A Descriptive View of Unitary Group Representations

Simon Thomas

Rutgers University
"Jersey Roots, Global Reach"

9th July 2012

Definition

If G is a finite group, then a linear representation of G is a homomorphism $\varphi: G \to GL_n(\mathbb{C})$ for some $n \ge 1$.

Definition

If G is a finite group, then a linear representation of G is a homomorphism $\varphi: G \to GL_n(\mathbb{C})$ for some $n \ge 1$.

Definition

Two representations $\varphi: G \to GL_n(\mathbb{C})$ and $\psi: G \to GL_m(\mathbb{C})$ are equivalent if n = m and there exists $A \in GL_n(\mathbb{C})$ such that

$$\psi(g) = A \varphi(g) A^{-1}$$
 for all $g \in G$.

Definition

If G is a finite group, then a linear representation of G is a homomorphism $\varphi: G \to GL_n(\mathbb{C})$ for some $n \ge 1$.

Definition

Two representations $\varphi: G \to GL_n(\mathbb{C})$ and $\psi: G \to GL_m(\mathbb{C})$ are equivalent if n = m and there exists $A \in GL_n(\mathbb{C})$ such that

$$\psi(g) = A \varphi(g) A^{-1}$$
 for all $g \in G$.

Definition

The representation $\varphi: G \to GL_n(\mathbb{C})$ is irreducible if there are no nontrivial proper G-invariant subspaces $0 < W < \mathbb{C}^n$.

Theorem

If G is a finite group, then:

- (i) G has finitely many irreducible representations.
- (ii) Every representation of G is uniquely expressible as a direct sum of irreducible representations.

Definition

If $\varphi: G \to GL_n(\mathbb{C})$ and $\psi: G \to GL_m(\mathbb{C})$ are representations, then the direct sum $(\varphi \oplus \psi): G \to GL_{n+m}(\mathbb{C})$ is defined by

$$egin{aligned} g \mapsto egin{pmatrix} arphi(g) & \mathbf{0} \ \mathbf{0} & \psi(g) \end{pmatrix} \end{aligned}$$

Definition

- If G is a finite group, then a unitary representation of G is a homomorphism $\varphi : G \to U_n(\mathbb{C})$ for some $n \ge 1$.
- Here the unitary group $U_n(\mathbb{C})$ is the subgroup of $GL_n(\mathbb{C})$ which preserves the inner product

$$\langle u, v \rangle = u_1 \bar{v}_1 + \cdots + u_n \bar{v}_n.$$

Definition

- If G is a finite group, then a unitary representation of G is a homomorphism $\varphi : G \to U_n(\mathbb{C})$ for some $n \ge 1$.
- Here the unitary group $U_n(\mathbb{C})$ is the subgroup of $GL_n(\mathbb{C})$ which preserves the inner product

$$\langle u, v \rangle = u_1 \bar{v}_1 + \cdots + u_n \bar{v}_n.$$

Theorem

If G is a finite group, then:

(i) Every representation of G is equivalent to a unitary representation.

Definition

- If G is a finite group, then a unitary representation of G is a homomorphism $\varphi: G \to U_n(\mathbb{C})$ for some $n \ge 1$.
- Here the unitary group $U_n(\mathbb{C})$ is the subgroup of $GL_n(\mathbb{C})$ which preserves the inner product

$$\langle u, v \rangle = u_1 \bar{v}_1 + \cdots + u_n \bar{v}_n.$$

Theorem

If G is a finite group, then:

- (i) Every representation of G is equivalent to a unitary representation.
- (ii) The unitary representations φ , ψ : $G \to U_n(\mathbb{C})$ are equivalent iff there exists $A \in U_n(\mathbb{C})$ such that

$$\psi(g) = A \varphi(g) A^{-1}$$
 for all $g \in G$.

Definition

If G is a countable group, then a unitary representation of G is a homomorphism $\varphi: G \to U(\mathcal{H})$, where \mathcal{H} is a separable complex Hilbert space.

Definition

If G is a countable group, then a unitary representation of G is a homomorphism $\varphi: G \to U(\mathcal{H})$, where \mathcal{H} is a separable complex Hilbert space.

Example

Consider the Hilbert space

$$\ell^2(G) = \{\, (\, a_g\,) \in \mathbb{C}^G \mid \sum |a_g|^2 < \infty \,\}.$$

Then we can define a unitary representation $\varphi : G \to U(\ell^2(G))$ by

$$(a_X) \stackrel{\varphi(g)}{\mapsto} (a_{g^{-1}X}).$$

Definition

Two representations $\varphi: G \to U(\mathcal{H})$ and $\psi: G \to U(\mathcal{H})$ are unitarily equivalent if there exists $A \in U(\mathcal{H})$ such that

$$\psi(g) = A \varphi(g) A^{-1}$$
 for all $g \in G$.

Definition

Two representations $\varphi: G \to U(\mathcal{H})$ and $\psi: G \to U(\mathcal{H})$ are unitarily equivalent if there exists $A \in U(\mathcal{H})$ such that

$$\psi(g) = A \varphi(g) A^{-1}$$
 for all $g \in G$.

Definition

The unitary representation $\varphi: G \to U(\mathcal{H})$ is irreducible if there are no nontrivial proper G-invariant closed subspaces $0 < W < \mathcal{H}$.

Definition

Two representations $\varphi: G \to U(\mathcal{H})$ and $\psi: G \to U(\mathcal{H})$ are unitarily equivalent if there exists $A \in U(\mathcal{H})$ such that

$$\psi(g) = A \varphi(g) A^{-1}$$
 for all $g \in G$.

Definition

The unitary representation $\varphi: G \to U(\mathcal{H})$ is irreducible if there are no nontrivial proper G-invariant closed subspaces $0 < W < \mathcal{H}$.

Problem

 Can we classify the <u>irreducible</u> unitary representations of G up to unitary equivalence?

Definition

Two representations $\varphi: G \to U(\mathcal{H})$ and $\psi: G \to U(\mathcal{H})$ are unitarily equivalent if there exists $A \in U(\mathcal{H})$ such that

$$\psi(g) = A \varphi(g) A^{-1}$$
 for all $g \in G$.

Definition

The unitary representation $\varphi: G \to U(\mathcal{H})$ is irreducible if there are no nontrivial proper G-invariant closed subspaces $0 < W < \mathcal{H}$.

Problem

- Can we classify the <u>irreducible</u> unitary representations of G up to unitary equivalence?
- Can we classify arbitrary unitary representations of G via "suitable decompositions" into irreducible representations?

The Unitary Representations of $\ensuremath{\mathbb{Z}}$

The Unitary Representations of \mathbb{Z}

ullet The irreducible unitary representations of $\mathbb Z$ are

$$\varphi_{\mathsf{z}}: \mathbb{Z} \to U_1(\mathbb{C}) = \mathbb{T} = \{ \ \mathbf{c} \in \mathbb{C} : |\mathbf{c}| = 1 \ \}$$

where $\varphi_z(1) = z$.

The Unitary Representations of \mathbb{Z}

ullet The irreducible unitary representations of $\mathbb Z$ are

$$arphi_Z: \mathbb{Z} o U_1(\mathbb{C}) = \mathbb{T} = \{\, c \in \mathbb{C}: |c| = 1\,\}$$
 where $arphi_Z(1) = Z$.

- The multiplicity-free unitary representations of $\mathbb Z$ can be parameterized by the Borel probability measures μ on $\mathbb T$ so that the following are equivalent:
 - (i) the representations φ_{μ} , φ_{ν} are unitarily equivalent;
 - (ii) the measures μ , ν have the same null sets.

• Let *G* be a countably infinite group.

- Let G be a countably infinite group.
- Let \mathcal{H} be a n-dimensional separable complex Hilbert space for some $n \in \mathbb{N}^+ \cup \{\infty\}$ and let $U(\mathcal{H})$ be the corresponding unitary group.

- Let G be a countably infinite group.
- Let \mathcal{H} be a n-dimensional separable complex Hilbert space for some $n \in \mathbb{N}^+ \cup \{\infty\}$ and let $U(\mathcal{H})$ be the corresponding unitary group.
- Then $U(\mathcal{H})$ is a Polish group and hence $U(\mathcal{H})^G$ with the product topology is a Polish space.

- Let G be a countably infinite group.
- Let \mathcal{H} be a n-dimensional separable complex Hilbert space for some $n \in \mathbb{N}^+ \cup \{\infty\}$ and let $U(\mathcal{H})$ be the corresponding unitary group.
- Then $U(\mathcal{H})$ is a Polish group and hence $U(\mathcal{H})^G$ with the product topology is a Polish space.
- The set $\operatorname{Rep}_n(G) \subseteq U(\mathcal{H})^G$ of unitary representations is a closed subspace and hence $\operatorname{Rep}_n(G)$ is a Polish space.

- Let G be a countably infinite group.
- Let \mathcal{H} be a n-dimensional separable complex Hilbert space for some $n \in \mathbb{N}^+ \cup \{\infty\}$ and let $U(\mathcal{H})$ be the corresponding unitary group.
- Then $U(\mathcal{H})$ is a Polish group and hence $U(\mathcal{H})^G$ with the product topology is a Polish space.
- The set $\operatorname{Rep}_n(G) \subseteq U(\mathcal{H})^G$ of unitary representations is a closed subspace and hence $\operatorname{Rep}_n(G)$ is a Polish space.
- The set $Irr_n(G)$ of irreducible representations is a G_δ subset of $Rep_n(G)$ and hence $Irr_n(G)$ is also a Polish space.

Borel equivalence relations

Definition

An equivalence relation E on a Polish space X is Borel if E is a Borel subset of $X \times X$.

Borel equivalence relations

Definition

An equivalence relation E on a Polish space X is Borel if E is a Borel subset of $X \times X$.

Theorem (Mackey)

The unitary equivalence relation \approx_G on $Irr_n(G)$ is an F_σ equivalence relation.

Theorem (Hjorth-Törnquist)

The unitary equivalence relation \approx_G^+ on $\operatorname{Rep}_n(G)$ is an $F_{\sigma\delta}$ equivalence relation.

Smooth vs Nonsmooth

Definition (Mackey)

The Borel equivalence relation E on the Polish space X is smooth if there exists a Borel map $\varphi: X \to \mathbb{C}$ such that

$$x E y \iff \varphi(x) = \varphi(y).$$

Smooth vs Nonsmooth

Definition (Mackey)

The Borel equivalence relation E on the Polish space X is smooth if there exists a Borel map $\varphi: X \to \mathbb{C}$ such that

$$x E y \iff \varphi(x) = \varphi(y).$$

Theorem (Mackey)

Orbit equivalence relations arising from Borel actions of compact Polish groups on Polish spaces are smooth.

Smooth vs Nonsmooth

Definition (Mackey)

The Borel equivalence relation E on the Polish space X is smooth if there exists a Borel map $\varphi: X \to \mathbb{C}$ such that

$$x E y \iff \varphi(x) = \varphi(y).$$

Theorem (Mackey)

Orbit equivalence relations arising from Borel actions of compact Polish groups on Polish spaces are smooth.

Corollary

If G is a countable group, then unitary equivalence for finite dimensional irreducible unitary representations of G is smooth.

The Glimm-Thoma Theorem

Theorem (Glimm-Thoma)

If G is a countable group, then the following are equivalent:

- (i) G is not abelian-by-finite.
- (ii) G has an infinite dimensional irreducible representation.
- (iii) The unitary equivalence relation \approx_G on the space $Irr_\infty(G)$ of infinite dimensional irreducible unitary representations of G is not smooth.

The Glimm-Thoma Theorem

Theorem (Glimm-Thoma)

If G is a countable group, then the following are equivalent:

- (i) G is not abelian-by-finite.
- (ii) G has an infinite dimensional irreducible representation.
- (iii) The unitary equivalence relation \approx_G on the space $Irr_\infty(G)$ of infinite dimensional irreducible unitary representations of G is not smooth.

Question

Does this mean that we should abandon all hope of finding a "satisfactory classification" for the irreducible unitary representations of the non-(abelian-by-finite) groups?

Borel reductions

Definition

Let E, F be Borel equivalence relations on the Polish spaces X, Y.

• $E \leq_B F$ if there exists a Borel map $\varphi : X \to Y$ such that

$$x E y \iff \varphi(x) F \varphi(y).$$

In this case, f is called a Borel reduction from E to F.

- $E \sim_B F$ if both $E \leq_B F$ and $F \leq_B E$.
- $E <_B F$ if both $E \le_B F$ and $E \nsim_B F$.

The Glimm-Effros Dichotomy

Theorem (Harrington-Kechris-Louveau)

If E is a Borel equivalence relation on the Polish space X, then exactly one of the following holds:

- (i) E is smooth; or
- (ii) $E_0 \leq_B E$.

Definition

 E_0 is the Borel equivalence relation on $2^{\mathbb{N}}$ defined by:

$$x E_0 y \iff x_n = y_n$$
 for all but finitely many n .

The Glimm-Effros Dichotomy

Theorem (Harrington-Kechris-Louveau)

If E is a Borel equivalence relation on the Polish space X, then exactly one of the following holds:

- (i) E is smooth; or
- (ii) $E_0 \leq_B E$.

Definition

 E_0 is the Borel equivalence relation on $2^{\mathbb{N}}$ defined by:

$$x E_0 y \iff x_n = y_n$$
 for all but finitely many n .

Example

Baer's classification of the rank 1 torsion-free abelian groups is essentially a Borel reduction to E_0 .

When it's bad, it's worse ...

Theorem (Hjorth 1997)

If the countable group G is not abelian-by-finite , then there exists a $U(\mathcal{H})$ -invariant Borel subset $X \subseteq \operatorname{Irr}_{\infty}(G)$ such that the unitary equivalence relation $\approx_{G} X$ is turbulent.

Theorem (Hjorth 1997)

If the countable group G is not abelian-by-finite , then there exists a $U(\mathcal{H})$ -invariant Borel subset $X \subseteq \operatorname{Irr}_{\infty}(G)$ such that the unitary equivalence relation $\approx_{G} \upharpoonright X$ is turbulent.

Remark

This is a much more serious obstruction to the existence of a "satisfactory classification" of the irreducible unitary representations of *G*.

Theorem (Hjorth 1997)

If the countable group G is not abelian-by-finite , then there exists a $U(\mathcal{H})$ -invariant Borel subset $X \subseteq \operatorname{Irr}_{\infty}(G)$ such that the unitary equivalence relation $\approx_{G} \upharpoonright X$ is turbulent.

The Main Question (Thomas)

Do there exist countable groups G, H such that

- (i) G, H are not abelian-by-finite; and
- (ii) \approx_G , \approx_H are not Borel bireducible?

Theorem (Hjorth 1997)

If the countable group G is not abelian-by-finite , then there exists a $U(\mathcal{H})$ -invariant Borel subset $X \subseteq \operatorname{Irr}_{\infty}(G)$ such that the unitary equivalence relation $\approx_{G} \upharpoonright X$ is turbulent.

The Main Question (Thomas-Effros)

Do there exist countable groups G, H such that

- (i) G, H are not abelian-by-finite; and
- (ii) \approx_G , \approx_H are not Borel bireducible?

Theorem (Hjorth 1997)

If the countable group G is not abelian-by-finite , then there exists a $U(\mathcal{H})$ -invariant Borel subset $X \subseteq \operatorname{Irr}_{\infty}(G)$ such that the unitary equivalence relation $\approx_{G} \upharpoonright X$ is turbulent.

The Main Question (Thomas-Effros-Dixmier)

Do there exist countable groups G, H such that

- (i) G, H are not abelian-by-finite; and
- (ii) \approx_G , \approx_H are not Borel bireducible?

Theorem (Hjorth 1997)

If the countable group G is not abelian-by-finite , then there exists a $U(\mathcal{H})$ -invariant Borel subset $X \subseteq \operatorname{Irr}_{\infty}(G)$ such that the unitary equivalence relation $\approx_{G} \upharpoonright X$ is turbulent.

The Main Conjecture (Thomas)

If *G* is a nonabelian free group and *H* is a "suitably chosen" amenable group, then $\approx_H <_B \approx_G$.

Notation

 \mathbb{F}_n denotes the free group on n generators for $n \in \mathbb{N}^+ \cup \{\infty\}$.

Observation

If G is any countable group, then \approx_G is Borel reducible to $\approx_{\mathbb{F}_{\infty}}$.

Notation

 \mathbb{F}_n denotes the free group on n generators for $n \in \mathbb{N}^+ \cup \{\infty\}$.

Observation

If G is any countable group, then \approx_G is Borel reducible to $\approx_{\mathbb{F}_{\infty}}$.

Proof.

If $\theta:\mathbb{F}_{\infty} o G$ is a surjective homomorphism, then the induced map

$$\operatorname{Irr}_{\infty}(G) \to \operatorname{Irr}_{\infty}(\mathbb{F}_{\infty})$$

$$\varphi \mapsto \varphi \circ \theta$$

is a Borel reduction from \approx_G to $\approx_{\mathbb{F}_{\infty}}$.

Theorem

 $\approx_{\mathbb{F}_{\infty}}$ is Borel reducible to $\approx_{\mathbb{F}_2}.$

Theorem

 $pprox_{\mathbb{F}_{\infty}}$ is Borel reducible to $pprox_{\mathbb{F}_2}$.

Sketch Proof (Warning: do not attempt to understand!)

If $f: \mathbb{N} \to \mathbb{N}$ be a suitably fast growing function, then we can induce representations from

$$\mathbb{F}_{\infty} = \langle \, a^{f(n)} \, b \, a^{-f(n)} \mid n \in \mathbb{N} \, \rangle \leqslant N = \langle \, a^m \, b \, a^{-m} \mid m \in \mathbb{Z} \, \rangle$$

to the free group $\mathbb{F}_2 = \langle a, b \rangle$.

Theorem

 $pprox_{\mathbb{F}_{\infty}}$ is Borel reducible to $pprox_{\mathbb{F}_2}$.

Sketch Proof (Warning: do not attempt to understand!)

If $f: \mathbb{N} \to \mathbb{N}$ be a suitably fast growing function, then we can induce representations from

$$\mathbb{F}_{\infty} = \langle \, a^{f(n)} \, b \, a^{-f(n)} \mid n \in \mathbb{N} \, \rangle \leqslant N = \langle \, a^m \, b \, a^{-m} \mid m \in \mathbb{Z} \, \rangle$$

to the free group $\mathbb{F}_2 = \langle a, b \rangle$.

Question

• Does $H \leqslant G$ imply that \approx_H is Borel reducible to \approx_G ?

Theorem

 $pprox_{\mathbb{F}_{\infty}}$ is Borel reducible to $pprox_{\mathbb{F}_2}$.

Sketch Proof (Warning: do not attempt to understand!)

If $f:\mathbb{N}\to\mathbb{N}$ be a suitably fast growing function, then we can induce representations from

$$\mathbb{F}_{\infty} = \langle \, a^{f(n)} \, b \, a^{-f(n)} \mid n \in \mathbb{N} \, \rangle \leqslant N = \langle \, a^m \, b \, a^{-m} \mid m \in \mathbb{Z} \, \rangle$$

to the free group $\mathbb{F}_2 = \langle a, b \rangle$.

Question

- Does $H \leqslant G$ imply that \approx_H is Borel reducible to \approx_G ?
- In particular, is $\approx_{\mathbb{F}_2}$ Borel reducible to $\approx_{SL(3,\mathbb{Z})}$?

A suitably chosen amenable group?

Definition

A countable group G is amenable if there exists a left-invariant finitely additive probability measure $\mu : \mathcal{P}(G) \to [0, 1]$.

Some Suitably Chosen Amenable Groups?

A suitably chosen amenable group?

Definition

A countable group G is amenable if there exists a left-invariant finitely additive probability measure $\mu : \mathcal{P}(G) \to [0,1]$.

Some Suitably Chosen Amenable Groups?

• The direct sum $\bigoplus_{n\in\mathbb{N}} \operatorname{Sym}(3)$ of countably many copies of $\operatorname{Sym}(3)$.

A suitably chosen amenable group?

Definition

A countable group G is amenable if there exists a left-invariant finitely additive probability measure $\mu : \mathcal{P}(G) \to [0,1]$.

Some Suitably Chosen Amenable Groups?

- The direct sum $\bigoplus_{n\in\mathbb{N}} \operatorname{Sym}(3)$ of countably many copies of $\operatorname{Sym}(3)$.
- A countably infinite extra-special p-group P; i.e. P' = Z(P) is cyclic of order p and P/Z(P) is elementary abelian p-group.

Perhaps not quite as expected ...

 The following result is an immediate consequence of the work of Glimm (1961) and Elliot (1977).

Theorem

Suppose that the countable group G is not abelian-by-finite. If H is any countable locally finite group, then \approx_H is Borel reducible to \approx_G .

Perhaps not quite as expected ...

 The following result is an immediate consequence of the work of Glimm (1961) and Elliot (1977).

Theorem

Suppose that the countable group G is not abelian-by-finite. If H is any countable locally finite group, then \approx_H is Borel reducible to \approx_G .

Corollary

If G, H are countable locally finite groups, neither of which is abelian-by-finite, then \approx_G and \approx_H are Borel bireducible.

The reduced C*-algebra

Definition

If G is a countably infinite group, then the left regular representation

$$\lambda: G \to U(\ell^2(G))$$

extends to an injective *-homomorphism of the group algebra

$$\lambda: \mathbb{C}[G] \to \mathcal{L}(\ell^2(G)).$$

The reduced C^* -algebra $C^*_{\lambda}(G)$ is the completion of $\mathbb{C}[G]$ with respect to the norm $||x||_r = ||\lambda(x)||_{\mathcal{L}(\ell^2(G))}$.

The reduced C*-algebra

Definition

If G is a countably infinite group, then the left regular representation

$$\lambda: G \to U(\ell^2(G))$$

extends to an injective *-homomorphism of the group algebra

$$\lambda: \mathbb{C}[G] \to \mathcal{L}(\ell^2(G)).$$

The reduced C^* -algebra $C^*_{\lambda}(G)$ is the completion of $\mathbb{C}[G]$ with respect to the norm $||x||_r = ||\lambda(x)||_{\mathcal{L}(\ell^2(G))}$.

Remark

If G is amenable, then there is a canonical correspondence between the irreducible representations of G and $C_{\lambda}^{*}(G)$.

Approximately finite dimensional C^* -algebras

Definition

A C^* -algebra A is approximately finite dimensional if $A = \overline{\bigcup_{n \in \mathbb{N}} A_n}$ is the closure of an increasing chain of finite dimensional sub- C^* -algebras A_n .

Example

If $G = \bigcup_{n \in \mathbb{N}} G_n$ is a locally finite group, then $C_{\lambda}^*(G) = \overline{\bigcup_{n \in \mathbb{N}} \mathbb{C}[G_n]}$ is approximately finite dimensional.

Elliot's Theorem

• Extending Glimm's Theorem, Elliot proved:

Theorem (Elliot 1977)

If $\mathcal A$ is an approximately finite-dimensional C^* -algebra and $\mathcal B$ is a separable C^* -algebra such that $\approx_{\mathcal B}$ is non-smooth, then $\approx_{\mathcal A}$ is Borel reducible to $\approx_{\mathcal B}$.

Corollary (Elliot 1977)

If \mathcal{A} , \mathcal{B} are approximately finite-dimensional C^* -algebras such that $\approx_{\mathcal{A}}$, $\approx_{\mathcal{B}}$ are non-smooth, then $\approx_{\mathcal{A}}$ and $\approx_{\mathcal{B}}$ are Borel bireducible.

Elliot's Theorem

• Extending Glimm's Theorem, Elliot proved:

Theorem (Elliot 1977)

If $\mathcal A$ is an approximately finite-dimensional C^* -algebra and $\mathcal B$ is a separable C^* -algebra such that $\approx_{\mathcal B}$ is non-smooth, then $\approx_{\mathcal A}$ is Borel reducible to $\approx_{\mathcal B}$.

Corollary

If G, H are countable locally finite groups, neither of which is abelian-by-finite, then \approx_G and \approx_H are Borel bireducible.

Even less as expected ...

Theorem (Sutherland 1983)

Let $H = \bigoplus_{n \in \mathbb{N}} \operatorname{Sym}(3)$. If G is any countable amenable group, then \approx_G is Borel reducible to \approx_H .

Even less as expected ...

Theorem (Sutherland 1983)

Let $H = \bigoplus_{n \in \mathbb{N}} \operatorname{Sym}(3)$. If G is any countable amenable group, then \approx_G is Borel reducible to \approx_H .

Corollary

If G, H are countable amenable groups, neither of which is abelian-by-finite, then \approx_G and \approx_H are Borel bireducible.

Even less as expected ...

Theorem (Sutherland 1983)

Let $H = \bigoplus_{n \in \mathbb{N}} \operatorname{Sym}(3)$. If G is any countable amenable group, then \approx_G is Borel reducible to \approx_H .

Corollary

If G, H are countable amenable groups, neither of which is abelian-by-finite, then \approx_G and \approx_H are Borel bireducible.

Remark

The theorem ultimately depends upon the Ornstein-Weiss Theorem that if *G*, *H* are countable amenable groups, then any free ergodic measure-preserving actions of *G*, *H* are orbit equivalent.

• Express $H = A \rtimes K$, where $A = \bigoplus_{n \in \mathbb{N}} C_3$ and $K = \bigoplus_{n \in \mathbb{N}} C_2$.

- Express $H = A \rtimes K$, where $A = \bigoplus_{n \in \mathbb{N}} C_3$ and $K = \bigoplus_{n \in \mathbb{N}} C_2$.
- Then the unitary dual $\operatorname{Irr}_{\infty}(A) = C_3^{\mathbb{N}}$ is the product of countably many copies of the cyclic group

$$C_3 = \{1, \xi, \xi^2\} \leqslant \mathbb{C}^*.$$

- Express $H = A \rtimes K$, where $A = \bigoplus_{n \in \mathbb{N}} C_3$ and $K = \bigoplus_{n \in \mathbb{N}} C_2$.
- Then the unitary dual ${\rm Irr}_\infty(A)=C_3^\mathbb{N}$ is the product of countably many copies of the cyclic group

$$C_3 = \{ 1, \xi, \xi^2 \} \leqslant \mathbb{C}^*.$$

• Let $Z = \{ \xi, \xi^2 \}^{\mathbb{N}} \subseteq C_3^{\mathbb{N}}$ and let μ be the usual product probability measure on Z.

- Express $H = A \rtimes K$, where $A = \bigoplus_{n \in \mathbb{N}} C_3$ and $K = \bigoplus_{n \in \mathbb{N}} C_2$.
- Then the unitary dual ${\rm Irr}_\infty(A)=C_3^\mathbb{N}$ is the product of countably many copies of the cyclic group

$$C_3 = \{1, \xi, \xi^2\} \leqslant \mathbb{C}^*.$$

- Let $Z = \{\xi, \xi^2\}^{\mathbb{N}} \subseteq C_3^{\mathbb{N}}$ and let μ be the usual product probability measure on Z.
- If \mathcal{H} is any Hilbert space, then we can define a representation π of A on $L^2(Z,\mathcal{H})$ by

$$(\pi(a)\cdot f)(z)=z(a)\,f(z).$$

• Now we extend π to a representation of $H = A \rtimes K$ by defining a suitable action of K on $L^2(Z, \mathcal{H})$.

- Now we extend π to a representation of $H = A \times K$ by defining a suitable action of K on $L^2(Z, \mathcal{H})$.
- The conjugation action of K on A induces a free ergodic action of K on (Z, μ).

- Now we extend π to a representation of $H = A \times K$ by defining a suitable action of K on $L^2(Z, \mathcal{H})$.
- The conjugation action of K on A induces a free ergodic action of K on (Z, μ).
- Hence we can define an action π of K on $L^2(Z, \mathcal{H})$ by

$$(\pi(k)\cdot f)(z)=f(k^{-1}\cdot z).$$

- Now we extend π to a representation of $H = A \times K$ by defining a suitable action of K on $L^2(Z, \mathcal{H})$.
- The conjugation action of K on A induces a free ergodic action of K on (Z, μ).
- Hence we can define an action π of K on $L^2(Z, \mathcal{H})$ by

$$(\pi(k)\cdot f)(z)=f(k^{-1}\cdot z).$$

Finally we add a "twist" and define the action π_σ of K
 on L²(Z, H) by

$$(\pi_{\sigma}(k)\cdot f)(z)=\sigma(k^{-1},z)^{-1}f(k^{-1}\cdot z).$$

where $\sigma: K \times Z \to U(\mathcal{H})$ is an irreducible cocycle.

Irreducible cocycles

Definition

A Borel map $\sigma: K \times Z \rightarrow U(\mathcal{H})$ is a cocycle if for all $g, h \in K$,

$$\sigma(gh,z) = \sigma(g,h\cdot z)\,\sigma(h,z)$$
 μ -a.e. $z\in Z$.

Irreducible cocycles

Definition

A Borel map $\sigma: K \times Z \rightarrow U(\mathcal{H})$ is a cocycle if for all $g, h \in K$,

$$\sigma(gh, z) = \sigma(g, h \cdot z) \sigma(h, z)$$
 μ -a.e. $z \in Z$.

Example

If $\psi: K \to U(\mathcal{H})$ is a representation, then we can define an associated cocycle $\sigma_{\psi}: K \times Z \to U(\mathcal{H})$ by

$$\sigma_{\psi}(\mathbf{g}, \mathbf{z}) = \psi(\mathbf{g}).$$

Irreducible cocycles

Schur's Lemma

A unitary representation $\varphi: G \to U(\mathcal{H})$ is irreducible if and only if

$$\{\,B\in\mathcal{L}(\mathcal{H})\mid arphi(g)\,B=B\,arphi(g) ext{ for all }g\in G\,\}=\mathbb{C}\,\operatorname{Id}_{\mathcal{H}}.$$

Schur's Lemma

A unitary representation $\varphi: G \to U(\mathcal{H})$ is irreducible if and only if

$$\{\,B\in\mathcal{L}(\mathcal{H})\mid \varphi(g)\,B=B\,\varphi(g)\ ext{for all }g\in G\,\}=\mathbb{C}\ ext{Id}_{\mathcal{H}}\ .$$

• The cocycle α is irreducible if $\operatorname{Hom}(\alpha, \alpha)$ contains only constant maps taking values in the scalar multiples of the identity.

Schur's Lemma

A unitary representation $\varphi: G \to U(\mathcal{H})$ is irreducible if and only if

$$\{\,B\in\mathcal{L}(\mathcal{H})\mid arphi(g)\,B=B\,arphi(g) ext{ for all }g\in G\,\}=\mathbb{C}\,\operatorname{Id}_{\mathcal{H}}.$$

- The cocycle α is irreducible if $\text{Hom}(\alpha, \alpha)$ contains only constant maps taking values in the scalar multiples of the identity.
- If α , $\beta: K \times Z \to U(\mathcal{H})$ are cocycles, then $\text{Hom}(\alpha, \beta)$ consists of the bounded Borel maps $b: Z \to \mathcal{L}(\mathcal{H})$ such that for all $g \in K$,

$$\alpha(g,z) b(z) = b(g \cdot z) \beta(g,z)$$
 μ -a.e. $z \in Z$.

Schur's Lemma

A unitary representation $\varphi: G \to U(\mathcal{H})$ is irreducible if and only if

$$\{\,B\in\mathcal{L}(\mathcal{H})\mid arphi(g)\,B=B\,arphi(g) ext{ for all }g\in G\,\}=\mathbb{C}\,\operatorname{Id}_{\mathcal{H}}.$$

- The cocycle α is irreducible if $\text{Hom}(\alpha, \alpha)$ contains only constant maps taking values in the scalar multiples of the identity.
- If α , $\beta: K \times Z \to U(\mathcal{H})$ are cocycles, then $\text{Hom}(\alpha, \beta)$ consists of the bounded Borel maps $b: Z \to \mathcal{L}(\mathcal{H})$ such that for all $g \in K$,

$$\alpha(g,z) b(z) = b(g \cdot z) \beta(g,z)$$
 μ -a.e. $z \in Z$.

The heart of the matter

If $K' \curvearrowright (Z', \mu')$ is orbit equivalent to $K \curvearrowright (Z, \mu)$, then the "cocycle machinery" is isomorphic via a Borel map.

• Let *G* be any countable amenable group and let $\Gamma = G \times \mathbb{Z}$.

- Let *G* be any countable amenable group and let $\Gamma = G \times \mathbb{Z}$.
- Let $X = 2^{\Gamma}$ and let ν be the product probability measure on X.

- Let *G* be any countable amenable group and let $\Gamma = G \times \mathbb{Z}$.
- Let $X = 2^{\Gamma}$ and let ν be the product probability measure on X.
- Then the shift action of Γ on (X, ν) is (essentially) free and strongly mixing.

- Let G be any countable amenable group and let $\Gamma = G \times \mathbb{Z}$.
- Let $X = 2^{\Gamma}$ and let ν be the product probability measure on X.
- Then the shift action of Γ on (X, ν) is (essentially) free and strongly mixing.
- For each irreducible representation $\varphi: G \to U(\mathcal{H})$, we can define an irreducible cocycle $\sigma_{\varphi}: (G \times \mathbb{Z}) \times X \to U(\mathcal{H})$ by

$$\sigma_{\varphi}(gz,x)=\varphi(g)$$

• If $b \in \text{Hom}(\sigma_{\varphi}, \sigma_{\varphi})$, then for all $gz \in G \times \mathbb{Z}$ and ν -a.e. $x \in X$,

$$\sigma_{\varphi}(gz,x)\,b(x)=b(gz\cdot x)\,\sigma_{\varphi}(gz,x)$$

• If $b \in \text{Hom}(\sigma_{\varphi}, \sigma_{\varphi})$, then for all $gz \in G \times \mathbb{Z}$ and ν -a.e. $x \in X$,

$$\sigma_{\varphi}(gz, x) b(x) = b(gz \cdot x) \sigma_{\varphi}(gz, x)$$

• In particular, if $z \in \mathbb{Z}$, then $b(x) = b(z \cdot x)$ for ν -a.e. $x \in X$.

• If $b \in \text{Hom}(\sigma_{\varphi}, \sigma_{\varphi})$, then for all $gz \in G \times \mathbb{Z}$ and ν -a.e. $x \in X$,

$$\sigma_{\varphi}(gz, x) b(x) = b(gz \cdot x) \sigma_{\varphi}(gz, x)$$

- In particular, if $z \in \mathbb{Z}$, then $b(x) = b(z \cdot x)$ for ν -a.e. $x \in X$.
- Since the action of $G \times \mathbb{Z}$ is strongly mixing, \mathbb{Z} acts ergodically on X and hence b is ν -a.e. constant.

• If $b \in \text{Hom}(\sigma_{\varphi}, \sigma_{\varphi})$, then for all $gz \in G \times \mathbb{Z}$ and ν -a.e. $x \in X$,

$$\sigma_{\varphi}(gz, x) b(x) = b(gz \cdot x) \sigma_{\varphi}(gz, x)$$

- In particular, if $z \in \mathbb{Z}$, then $b(x) = b(z \cdot x)$ for ν -a.e. $x \in X$.
- Since the action of $G \times \mathbb{Z}$ is strongly mixing, \mathbb{Z} acts ergodically on X and hence b is ν -a.e. constant.
- By Schur's Lemma, b is a scalar multiple of the identity.

Summing up ...

Definition

Let $Irr_{\infty}(E_0)$ be the space of irreducible cocycles

$$\sigma: K \times Z \rightarrow U(\mathcal{H})$$

and let \approx_{E_0} be the equivalence relation defined by

$$\sigma \approx_{E_0} \tau \iff \mathsf{Hom}(\sigma, \tau) \neq 0.$$

Theorem

If the countable group G is amenable but not abelian-by-finite, then the unitary equivalence relation \approx_G is Borel bireducible with \approx_{E_0} .

Irreducible Representations of the Free Group F2

Definition

Let $Irr_{\infty}(E_{\infty})$ be the space of irreducible cocycles

$$\sigma: \mathbb{F}_2 \times \mathbf{2}^{\mathbb{F}_2} \to U(\mathcal{H})$$

and let $\approx_{E_{\infty}}$ be the equivalence relation defined by

$$\sigma \approx_{\mathsf{E}_{\infty}} \tau \iff \mathsf{Hom}(\sigma, \tau) \neq 0.$$

Theorem

The unitary equivalence relation $\approx_{\mathbb{F}_2}$ is Borel bireducible with $\approx_{E_{\infty}}$.

Irreducible Representations of the Free Group F2

Definition

Let $\operatorname{Irr}_{\infty}(E_{\infty})$ be the space of irreducible cocycles

$$\sigma: \mathbb{F}_2 \times \mathbf{2}^{\mathbb{F}_2} \to U(\mathcal{H})$$

and let $\approx_{E_{\infty}}$ be the equivalence relation defined by

$$\sigma \approx_{\mathsf{E}_{\infty}} \tau \iff \mathsf{Hom}(\sigma, \tau) \neq 0.$$

Theorem

The unitary equivalence relation $\approx_{\mathbb{F}_2}$ is Borel bireducible with $\approx_{E_{\infty}}$.

Remark

Here we can replace E_{∞} with the universal treeable relation $E_{\infty T}$.

Theorem

If the countable group G is amenable but not abelian-by-finite, then the unitary equivalence relation \approx_G is Borel bireducible with \approx_{E_0} .

Theorem

The unitary equivalence relation $\approx_{\mathbb{F}_2}$ is Borel bireducible with $\approx_{\mathsf{E}_{\infty\mathsf{T}}}$.

Theorem

If the countable group G is amenable but not abelian-by-finite, then the unitary equivalence relation \approx_G is Borel bireducible with \approx_{E_0} .

Theorem

The unitary equivalence relation $\approx_{\mathbb{F}_2}$ is Borel bireducible with $\approx_{E_{\infty T}}$.

The Main Conjecture

 $\approx_{E_{\infty,T}}$ is **not** Borel reducible to \approx_{E_0} .

Theorem

If the countable group G is amenable but not abelian-by-finite, then the unitary equivalence relation \approx_G is Borel bireducible with \approx_{E_0} .

Theorem

The unitary equivalence relation $\approx_{\mathbb{F}_2}$ is Borel bireducible with $\approx_{E_{\infty T}}$.

The Main Conjecture

 $\approx_{E_{\infty}T}$ is not Borel reducible to \approx_{E_0} .

Hopefully False Conjecture

If G, H are countable nonamenable groups, then \approx_G and \approx_H are Borel bireducible.

Theorem

If the countable group G is amenable but not abelian-by-finite, then the unitary equivalence relation \approx_G is Borel bireducible with \approx_{E_0} .

Theorem

The unitary equivalence relation $\approx_{\mathbb{F}_2}$ is Borel bireducible with $\approx_{E_{\infty T}}$.

The Main Conjecture

 $\approx_{E_{\infty}T}$ is not Borel reducible to \approx_{E_0} .

Hopefully False Conjecture

If G, H are countable nonamenable groups, then \approx_G and \approx_H are Borel bireducible.

The End

