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Statement of Bell’s choice principle and open problem

In Arnold W. Miller’s paper “Some interesting problems” (1993,
[9]), the following topological choice principle as well as the related
open problem are attributed to Murray Bell.

(C): For every family A = {Ai : i ∈ I} of non-empty sets there
is a function f with domain A such that ∀i ∈ I , f (Ai ) is a
compact Hausdorff topology on Ai .

Bell’s Problem: Is (C) equivalent to the Axiom of Choice
AC? If not, what principles of choice is (C) equivalent to?

Both questions of the problem are still unresolved.
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Some Easy Observations:

(C) is provable in ZFC.

(C), restricted to families of finite sets, is provable in ZF.

(C) is not provable in ZF:

Indeed, since in ZF, BPI (the Boolean Prime Ideal Theorem) is
equivalent to the statement “The Tychonoff product of
compact Hausdorff spaces is compact” (H. Rubin and D.
Scott, 1954, [10]), it follows that, in ZF,

AC⇔ (C) + BPI.

On the other hand, BPI does not imply AC in ZF (J. D.
Halpern and A. Lévy, 1967, [2]).
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Halpern and A. Lévy, 1967, [2]).

P. Howard, E. Tachtsis Murray Bell’s Problem



The difficulty in deciding the placement of (C) in the
hierarchy of choice forms

Let A = {Ai : i ∈ I} be a family of infinite sets.

If one does not assume the full AC, it is difficult to come up
with a compact Hausdorff topology Ti on Ai , which is
different from the Alexandroff one-point compactification, or
which has only one non-isolated point (i.e., Ti is an
Alexandroff topology).

One might think of extending (using some weak form of AC) a
definable compact T1 topology on Ai to a compact Hausdorff
topology. But, even in ZFC, this may not be feasible (e.g., the
one-point compactification of Q with its standard topology).

Close to this, Herrlich and Keremedis, 2011, [3], showed that if
for every set X , every compact R1 topology on X (i.e., its
T0-identification is Hausdorff) can be extended to a compact
Hausdorff topology, then (C) holds.
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Some form of choice could be derived from (C), if we could
decide whether some points in Ai (with an assigned, by (C),
compact Hausdorff topology Ti ) satisfy a certain (topological)
property Pi , while others don’t satisfy Pi . For example,

If ∀i ∈ I , (Ai ,Ti ) has isolated points, then a Kinna-Wagner
selection function could be defined for the family
A = {Ai : i ∈ I}.
If ∀i ∈ I , (Ai ,Ti ) is a scattered space, then a multiple choice
function could be defined for A (using the height of each Ai ).
If ∀i ∈ I , |Ai | = ℵ0, and we could prove that (Ai ,Ti ) is
metrizable, hence scattered, then again a multiple choice
function could be defined for A.
However, in ZF, a countable compact Hausdorff space may fail
to be metrizable (K. Keremedis, E. Tachtsis, 2007, [8]).
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If ∀i ∈ I , Ai were an amorphous set (i.e., an infinite set that
cannot be partitioned into two infinite sets), then Ti is an
Alexandroff topology on Ai and we could define a choice
function on A.

However, in the presence of (C), no such sets exist:

Theorem

(Herrlich, Keremedis, [3]) In ZF, (C) implies that there are no
amorphous sets.

Due to the non-constructive character of (C) and due to the
fact that we may know nothing on the nature of the sets in an
infinite family, upon which (C) is applied, it seems reasonable
to think that further suitable assumptions must be added to
(C) in order to derive certain choice forms.
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Our Approach to Bell’s Problem

It is known that the Multiple Choice Axiom MC is equivalent
to AC in ZF. Hence, in ZF, MC ⇒ (C).

However, MC does not imply AC in ZFA set theory (ZF with
the Axiom of Extensionality weakened to permit the existence
of atoms). Therefore, the natural question that comes up is
the following:

Is (C) provable in ZFA + MC?

The answer is an emphatic NO!
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To argue on this, we consider the following weak choice principles:

UF(ω): There is a free ultrafilter on ω.

PKWℵ0 , Partial Kinna-Wagner Principle: For every
denumerable family A of sets each with at least two elements,
there is an infinite subfamily B ⊆ A and a function f with
domain B such that ∀x ∈ B, ∅ 6= f (x) ( x .

PACℵ0n (where n ∈ N): For every denumerable family A of
non-empty sets each with at most n elements, there is an
infinite subfamily of A with a choice function.

Theorem

The following implications hold in ZF:

1 (C) + UF(ω) implies PKWℵ0 .

2 (C) + UF(ω) implies “For every integer n ≥ 2, PACℵ0n ”.

P. Howard, E. Tachtsis Murray Bell’s Problem



To argue on this, we consider the following weak choice principles:

UF(ω): There is a free ultrafilter on ω.

PKWℵ0 , Partial Kinna-Wagner Principle: For every
denumerable family A of sets each with at least two elements,
there is an infinite subfamily B ⊆ A and a function f with
domain B such that ∀x ∈ B, ∅ 6= f (x) ( x .

PACℵ0n (where n ∈ N): For every denumerable family A of
non-empty sets each with at most n elements, there is an
infinite subfamily of A with a choice function.

Theorem

The following implications hold in ZF:

1 (C) + UF(ω) implies PKWℵ0 .

2 (C) + UF(ω) implies “For every integer n ≥ 2, PACℵ0n ”.

P. Howard, E. Tachtsis Murray Bell’s Problem



To argue on this, we consider the following weak choice principles:

UF(ω): There is a free ultrafilter on ω.

PKWℵ0 , Partial Kinna-Wagner Principle: For every
denumerable family A of sets each with at least two elements,
there is an infinite subfamily B ⊆ A and a function f with
domain B such that ∀x ∈ B, ∅ 6= f (x) ( x .

PACℵ0n (where n ∈ N): For every denumerable family A of
non-empty sets each with at most n elements, there is an
infinite subfamily of A with a choice function.

Theorem

The following implications hold in ZF:

1 (C) + UF(ω) implies PKWℵ0 .

2 (C) + UF(ω) implies “For every integer n ≥ 2, PACℵ0n ”.

P. Howard, E. Tachtsis Murray Bell’s Problem



To argue on this, we consider the following weak choice principles:

UF(ω): There is a free ultrafilter on ω.

PKWℵ0 , Partial Kinna-Wagner Principle: For every
denumerable family A of sets each with at least two elements,
there is an infinite subfamily B ⊆ A and a function f with
domain B such that ∀x ∈ B, ∅ 6= f (x) ( x .

PACℵ0n (where n ∈ N): For every denumerable family A of
non-empty sets each with at most n elements, there is an
infinite subfamily of A with a choice function.

Theorem

The following implications hold in ZF:

1 (C) + UF(ω) implies PKWℵ0 .

2 (C) + UF(ω) implies “For every integer n ≥ 2, PACℵ0n ”.

P. Howard, E. Tachtsis Murray Bell’s Problem



To argue on this, we consider the following weak choice principles:

UF(ω): There is a free ultrafilter on ω.

PKWℵ0 , Partial Kinna-Wagner Principle: For every
denumerable family A of sets each with at least two elements,
there is an infinite subfamily B ⊆ A and a function f with
domain B such that ∀x ∈ B, ∅ 6= f (x) ( x .

PACℵ0n (where n ∈ N): For every denumerable family A of
non-empty sets each with at most n elements, there is an
infinite subfamily of A with a choice function.

Theorem

The following implications hold in ZF:

1 (C) + UF(ω) implies PKWℵ0 .

2 (C) + UF(ω) implies “For every integer n ≥ 2, PACℵ0n ”.

P. Howard, E. Tachtsis Murray Bell’s Problem



Proof.
(1) By way of contradiction, assume the existence of a disjoint
family A = {Ai : i ∈ ω}, where ∀i ∈ ω, |Ai | ≥ 2, without a partial
Kinna-Wagner (pKW) function. For each X ⊆

⋃
A, let TX be a

compact Hausdorff topology on X . By induction we define a
partial choice function for A.

First, let F0 be a free ultrafilter on ω and let

H0 = {
⋃
{An : n ∈ F} : F ∈ F0}.

Since A has no pKW-function, H0 is a base for some free
ultrafilter G0 on

⋃
A. By compactness and Hausdorfness of

(
⋃
A,T⋃

A), ∃!n0 ∈ ω and ∃!yn0 ∈ An0 such that G0 → yn0 .

Assume that we have chosen integers n0 < n1 < . . . < nk and
elements yni ∈ Ani for i = 0, 1, . . . , k .
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Consider the compact Hausdorff space (Xk+1,TXk+1
), where

Xk+1 = (
⋃
A)\(

⋃
i≤nk

Ai ). The set

Hk+1 = {
⋃
{An : n ∈ F\(nk + 1)} : F ∈ F0}

is a base for some free ultrafilter Gk+1 on Xk+1. Hence, there
is a unique element ynk+1

∈ Ank+1
, where nk+1 is an integer

greater than nk , such that Gk+1 → ynk+1
.

Then f = {(i , yni ) : i ∈ ω} is a partial choice function of A, a
contradiction.

(2) Use part 1 and mathematical induction. 2

P. Howard, E. Tachtsis Murray Bell’s Problem



Consider the compact Hausdorff space (Xk+1,TXk+1
), where

Xk+1 = (
⋃
A)\(

⋃
i≤nk

Ai ). The set

Hk+1 = {
⋃
{An : n ∈ F\(nk + 1)} : F ∈ F0}

is a base for some free ultrafilter Gk+1 on Xk+1. Hence, there
is a unique element ynk+1

∈ Ank+1
, where nk+1 is an integer

greater than nk , such that Gk+1 → ynk+1
.

Then f = {(i , yni ) : i ∈ ω} is a partial choice function of A, a
contradiction.

(2) Use part 1 and mathematical induction. 2

P. Howard, E. Tachtsis Murray Bell’s Problem



Consider the compact Hausdorff space (Xk+1,TXk+1
), where

Xk+1 = (
⋃
A)\(

⋃
i≤nk

Ai ). The set

Hk+1 = {
⋃
{An : n ∈ F\(nk + 1)} : F ∈ F0}

is a base for some free ultrafilter Gk+1 on Xk+1. Hence, there
is a unique element ynk+1

∈ Ank+1
, where nk+1 is an integer

greater than nk , such that Gk+1 → ynk+1
.

Then f = {(i , yni ) : i ∈ ω} is a partial choice function of A, a
contradiction.

(2) Use part 1 and mathematical induction. 2

P. Howard, E. Tachtsis Murray Bell’s Problem



Corollary

MC does not imply (C) in ZFA set theory.

Proof.
Let N be the second Fraenkel permutation model: The set of
atoms A =

⋃
{An : n ∈ ω}, where ∀n ∈ ω, |An| = 2. The group G

of permutations of A consists of all π such that ∀n ∈ ω,
π(An) = An. The normal ideal of supports is [A]<ω. N is the FM
model determined by G and [A]<ω. The following facts about N
are well-known (Howard-Rubin [6], Jech [7]):

1 N � MC.

2 N � UF(ω). (ω is a pure set, hence every FM model satisfies
UF(ω)).

3 N � The family A = {An : n ∈ ω} has no partial choice
function.

Therefore, N � ¬(C). 2
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The next result gives a topological flavor in the principle
UF(ω) and perhaps could shed more light on the connection
between (C) and UF(ω).

Theorem

The following statements are pairwise equivalent in ZF:

1 UF(ω),

2 A Tychonoff product of compact Hausdorff spaces is
sequentially accumulation point compact (i.e., every sequence
has an accumulation point),

3 A Tychonoff product of spaces, each with the cofinite
topology, is sequentially accumulation point compact,

4 (Tachtsis, 2010, [11]) ∀X , the Cantor cube 2X is sequentially
accumulation point compact. In particular, 2R is s.a.p.c.
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Recall that (C) + UF(ω) implies the Partial Kinna-Wagner
Selection Principle (for countable families).

How much higher can we climb up in the hierarchy of weak
choice principles if, instead of UF(ω), we consider the stronger
assumption of the extension of countable filterbases on sets to
ultrafilters?

Towards an answer, let CBPI abbreviate the statement:

CBPI: For every set X , every countable filterbase on X can be
extended to an ultrafilter on X .

It’s fairly easy to see that:

In ZF, CBPI implies UF(ω).

In ZF, (CBPI restricted to countable sets) iff UF(ω).
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Theorem

Each of the following statements implies the one beneath it:

1 CBPI,

2 The Tychonoff product of a countable family of compact
Hausdorff spaces is compact,

3 The product of a countable family of compact Hausdorff
spaces is non-empty and the Tychonoff product of a countable
family of cofinite spaces is compact. Each of the latter two
statements implies ACℵ0fin (AC for countable families of
non-empty finite sets).

Theorem

(C) + “For a product of countably many compact Hausdorff
spaces canonical projections are closed” implies ACℵ0 (AC
restricted to countable families of non-empty sets).
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A weakening of Bell’s topological choice principle

(Cℵ0) : (C) restricted to countable families of infinite sets.

Theorem

1 (Cℵ0) + CBPI iff ACℵ0 + UF(ω).

2 (Cℵ0) + CBPI implies “A Tychonoff product of countably
many compact spaces is compact”.

3 (Cℵ0) + CBPI implies “For every infinite set X , the Cantor
cube 2X is countably compact”.

4 (Cℵ0) + CBPI is not equivalent to ACℵ0 in ZF.

5 (Cℵ0) does not imply UF(ω) in ZF.

Note that item 4 of the previous theorem is in striking
contrast with the corresponding ZF-equivalence “AC iff (C) +
BPI”.
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More on properties that yield topological distinction
between points
More on the strength of (C)

A Hausdorff space (X ,T ) is called effectively normal if there
is a function F such that for every pair (A,B) of disjoint
closed sets in X , F (A,B) = (C ,D) where C and D are
disjoint open sets such that A ⊆ C and B ⊆ D. F is called a
normality operator.

P. Howard, K. Keremedis, H. Rubin, J. E. Rubin, 1998, [4] have
shown:

MC iff every normal space is effectively normal. Hence, MC
implies every compact Hausdorff space is effectively normal.
“Every compact Hausdorff space is effectively normal” is not a
theorem of ZF. In particular, it implies E. van Douwen’s
choice principle.
(Note that “Every compact Hausdorff space is normal” is a
theorem of ZF).
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Lemma

Assume that every compact Hausdorff space is effectively normal.
Then:

1 Every compact Hausdorff space (X ,T ), where X can be
written as a union of a countable family of finite sets, is
scattered.

2 Every countable compact Hausdorff space is metrizable, hence
scattered.

3 Every compact Hausdorff space (X ,T ), where X is well
orderable and |X | < 2ℵ0 , is scattered.

Proof. (1) It suffices to show that every compact Hausdorff space
(X ,T ), where X is a countable union of finite sets, has at least
one isolated point. Fix such a space (X ,T ), where X =

⋃
n∈ω Xn,

|Xn| < ℵ0, and let F be a normality operator on X . By way of
contradiction assume that X is dense-in-itself.
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orderable and |X | < 2ℵ0 , is scattered.

Proof. (1) It suffices to show that every compact Hausdorff space
(X ,T ), where X is a countable union of finite sets, has at least
one isolated point. Fix such a space (X ,T ), where X =

⋃
n∈ω Xn,

|Xn| < ℵ0, and let F be a normality operator on X . By way of
contradiction assume that X is dense-in-itself.
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By induction on the length of elements in <ω2, construct a
family of sets {Bs : s ∈ <ω2} with the following properties:

1 ∀s ∈ <ω2, Bs is a non-empty open subset of X .
2 ∀s ∈ <ω2 and ∀t ∈ 2, Bsat ⊆ Bs .
3 ∀s ∈ <ω2, clX (Bsa0) ∩ clX (Bsa1) = ∅.

Keypoint for the above construction: Using F , we can
effectively determine, for every pair (A,B) of disjoint finite
subsets of X , two open sets U and V such that A ⊆ U,
B ⊆ V and clX (U) ∩ clX (V ) = ∅.

For each f ∈ ω2, let Gf =
⋂

n∈ω clX (Bf �n). By compactness
of X , Gf 6= ∅. Let also, for f ∈ ω2,
nf = min{n ∈ ω : Gf ∩ Xn 6= ∅}.
Define the function H : ω2→

⋃
n∈ω P(Xn), by letting

H(f ) = Gf ∩Xnf
. Then H is 1-1, hence ω2 is countable, being

a countable union of finite wosets. A contradiction.

Therefore, X is scattered as required.
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Proof of part 2. Let (X ,T ) be a countable compact Hausdorff
space and let F be a normality operator.

Using F , it can be shown that there is a countable base for T :

For distinct x , y ∈ X , let F ({x}, {y}) = (Uy
x ,V

x
y ). Then

C = {Uy
x : x , y ∈ X , x 6= y} ∪ {V x

y : x , y ∈ X , x 6= y} is
countable, hence B = {

⋂
D : D ∈ [C]<ω} is also countable.

Furthermore, B is a base for the topology T on X .

By Urysohn’s Metrization Theorem (which is provable in ZF,
C. Good and I. Tree, 1995, [1]), X is metrizable.

Since, in ZF, every compact metrizable space with a
well-ordered dense subset is a Baire space (the intersection of
each countable family of dense open sets is dense), X is
scattered. 2
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Theorem

In ZF, (C) + “Every compact Hausdorff space is effectively
normal” implies:

Every family A = {Ai : i ∈ I}, where for each i ∈ I , Ai can be
written as a countable union of non-empty finite sets, has a
multiple choice function.

Hence, MC for families of
non-empty countable sets and AC for families of non-empty
countable sets of reals hold.

Every family A = {Ai : i ∈ I}, where for each i ∈ I , Ai is well
orderable and |Ai | < 2ℵ0 , has a multiple choice function.

Proof. For each i ∈ I , let Ti be a compact Hausdorff topology on
Ai . By the Lemma, each Ai is scattered. Let βi = αi + 1 be the
height of Ai . Then for each i ∈ I , the Cantor-Bendixson derivative
(Ai )αi is a non-empty finite subset of Ai . Hence,
f = {(i , (Ai )αi ) : i ∈ I} is a MC function for A. 2

P. Howard, E. Tachtsis Murray Bell’s Problem



Theorem

In ZF, (C) + “Every compact Hausdorff space is effectively
normal” implies:

Every family A = {Ai : i ∈ I}, where for each i ∈ I , Ai can be
written as a countable union of non-empty finite sets, has a
multiple choice function. Hence, MC for families of
non-empty countable sets and AC for families of non-empty
countable sets of reals hold.

Every family A = {Ai : i ∈ I}, where for each i ∈ I , Ai is well
orderable and |Ai | < 2ℵ0 , has a multiple choice function.

Proof. For each i ∈ I , let Ti be a compact Hausdorff topology on
Ai . By the Lemma, each Ai is scattered. Let βi = αi + 1 be the
height of Ai . Then for each i ∈ I , the Cantor-Bendixson derivative
(Ai )αi is a non-empty finite subset of Ai . Hence,
f = {(i , (Ai )αi ) : i ∈ I} is a MC function for A. 2

P. Howard, E. Tachtsis Murray Bell’s Problem



Theorem

In ZF, (C) + “Every compact Hausdorff space is effectively
normal” implies:

Every family A = {Ai : i ∈ I}, where for each i ∈ I , Ai can be
written as a countable union of non-empty finite sets, has a
multiple choice function. Hence, MC for families of
non-empty countable sets and AC for families of non-empty
countable sets of reals hold.

Every family A = {Ai : i ∈ I}, where for each i ∈ I , Ai is well
orderable and |Ai | < 2ℵ0 , has a multiple choice function.

Proof. For each i ∈ I , let Ti be a compact Hausdorff topology on
Ai . By the Lemma, each Ai is scattered. Let βi = αi + 1 be the
height of Ai . Then for each i ∈ I , the Cantor-Bendixson derivative
(Ai )αi is a non-empty finite subset of Ai . Hence,
f = {(i , (Ai )αi ) : i ∈ I} is a MC function for A. 2

P. Howard, E. Tachtsis Murray Bell’s Problem



Theorem

In ZF, (C) + “Every compact Hausdorff space is effectively
normal” implies:

Every family A = {Ai : i ∈ I}, where for each i ∈ I , Ai can be
written as a countable union of non-empty finite sets, has a
multiple choice function. Hence, MC for families of
non-empty countable sets and AC for families of non-empty
countable sets of reals hold.

Every family A = {Ai : i ∈ I}, where for each i ∈ I , Ai is well
orderable and |Ai | < 2ℵ0 , has a multiple choice function.

Proof. For each i ∈ I , let Ti be a compact Hausdorff topology on
Ai . By the Lemma, each Ai is scattered. Let βi = αi + 1 be the
height of Ai . Then for each i ∈ I , the Cantor-Bendixson derivative
(Ai )αi is a non-empty finite subset of Ai . Hence,
f = {(i , (Ai )αi ) : i ∈ I} is a MC function for A. 2

P. Howard, E. Tachtsis Murray Bell’s Problem



Theorem

For a countable compact Hausdorff space (X ,T ), the following are
equivalent:

X is metrizable,

X is second countable,

X (topologically) embeds as a closed subspace of [0, 1]ω,

X is effectively normal.

Since “Every countable compact Hausdorff space is
metrizable” is not a theorem of ZF (Keremedis and Tachtsis,
2007, [8]), it follows that neither “Every countable compact
Hausdorff space is effectively normal” is provable from the ZF
axioms alone.
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Corollary

In ZF, (C) + “Every countable compact Hausdorff space is
effectively normal” implies each one of the following statements:

R cannot be written as a countable union of countable sets.

The union of a countable family of countable sets of reals is
well orderable.

Theorem

(C) + “Every compact Hausdorff space is effectively normal”
implies “For every integer n ≥ 2, PACℵ0n ”.

The assumption of (C), in the previous theorem, cannot be
dropped; In the second Fraenkel model N , every compact
Hausdorff space is effectively normal (since N � MC),
whereas there is a countable family of pairs in N without a
partial choice function.
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Theorem

(C) + AC(ℵ0,R) (= AC for countable families of non-empty sets
of reals) implies that there exists a non-Lebesgue-measurable set of
reals.

Proof. For each x ∈ R, consider the Vitali equivalence class
[x ] = {x + q : q ∈ Q}. By (C), for each x ∈ R, let Tx be a
compact Hausdorff topology on [x ].

AC(ℵ0,R) implies that every countable compact Hausdorff
space is metrizable, hence scattered (Keremedis and Tachtsis,
2007, [8]). Thus, we may define a multiple choice function for
V = {[x ] : x ∈ R}, hence a choice function f for V, since
∀x ∈ R, [x ] ⊆ R.

AC(ℵ0,R) implies that the Lebesgue measure is σ-additive,
hence following the well-known proof of the existence of a
non-measurable set of reals, one verifies that
E = {f ([x ]) : x ∈ R} is non-measurable. 2
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Corollary

(C) fails in the following ZF-models:

Solovay’s model (M5(ℵ) in Howard-Rubin [6]).

Feferman’s model (M2 in [6]).

Proof.

In M5(ℵ), AC(ℵ0,R) holds but every set of reals is Lebesgue
measurable. Hence, (C) fails in M5(ℵ).
The following are true in M2:

AC for well orderable families of non-empty sets, hence
AC(ℵ0,R), holds in M2.
The family A = {{[A], [ω \ A]} : A ⊆ ω}, where for A ⊆ ω,
[A] = {A4x : x ∈ [ω]<ω}, does not have a choice function in
the model.

If (C) were true in M2, then using ideas from the proof of the
previous Theorem we would obtain that the family
B = {[A] : A ⊆ ω} admits a choice set, and since P(ω) is
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