1}=(\bigcup \mathcal{A}) \backslash\left(\bigcup_{i \leq n_{k}} A_{i}\right)$. The set

$$
\mathcal{H}_{k+1}=\left\{\bigcup\left\{A_{n}: n \in F \backslash\left(n_{k}+1\right)\right\}: F \in \mathcal{F}_{0}\right\}
$$

is a base for some free ultrafilter \mathcal{G}_{k+1} on X_{k+1}. Hence, there is a unique element $y_{n_{k+1}} \in A_{n_{k+1}}$, where n_{k+1} is an integer greater than n_{k}, such that $\mathcal{G}_{k+1} \rightarrow y_{n_{k+1}}$.

Then $f=\left\{\left(i, y_{n_{i}}\right): i \in \omega\right\}$ is a partial choice function of \mathcal{A}, a contradiction.
(2) Use part 1 and mathematical induction.

MC does not imply (C) in ZFA set theory.

Corollary

MC does not imply (C) in ZFA set theory.

Proof.

Let \mathcal{N} be the second Fraenkel permutation model: The set of atoms $A=\bigcup\left\{A_{n}: n \in \omega\right\}$, where $\forall n \in \omega,\left|A_{n}\right|=2$. The group G of permutations of A consists of all π such that $\forall n \in \omega$, $\pi\left(A_{n}\right)=A_{n}$. The normal ideal of supports is $[A]^{<\omega}$. \mathcal{N} is the FM model determined by G and $[A]^{<\omega}$. The following facts about \mathcal{N} are well-known (Howard-Rubin [6], Jech [7]):

Corollary

MC does not imply (C) in ZFA set theory.

Proof.

Let \mathcal{N} be the second Fraenkel permutation model: The set of atoms $A=\bigcup\left\{A_{n}: n \in \omega\right\}$, where $\forall n \in \omega,\left|A_{n}\right|=2$. The group G of permutations of A consists of all π such that $\forall n \in \omega$, $\pi\left(A_{n}\right)=A_{n}$. The normal ideal of supports is $[A]^{<\omega}$. \mathcal{N} is the FM model determined by G and $[A]^{<\omega}$. The following facts about \mathcal{N} are well-known (Howard-Rubin [6], Jech [7]):
(1) $\mathcal{N} \vDash \mathrm{MC}$.

Corollary

MC does not imply (C) in ZFA set theory.

Proof.

Let \mathcal{N} be the second Fraenkel permutation model: The set of atoms $A=\bigcup\left\{A_{n}: n \in \omega\right\}$, where $\forall n \in \omega,\left|A_{n}\right|=2$. The group G of permutations of A consists of all π such that $\forall n \in \omega$, $\pi\left(A_{n}\right)=A_{n}$. The normal ideal of supports is $[A]^{<\omega}$. \mathcal{N} is the FM model determined by G and $[A]^{<\omega}$. The following facts about \mathcal{N} are well-known (Howard-Rubin [6], Jech [7]):
(1) $\mathcal{N} \vDash \mathrm{MC}$.
(2) $\mathcal{N} \vDash \operatorname{UF}(\omega)$. (ω is a pure set, hence every $F M$ model satisfies $U F(\omega))$.

Corollary

MC does not imply (C) in ZFA set theory.

Proof.

Let \mathcal{N} be the second Fraenkel permutation model: The set of atoms $A=\bigcup\left\{A_{n}: n \in \omega\right\}$, where $\forall n \in \omega,\left|A_{n}\right|=2$. The group G of permutations of A consists of all π such that $\forall n \in \omega$, $\pi\left(A_{n}\right)=A_{n}$. The normal ideal of supports is $[A]^{<\omega}$. \mathcal{N} is the FM model determined by G and $[A]^{<\omega}$. The following facts about \mathcal{N} are well-known (Howard-Rubin [6], Jech [7]):
(1) $\mathcal{N} \vDash \mathrm{MC}$.
(2) $\mathcal{N} \vDash \operatorname{UF}(\omega)$. (ω is a pure set, hence every $F M$ model satisfies UF (ω)).
(3) $\mathcal{N} \vDash$ The family $\mathcal{A}=\left\{A_{n}: n \in \omega\right\}$ has no partial choice function.

Corollary

MC does not imply (C) in ZFA set theory.

Proof.

Let \mathcal{N} be the second Fraenkel permutation model: The set of atoms $A=\bigcup\left\{A_{n}: n \in \omega\right\}$, where $\forall n \in \omega,\left|A_{n}\right|=2$. The group G of permutations of A consists of all π such that $\forall n \in \omega$, $\pi\left(A_{n}\right)=A_{n}$. The normal ideal of supports is $[A]^{<\omega}$. \mathcal{N} is the FM model determined by G and $[A]^{<\omega}$. The following facts about \mathcal{N} are well-known (Howard-Rubin [6], Jech [7]):
(1) $\mathcal{N} \vDash \mathrm{MC}$.
(2) $\mathcal{N} \vDash \mathrm{UF}(\omega)$. (ω is a pure set, hence every FM model satisfies UF (ω)).
(3) $\mathcal{N} \vDash$ The family $\mathcal{A}=\left\{A_{n}: n \in \omega\right\}$ has no partial choice function.
Therefore, $\mathcal{N} \vDash \neg(\mathrm{C})$.

- The next result gives a topological flavor in the principle UF (ω) and perhaps could shed more light on the connection between (C) and UF (ω).
- The next result gives a topological flavor in the principle UF (ω) and perhaps could shed more light on the connection between (C) and UF(ω).

Theorem

The following statements are pairwise equivalent in ZF:

- The next result gives a topological flavor in the principle UF (ω) and perhaps could shed more light on the connection between (C) and UF(ω).

Theorem

The following statements are pairwise equivalent in ZF:
(1) $\mathrm{UF}(\omega)$,

- The next result gives a topological flavor in the principle UF (ω) and perhaps could shed more light on the connection between (C) and UF (ω).

Theorem

The following statements are pairwise equivalent in ZF :
(1) $\mathrm{UF}(\omega)$,
(2) A Tychonoff product of compact Hausdorff spaces is sequentially accumulation point compact (i.e., every sequence has an accumulation point),

- The next result gives a topological flavor in the principle UF (ω) and perhaps could shed more light on the connection between (C) and UF(ω).

Theorem

The following statements are pairwise equivalent in ZF :
(1) $\mathrm{UF}(\omega)$,
(2) A Tychonoff product of compact Hausdorff spaces is sequentially accumulation point compact (i.e., every sequence has an accumulation point),
(3) A Tychonoff product of spaces, each with the cofinite topology, is sequentially accumulation point compact,

- The next result gives a topological flavor in the principle UF (ω) and perhaps could shed more light on the connection between (C) and UF(ω).

Theorem

The following statements are pairwise equivalent in ZF:
(1) $\mathrm{UF}(\omega)$,
(2) A Tychonoff product of compact Hausdorff spaces is sequentially accumulation point compact (i.e., every sequence has an accumulation point),
(3) A Tychonoff product of spaces, each with the cofinite topology, is sequentially accumulation point compact,
(9) (Tachtsis, 2010, [11]) $\forall X$, the Cantor cube 2^{X} is sequentially accumulation point compact. In particular, $2^{\mathbb{R}}$ is s.a.p.c.

- Recall that (C) $+\operatorname{UF}(\omega)$ implies the Partial Kinna-Wagner Selection Principle (for countable families).
- Recall that (C) $+\operatorname{UF}(\omega)$ implies the Partial Kinna-Wagner Selection Principle (for countable families).
- How much higher can we climb up in the hierarchy of weak choice principles if, instead of $\operatorname{UF}(\omega)$, we consider the stronger assumption of the extension of countable filterbases on sets to ultrafilters?
- Recall that $(C)+\operatorname{UF}(\omega)$ implies the Partial Kinna-Wagner Selection Principle (for countable families).
- How much higher can we climb up in the hierarchy of weak choice principles if, instead of $\operatorname{UF}(\omega)$, we consider the stronger assumption of the extension of countable filterbases on sets to ultrafilters?

Towards an answer, let CBPI abbreviate the statement:

- CBPI: For every set X, every countable filterbase on X can be extended to an ultrafilter on X.
- Recall that $(C)+\operatorname{UF}(\omega)$ implies the Partial Kinna-Wagner Selection Principle (for countable families).
- How much higher can we climb up in the hierarchy of weak choice principles if, instead of $\operatorname{UF}(\omega)$, we consider the stronger assumption of the extension of countable filterbases on sets to ultrafilters?

Towards an answer, let CBPI abbreviate the statement:

- CBPI: For every set X, every countable filterbase on X can be extended to an ultrafilter on X.

It's fairly easy to see that:

- In ZF, CBPI implies UF (ω).
- In ZF, (CBPI restricted to countable sets) iff UF (ω).

Theorem
Each of the following statements implies the one beneath it:
(1) CBPI,

Theorem
Each of the following statements implies the one beneath it:
(1) CBPI,
(2) The Tychonoff product of a countable family of compact Hausdorff spaces is compact,

Theorem
Each of the following statements implies the one beneath it:
(1) CBPI,
(2) The Tychonoff product of a countable family of compact Hausdorff spaces is compact,
(3) The product of a countable family of compact Hausdorff spaces is non-empty

Theorem
Each of the following statements implies the one beneath it:
(1) CBPI,
(2) The Tychonoff product of a countable family of compact Hausdorff spaces is compact,
(3) The product of a countable family of compact Hausdorff spaces is non-empty and the Tychonoff product of a countable family of cofinite spaces is compact.

Theorem
Each of the following statements implies the one beneath it:
(1) CBPI,
(2) The Tychonoff product of a countable family of compact Hausdorff spaces is compact,
(3) The product of a countable family of compact Hausdorff spaces is non-empty and the Tychonoff product of a countable family of cofinite spaces is compact. Each of the latter two statements implies $A C_{\text {fin }}^{N_{0}}$ (AC for countable families of non-empty finite sets).

Theorem

Each of the following statements implies the one beneath it:
(1) CBPI,
(2) The Tychonoff product of a countable family of compact Hausdorff spaces is compact,
(3) The product of a countable family of compact Hausdorff spaces is non-empty and the Tychonoff product of a countable family of cofinite spaces is compact. Each of the latter two statements implies $A C_{\text {fin }}^{N_{0}}$ (AC for countable families of non-empty finite sets).

Theorem

(C) + "For a product of countably many compact Hausdorff spaces canonical projections are closed" implies $A C^{\aleph_{0}}$ (AC restricted to countable families of non-empty sets).

A weakening of Bell's topological choice principle

- $\left(C^{\aleph_{0}}\right)$: (C) restricted to countable families of infinite sets.

A weakening of Bell's topological choice principle

- $\left(C^{\aleph_{0}}\right)$: (C) restricted to countable families of infinite sets.

Theorem

(1) $\left(C^{\aleph_{0}}\right)+C B P I$ iff $A C^{X_{0}}+U F(\omega)$.

A weakening of Bell's topological choice principle

- $\left(\mathrm{C}^{\aleph_{0}}\right)$: (C) restricted to countable families of infinite sets.

Theorem

(1) $\left(C^{\mathrm{N}_{0}}\right)+C B P I$ iff $A C^{X_{0}}+U F(\omega)$.
(2) $\left(C^{\aleph_{0}}\right)+$ CBPI implies "A Tychonoff product of countably many compact spaces is compact".

A weakening of Bell's topological choice principle

- $\left(C^{\aleph_{0}}\right):(C)$ restricted to countable families of infinite sets.

Theorem

(1) $\left(C^{\mathrm{N}_{0}}\right)+C B P I$ iff $A C^{X_{0}}+U F(\omega)$.
(2) $\left(C^{\aleph_{0}}\right)+$ CBPI implies "A Tychonoff product of countably many compact spaces is compact".
(3) $\left(C^{\chi_{0}}\right)+$ CBPI implies "For every infinite set X, the Cantor cube 2^{X} is countably compact".

A weakening of Bell's topological choice principle

- $\left(C^{\aleph_{0}}\right):(C)$ restricted to countable families of infinite sets.

Theorem

(1) $\left(C^{\mathrm{N}_{0}}\right)+C B P I$ iff $A C^{X_{0}}+U F(\omega)$.
(2) $\left(C^{\aleph_{0}}\right)+$ CBPI implies "A Tychonoff product of countably many compact spaces is compact".
(3) $\left(C^{\aleph_{0}}\right)+$ CBPI implies "For every infinite set X, the Cantor cube 2^{X} is countably compact".
(4) $\left(C^{\aleph_{0}}\right)+C B P I$ is not equivalent to $A C^{\aleph_{0}}$ in $Z F$.

A weakening of Bell's topological choice principle

- $\left(C^{\aleph_{0}}\right):(C)$ restricted to countable families of infinite sets.

Theorem

(1) $\left(C^{\mathrm{N}_{0}}\right)+C B P I$ iff $A C^{X_{0}}+U F(\omega)$.
(2) $\left(C^{\aleph_{0}}\right)+$ CBPI implies "A Tychonoff product of countably many compact spaces is compact".
(3) $\left(C^{\aleph_{0}}\right)+$ CBPI implies "For every infinite set X, the Cantor cube 2^{X} is countably compact".
(9) $\left(C^{\aleph_{0}}\right)+C B P I$ is not equivalent to $A C^{\aleph_{0}}$ in $Z F$.
(6) $\left(C^{\mathrm{N}_{0}}\right)$ does not imply $U F(\omega)$ in $Z F$.

A weakening of Bell's topological choice principle

- $\left(\mathrm{C}^{\aleph_{0}}\right)$: (C) restricted to countable families of infinite sets.

Theorem

(1) $\left(C^{\mathrm{N}_{0}}\right)+C B P I$ iff $A C^{X_{0}}+U F(\omega)$.
(2) $\left(C^{\aleph_{0}}\right)+$ CBPI implies "A Tychonoff product of countably many compact spaces is compact".
(3) $\left(C^{\aleph_{0}}\right)+$ CBPI implies "For every infinite set X, the Cantor cube 2^{X} is countably compact".
(9) $\left(C^{\aleph_{0}}\right)+C B P I$ is not equivalent to $A C^{\aleph_{0}}$ in $Z F$.
(6) $\left(C^{\aleph_{0}}\right)$ does not imply $U F(\omega)$ in $Z F$.

- Note that item 4 of the previous theorem is in striking contrast with the corresponding ZF-equivalence "AC iff (C) + BPI".

More on properties that yield topological distinction between points
More on the strength of (C)

More on properties that yield topological distinction between points
 More on the strength of (C)

- A Hausdorff space (X, T) is called effectively normal if there is a function F such that for every pair (A, B) of disjoint closed sets in $X, F(A, B)=(C, D)$ where C and D are disjoint open sets such that $A \subseteq C$ and $B \subseteq D . F$ is called a normality operator.

More on properties that yield topological distinction between points
 More on the strength of (C)

- A Hausdorff space (X, T) is called effectively normal if there is a function F such that for every pair (A, B) of disjoint closed sets in $X, F(A, B)=(C, D)$ where C and D are disjoint open sets such that $A \subseteq C$ and $B \subseteq D . F$ is called a normality operator.
P. Howard, K. Keremedis, H. Rubin, J. E. Rubin, 1998, [4] have shown:

More on properties that yield topological distinction between points
 More on the strength of (C)

- A Hausdorff space (X, T) is called effectively normal if there is a function F such that for every pair (A, B) of disjoint closed sets in $X, F(A, B)=(C, D)$ where C and D are disjoint open sets such that $A \subseteq C$ and $B \subseteq D . F$ is called a normality operator.
P. Howard, K. Keremedis, H. Rubin, J. E. Rubin, 1998, [4] have shown:
- MC iff every normal space is effectively normal. Hence, MC implies every compact Hausdorff space is effectively normal.

More on properties that yield topological distinction between points
 More on the strength of (C)

- A Hausdorff space (X, T) is called effectively normal if there is a function F such that for every pair (A, B) of disjoint closed sets in $X, F(A, B)=(C, D)$ where C and D are disjoint open sets such that $A \subseteq C$ and $B \subseteq D . F$ is called a normality operator.
P. Howard, K. Keremedis, H. Rubin, J. E. Rubin, 1998, [4] have shown:
- MC iff every normal space is effectively normal. Hence, MC implies every compact Hausdorff space is effectively normal.
- "Every compact Hausdorff space is effectively normal" is not a theorem of ZF. In particular, it implies E. van Douwen's choice principle.
(Note that "Every compact Hausdorff space is normal" is a theorem of ZF).

Lemma
Assume that every compact Hausdorff space is effectively normal. Then:

Lemma

Assume that every compact Hausdorff space is effectively normal. Then:
(1) Every compact Hausdorff space (X, T), where X can be written as a union of a countable family of finite sets, is scattered.

Lemma

Assume that every compact Hausdorff space is effectively normal. Then:
(1) Every compact Hausdorff space (X, T), where X can be written as a union of a countable family of finite sets, is scattered.
(2) Every countable compact Hausdorff space is metrizable, hence scattered.

Lemma

Assume that every compact Hausdorff space is effectively normal.
Then:
(1) Every compact Hausdorff space (X, T), where X can be written as a union of a countable family of finite sets, is scattered.
(2) Every countable compact Hausdorff space is metrizable, hence scattered.
(3) Every compact Hausdorff space (X, T), where X is well orderable and $|X|<2^{\aleph_{0}}$, is scattered.

Lemma

Assume that every compact Hausdorff space is effectively normal. Then:
(1) Every compact Hausdorff space (X, T), where X can be written as a union of a countable family of finite sets, is scattered.
(2) Every countable compact Hausdorff space is metrizable, hence scattered.
(3) Every compact Hausdorff space (X, T), where X is well orderable and $|X|<2^{\aleph_{0}}$, is scattered.

Proof. (1) It suffices to show that every compact Hausdorff space (X, T), where X is a countable union of finite sets, has at least one isolated point.

Lemma

Assume that every compact Hausdorff space is effectively normal.
Then:
(1) Every compact Hausdorff space (X, T), where X can be written as a union of a countable family of finite sets, is scattered.
(2) Every countable compact Hausdorff space is metrizable, hence scattered.
(3) Every compact Hausdorff space (X, T), where X is well orderable and $|X|<2^{\aleph_{0}}$, is scattered.

Proof. (1) It suffices to show that every compact Hausdorff space (X, T), where X is a countable union of finite sets, has at least one isolated point. Fix such a space (X, T), where $X=\bigcup_{n \in \omega} X_{n}$, $\left|X_{n}\right|<\aleph_{0}$, and let F be a normality operator on X. By way of contradiction assume that X is dense-in-itself.

- By induction on the length of elements in ${ }^{<\omega} 2$, construct a family of sets $\left\{B_{s}: s \in<\omega 2\right\}$ with the following properties:
- By induction on the length of elements in ${ }^{<\omega} 2$, construct a family of sets $\left\{B_{s}: s \in{ }^{<\omega} 2\right\}$ with the following properties:
(1) $\forall s \in{ }^{<\omega} 2, B_{s}$ is a non-empty open subset of X.
- By induction on the length of elements in ${ }^{<\omega} 2$, construct a family of sets $\left\{B_{s}: s \in{ }^{<\omega} 2\right\}$ with the following properties:
(1) $\forall s \in{ }^{<\omega} 2, B_{s}$ is a non-empty open subset of X.
(2) $\forall s \in{ }^{<\omega} 2$ and $\forall t \in 2, B_{s \wedge t} \subseteq B_{s}$.
- By induction on the length of elements in ${ }^{<\omega} 2$, construct a family of sets $\left\{B_{s}: s \in{ }^{<\omega} 2\right\}$ with the following properties:
(1) $\forall s \in{ }^{<\omega} 2, B_{s}$ is a non-empty open subset of X.
(2) $\forall s \in{ }^{<\omega} 2$ and $\forall t \in 2, B_{s \wedge t} \subseteq B_{s}$.
(3) $\forall s \in{ }^{<\omega} 2, \mathrm{cl}_{X}\left(B_{s \sim 0}\right) \cap \mathrm{cl}_{X}\left(B_{s \sim 1}\right)=\emptyset$.
- By induction on the length of elements in ${ }^{<\omega} 2$, construct a family of sets $\left\{B_{s}: s \in<\omega 2\right\}$ with the following properties:
(1) $\forall s \in{ }^{<\omega} 2, B_{s}$ is a non-empty open subset of X.
(2) $\forall s \in{ }^{<\omega} 2$ and $\forall t \in 2, B_{s \sim t} \subseteq B_{s}$.
(3) $\forall s \in{ }^{<\omega} 2, \mathrm{cl}_{X}\left(B_{s \sim 0}\right) \cap \operatorname{cl}_{X}\left(B_{s \wedge 1}\right)=\emptyset$.
- Keypoint for the above construction: Using F, we can effectively determine, for every pair (A, B) of disjoint finite subsets of X, two open sets U and V such that $A \subseteq U$, $B \subseteq V$ and $\operatorname{cl}_{X}(U) \cap \operatorname{cl}_{X}(V)=\emptyset$.
- By induction on the length of elements in ${ }^{<\omega} 2$, construct a family of sets $\left\{B_{s}: s \in<\omega 2\right\}$ with the following properties:
(1) $\forall s \in{ }^{<\omega} 2, B_{s}$ is a non-empty open subset of X.
(2) $\forall s \in{ }^{<\omega} 2$ and $\forall t \in 2, B_{s \wedge t} \subseteq B_{s}$.
(3) $\forall s \in{ }^{<\omega} 2, \mathrm{cl}_{X}\left(B_{s \sim 0}\right) \cap \operatorname{cl}_{X}\left(\bar{B}_{s \sim 1}\right)=\emptyset$.
- Keypoint for the above construction: Using F, we can effectively determine, for every pair (A, B) of disjoint finite subsets of X, two open sets U and V such that $A \subseteq U$, $B \subseteq V$ and $\operatorname{cl}_{X}(U) \cap \operatorname{cl}_{X}(V)=\emptyset$.
- For each $f \in{ }^{\omega} 2$, let $G_{f}=\bigcap_{n \in \omega} \operatorname{cl}_{X}\left(B_{f \upharpoonright n}\right)$. By compactness of $X, G_{f} \neq \emptyset$. Let also, for $f \in{ }^{\omega} 2$,
$n_{f}=\min \left\{n \in \omega: G_{f} \cap X_{n} \neq \emptyset\right\}$.
- By induction on the length of elements in ${ }^{<\omega} 2$, construct a family of sets $\left\{B_{s}: s \in{ }^{<\omega} 2\right\}$ with the following properties:
(1) $\forall s \in{ }^{<\omega} 2, B_{s}$ is a non-empty open subset of X.
(2) $\forall s \in{ }^{<\omega} 2$ and $\forall t \in 2, B_{s \sim t} \subseteq B_{s}$.
(3) $\forall s \in{ }^{<\omega} 2, \mathrm{cl}_{X}\left(B_{s \sim 0}\right) \cap \operatorname{cl}_{X}\left(\bar{B}_{s \sim 1}\right)=\emptyset$.
- Keypoint for the above construction: Using F, we can effectively determine, for every pair (A, B) of disjoint finite subsets of X, two open sets U and V such that $A \subseteq U$, $B \subseteq V$ and $\operatorname{cl}_{X}(U) \cap \operatorname{cl}_{X}(V)=\emptyset$.
- For each $f \in{ }^{\omega} 2$, let $G_{f}=\bigcap_{n \in \omega} \operatorname{cl}_{X}\left(B_{f \upharpoonright n}\right)$. By compactness of $X, G_{f} \neq \emptyset$. Let also, for $f \in{ }^{\omega} 2$, $n_{f}=\min \left\{n \in \omega: G_{f} \cap X_{n} \neq \emptyset\right\}$.
- Define the function $H:{ }^{\omega} 2 \rightarrow \bigcup_{n \in \omega} \mathcal{P}\left(X_{n}\right)$, by letting $H(f)=G_{f} \cap X_{n_{f}}$. Then H is $1-1$, hence ${ }^{\omega} 2$ is countable, being a countable union of finite wosets. A contradiction.

Therefore, X is scattered as required.

Proof of part 2. Let (X, T) be a countable compact Hausdorff space and let F be a normality operator.

Proof of part 2. Let (X, T) be a countable compact Hausdorff space and let F be a normality operator.

- Using F, it can be shown that there is a countable base for T :

Proof of part 2. Let (X, T) be a countable compact Hausdorff space and let F be a normality operator.

- Using F, it can be shown that there is a countable base for T :
- For distinct $x, y \in X$, let $F(\{x\},\{y\})=\left(U_{x}^{y}, V_{y}^{x}\right)$. Then $\mathcal{C}=\left\{U_{x}^{y}: x, y \in X, x \neq y\right\} \cup\left\{V_{y}^{x}: x, y \in X, x \neq y\right\}$ is countable, hence $\mathcal{B}=\left\{\bigcap \mathcal{D}: D \in[\mathcal{C}]^{<\omega}\right\}$ is also countable. Furthermore, \mathcal{B} is a base for the topology T on X.

Proof of part 2. Let (X, T) be a countable compact Hausdorff space and let F be a normality operator.

- Using F, it can be shown that there is a countable base for T :
- For distinct $x, y \in X$, let $F(\{x\},\{y\})=\left(U_{x}^{y}, V_{y}^{x}\right)$. Then $\mathcal{C}=\left\{U_{x}^{y}: x, y \in X, x \neq y\right\} \cup\left\{V_{y}^{x}: x, y \in X, x \neq y\right\}$ is countable, hence $\mathcal{B}=\left\{\bigcap \mathcal{D}: D \in[\mathcal{C}]^{<\omega}\right\}$ is also countable. Furthermore, \mathcal{B} is a base for the topology T on X.
- By Urysohn's Metrization Theorem (which is provable in ZF, C. Good and I. Tree, 1995, [1]), X is metrizable.

Proof of part 2. Let (X, T) be a countable compact Hausdorff space and let F be a normality operator.

- Using F, it can be shown that there is a countable base for T :
- For distinct $x, y \in X$, let $F(\{x\},\{y\})=\left(U_{x}^{y}, V_{y}^{x}\right)$. Then $\mathcal{C}=\left\{U_{x}^{y}: x, y \in X, x \neq y\right\} \cup\left\{V_{y}^{x}: x, y \in X, x \neq y\right\}$ is countable, hence $\mathcal{B}=\left\{\bigcap \mathcal{D}: D \in[\mathcal{C}]^{<\omega}\right\}$ is also countable. Furthermore, \mathcal{B} is a base for the topology T on X.
- By Urysohn's Metrization Theorem (which is provable in ZF, C. Good and I. Tree, 1995, [1]), X is metrizable.
- Since, in ZF, every compact metrizable space with a well-ordered dense subset is a Baire space (the intersection of each countable family of dense open sets is dense), X is scattered.

Theorem

In ZF, (C) + "Every compact Hausdorff space is effectively normal" implies:

- Every family $\mathcal{A}=\left\{A_{i}: i \in I\right\}$, where for each $i \in I, A_{i}$ can be written as a countable union of non-empty finite sets, has a multiple choice function.

Theorem

In ZF, (C) + "Every compact Hausdorff space is effectively normal" implies:

- Every family $\mathcal{A}=\left\{A_{i}: i \in I\right\}$, where for each $i \in I, A_{i}$ can be written as a countable union of non-empty finite sets, has a multiple choice function. Hence, MC for families of non-empty countable sets and AC for families of non-empty countable sets of reals hold.

Theorem

In ZF, (C) + "Every compact Hausdorff space is effectively normal" implies:

- Every family $\mathcal{A}=\left\{A_{i}: i \in I\right\}$, where for each $i \in I, A_{i}$ can be written as a countable union of non-empty finite sets, has a multiple choice function. Hence, MC for families of non-empty countable sets and AC for families of non-empty countable sets of reals hold.
- Every family $\mathcal{A}=\left\{A_{i}: i \in I\right\}$, where for each $i \in I, A_{i}$ is well orderable and $\left|A_{i}\right|<2^{\aleph_{0}}$, has a multiple choice function.

Theorem

In ZF, (C) + "Every compact Hausdorff space is effectively normal" implies:

- Every family $\mathcal{A}=\left\{A_{i}: i \in I\right\}$, where for each $i \in I, A_{i}$ can be written as a countable union of non-empty finite sets, has a multiple choice function. Hence, MC for families of non-empty countable sets and AC for families of non-empty countable sets of reals hold.
- Every family $\mathcal{A}=\left\{A_{i}: i \in I\right\}$, where for each $i \in I, A_{i}$ is well orderable and $\left|A_{i}\right|<2^{\aleph_{0}}$, has a multiple choice function.

Proof. For each $i \in I$, let T_{i} be a compact Hausdorff topology on A_{i}. By the Lemma, each A_{i} is scattered. Let $\beta_{i}=\alpha_{i}+1$ be the height of A_{i}. Then for each $i \in I$, the Cantor-Bendixson derivative $\left(A_{i}\right)_{\alpha_{i}}$ is a non-empty finite subset of A_{i}. Hence, $f=\left\{\left(i,\left(A_{i}\right)_{\alpha_{i}}\right): i \in I\right\}$ is a MC function for \mathcal{A}.

Theorem

For a countable compact Hausdorff space (X, T), the following are equivalent:

- X is metrizable,
- X is second countable,
- X (topologically) embeds as a closed subspace of $[0,1]^{\omega}$,
- X is effectively normal.
- Since "Every countable compact Hausdorff space is metrizable" is not a theorem of ZF (Keremedis and Tachtsis, 2007, [8]), it follows that neither "Every countable compact Hausdorff space is effectively normal" is provable from the ZF axioms alone.

Corollary

In ZF, (C) + "Every countable compact Hausdorff space is effectively normal" implies each one of the following statements:

- \mathbb{R} cannot be written as a countable union of countable sets.
- The union of a countable family of countable sets of reals is well orderable.

Corollary

In ZF, (C) + "Every countable compact Hausdorff space is effectively normal" implies each one of the following statements:

- \mathbb{R} cannot be written as a countable union of countable sets.
- The union of a countable family of countable sets of reals is well orderable.

Theorem

(C) + "Every compact Hausdorff space is effectively normal" implies "For every integer $n \geq 2, P A C_{n}^{\aleph_{0}}$ ".

Corollary

In ZF, (C) + "Every countable compact Hausdorff space is effectively normal" implies each one of the following statements:

- \mathbb{R} cannot be written as a countable union of countable sets.
- The union of a countable family of countable sets of reals is well orderable.

Theorem

(C) + "Every compact Hausdorff space is effectively normal" implies "For every integer $n \geq 2, P A C_{n}^{\aleph_{0}}$ ".

- The assumption of (C), in the previous theorem, cannot be dropped; In the second Fraenkel model \mathcal{N}, every compact Hausdorff space is effectively normal (since $\mathcal{N} \vDash M C$), whereas there is a countable family of pairs in \mathcal{N} without a partial choice function.

Theorem

$(C)+A C\left(\aleph_{0}, \mathbb{R}\right)(=A C$ for countable families of non-empty sets of reals) implies that there exists a non-Lebesgue-measurable set of reals.

Theorem

$(C)+A C\left(\aleph_{0}, \mathbb{R}\right)(=A C$ for countable families of non-empty sets of reals) implies that there exists a non-Lebesgue-measurable set of reals.

Proof. For each $x \in \mathbb{R}$, consider the Vitali equivalence class $[x]=\{x+q: q \in \mathbb{Q}\}$. By (C), for each $x \in \mathbb{R}$, let T_{x} be a compact Hausdorff topology on $[x]$.

Theorem

$(C)+A C\left(\aleph_{0}, \mathbb{R}\right)(=A C$ for countable families of non-empty sets of reals) implies that there exists a non-Lebesgue-measurable set of reals.

Proof. For each $x \in \mathbb{R}$, consider the Vitali equivalence class $[x]=\{x+q: q \in \mathbb{Q}\}$. By (C), for each $x \in \mathbb{R}$, let T_{x} be a compact Hausdorff topology on $[x]$.

- $\mathrm{AC}\left(\aleph_{0}, \mathbb{R}\right)$ implies that every countable compact Hausdorff space is metrizable, hence scattered (Keremedis and Tachtsis, 2007, [8]). Thus, we may define a multiple choice function for $\mathcal{V}=\{[x]: x \in \mathbb{R}\}$, hence a choice function f for \mathcal{V}, since $\forall x \in \mathbb{R},[x] \subseteq \mathbb{R}$.

Theorem

$(C)+A C\left(\aleph_{0}, \mathbb{R}\right)(=A C$ for countable families of non-empty sets of reals) implies that there exists a non-Lebesgue-measurable set of reals.

Proof. For each $x \in \mathbb{R}$, consider the Vitali equivalence class $[x]=\{x+q: q \in \mathbb{Q}\}$. By (C), for each $x \in \mathbb{R}$, let T_{x} be a compact Hausdorff topology on [x].

- $\mathrm{AC}\left(\aleph_{0}, \mathbb{R}\right)$ implies that every countable compact Hausdorff space is metrizable, hence scattered (Keremedis and Tachtsis, 2007, [8]). Thus, we may define a multiple choice function for $\mathcal{V}=\{[x]: x \in \mathbb{R}\}$, hence a choice function f for \mathcal{V}, since $\forall x \in \mathbb{R},[x] \subseteq \mathbb{R}$.
- $\mathrm{AC}\left(\aleph_{0}, \mathbb{R}\right)$ implies that the Lebesgue measure is σ-additive, hence following the well-known proof of the existence of a non-measurable set of reals, one verifies that $E=\{f([x]): x \in \mathbb{R}\}$ is non-measurable.

Corollary
(C) fails in the following ZF-models:

- Solovay's model (M5(※) in Howard-Rubin [6]).
- Feferman's model (M2 in [6]).

Corollary
(C) fails in the following ZF-models:

- Solovay's model (M5(※) in Howard-Rubin [6]).
- Feferman's model (M2 in [6]).

Proof.

- In $\mathcal{M} 5(\aleph), \mathrm{AC}\left(\aleph_{0}, \mathbb{R}\right)$ holds but every set of reals is Lebesgue measurable. Hence, (C) fails in $\mathcal{M} 5(\aleph)$.

Corollary
(C) fails in the following ZF-models:

- Solovay's model (M5(※) in Howard-Rubin [6]).
- Feferman's model (M2 in [6]).

Proof.

- In $\mathcal{M} 5(\aleph), \mathrm{AC}\left(\aleph_{0}, \mathbb{R}\right)$ holds but every set of reals is Lebesgue measurable. Hence, (C) fails in $\mathcal{M} 5(\aleph)$.
- The following are true in $\mathcal{M} 2$:
- AC for well orderable families of non-empty sets, hence $\mathrm{AC}\left(\aleph_{0}, \mathbb{R}\right)$, holds in $\mathcal{M} 2$.
- The family $\mathcal{A}=\{\{[A],[\omega \backslash A]\}: A \subseteq \omega\}$, where for $A \subseteq \omega$, $[A]=\left\{A \triangle x: x \in[\omega]^{<\omega}\right\}$, does not have a choice function in the model.

Corollary

(C) fails in the following ZF-models:

- Solovay's model (M5(※) in Howard-Rubin [6]).
- Feferman's model (M2 in [6]).

Proof.

- In $\mathcal{M} 5(\aleph), \mathrm{AC}\left(\aleph_{0}, \mathbb{R}\right)$ holds but every set of reals is Lebesgue measurable. Hence, (C) fails in $\mathcal{M} 5(\aleph)$.
- The following are true in $\mathcal{M} 2$:
- AC for well orderable families of non-empty sets, hence $\mathrm{AC}\left(\aleph_{0}, \mathbb{R}\right)$, holds in $\mathcal{M} 2$.
- The family $\mathcal{A}=\{\{[A],[\omega \backslash A]\}: A \subseteq \omega\}$, where for $A \subseteq \omega$, $[A]=\left\{A \triangle x: x \in[\omega]^{<\omega}\right\}$, does not have a choice function in the model.
If (C) were true in $\mathcal{M} 2$, then using ideas from the proof of the previous Theorem we would obtain that the family $\mathcal{B}=\{[A]: A \subseteq \omega\}$ admits a choice set, and since $\mathcal{P}(\omega)$ is linearly orderable, a choice set for \mathcal{A} would exist in $\mathcal{M} 2$, which is impossible. Hence, (C) cannot hold in Feferman's model.

References

囯 C．Good，I．Tree．
Continuing horrors of topology without choice．
Topology and its Applications， 63 （1995），79－90．
國 J．D．Halpern，A．Lévy．
The Boolean prime ideal theorem does not imply the axiom of choice．
Axiomatic Set Theory，Proc．Symp．Pure Math．，Univ．of California，Los Angeles，D．Scott，ed．，13（1）（1967），83－134．
围 H．Herrlich，K．Keremedis．
Extending compact topologies to compact Hausdorff topologies in ZF．
Topology and its Applications， 158 （2011），2279－2286．
嘈 P．Howard，K．Keremedis，H．Rubin，J．E．Rubin．
Versions of Normality and Some Weak Forms of the Axiom of Choice．
Math．Logic Quarterly， 44 （1998），367－382．

囯 P. Howard, K. Keremedis, J. E. Rubin, A. Stanley.
Compactness in Countable Tychonoff Products and Choice. Math. Logic Quarterly, 46, No. 1 (2000), 3-16.
\& P. Howard, J. E. Rubin.
Consequences of the Axiom of Choice.
Math. Surveys and Monographs, Amer. Math. Soc., 59,
Providence (RI), 1998.
T. J. Jech.

The Axiom of Choice.
North-Holland, Amsterdam, 1973.
圊 K. Keremedis, E. Tachtsis.
Countable compact Hausdorff spaces need not be metrizable in ZF.
Proc. Amer. Math. Soc., 135 (2007), 1205-1211.
A. W. Miller.

Some interesting problems.
In Set Theory of the Reals, ed Haim Judah, Israel
Mathematical Conference Proceedings, Amer. Math. Soc., 6 (1993), 645-654.

圊 H. Rubin, D. Scott.
Some topological theorems equivalent to the Boolean prime ideal theorem.
Bull. Amer. Math. Soc., 60 (1954), 389 .
圊
E. Tachtsis.

On the Set-Theoretic Strength of Countable Compactness of the Tychonoff Product $2^{\mathbb{R}}$.
Bull. Polish Acad. Sci. Math., 58, No. 2 (2010), 91-107.

