A set-theoretic analysis of the quotient problem and the biorthogonal system problem

Stevo Todorcevic

Warszawa, July 10, 2012

1. The dual of the Schauder basic sequence problems

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

1. The dual of the Schauder basic sequence problems

(ロ)、(型)、(E)、(E)、 E) の(の)

2. Biorthogonal systems and quotient spaces

1. The dual of the Schauder basic sequence problems

- 2. Biorthogonal systems and quotient spaces
- 3. P-ideal Dichotomy

1. The dual of the Schauder basic sequence problems

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 2. Biorthogonal systems and quotient spaces
- 3. P-ideal Dichotomy
- 4. The cardinals $\mathfrak{b},\,\mathfrak{p}$ and \aleph_2

1. The dual of the Schauder basic sequence problems

- 2. Biorthogonal systems and quotient spaces
- 3. P-ideal Dichotomy
- 4. The cardinals $\mathfrak{b}, \mathfrak{p}$ and \aleph_2
- 5. The Quotient Problem for Asplund Spaces

- 1. The dual of the Schauder basic sequence problems
- 2. Biorthogonal systems and quotient spaces
- 3. P-ideal Dichotomy
- 4. The cardinals $\mathfrak{b}, \mathfrak{p}$ and \aleph_2
- 5. The Quotient Problem for Asplund Spaces
- 6. Mazur Intersection Property for Asplund Spaces

- 1. The dual of the Schauder basic sequence problems
- 2. Biorthogonal systems and quotient spaces
- 3. P-ideal Dichotomy
- 4. The cardinals $\mathfrak{b}, \mathfrak{p}$ and \aleph_2
- 5. The Quotient Problem for Asplund Spaces
- 6. Mazur Intersection Property for Asplund Spaces

7. Finite-dimensional approximations

Schauder basic sequences

Schauder basic sequences

A sequence $\{x_{\gamma} : \gamma \in \Gamma\}$ in some Banach space X indexed by a set of ordinals Γ is **basic**, or **Schauder basic**, in E if it is normalized, independent and if there is a constant $C \ge 1$ such that

$$\left\|\sum_{i\in I}a_ix_i\right\|\leq C\left\|\sum_{j\in J}a_jx_j\right\|$$

for any pair $I \sqsubseteq J$ of finite subsets of Γ such that I is an **initial** segment of J and for every sequence $(a_j : j \in J)$ of scalars.

Schauder basic sequences

A sequence $\{x_{\gamma} : \gamma \in \Gamma\}$ in some Banach space X indexed by a set of ordinals Γ is **basic**, or **Schauder basic**, in E if it is normalized, independent and if there is a constant $C \ge 1$ such that

$$\left\|\sum_{i\in I}\mathsf{a}_{i}x_{i}\right\|\leq C\left\|\sum_{j\in J}\mathsf{a}_{j}x_{j}\right\|$$

for any pair $I \sqsubseteq J$ of finite subsets of Γ such that I is an **initial** segment of J and for every sequence $(a_j : j \in J)$ of scalars.

Theorem (Mazur 1932)

Every infinite-dimensional Banach space contains an infinite basic sequence.

<ロ> <@> < E> < E> E のQの

Problem (Banach 1932, Pelczynski, 1964)

Does every infinite-dimensional Banach space has an infinite-dimensional quotient with a Schauder basis?

Problem (Banach 1932, Pelczynski, 1964)

Does every infinite-dimensional Banach space has an infinite-dimensional quotient with a Schauder basis?

Theorem (Johnson-Rosenthal 1972)

Every separable infinite-dimensional Banach space has an infinite-dimensional quotient with a Schauder basis.

Problem (Banach 1932, Pelczynski, 1964)

Does every infinite-dimensional Banach space has an infinite-dimensional quotient with a Schauder basis?

Theorem (Johnson-Rosenthal 1972)

Every separable infinite-dimensional Banach space has an infinite-dimensional quotient with a Schauder basis.

Problem

Does every infinite-dimensional Banach space has a separable infinite-dimensional quotient?

Definition

A family $\{(x_i, f_i) : i \in I\} \subseteq X \times X^*$ is a **biorthogonal system** of the Banach space X whenever

$$f_i(x_i) = 1$$
 and $f_i(x_j) = 0$ for $i \neq j$.

Definition

A family $\{(x_i, f_i) : i \in I\} \subseteq X \times X^*$ is a **biorthogonal system** of the Banach space X whenever

$$f_i(x_i) = 1$$
 and $f_i(x_j) = 0$ for $i \neq j$.

We say that a biorthogonal system $\{(x_i, f_i) : i \in I\}$ is **fundamental** in X whenever

$$\overline{\operatorname{span}}\{x_i:i\in I\}=X.$$

Definition

A family $\{(x_i, f_i) : i \in I\} \subseteq X \times X^*$ is a **biorthogonal system** of the Banach space X whenever

$$f_i(x_i) = 1$$
 and $f_i(x_j) = 0$ for $i \neq j$.

We say that a biorthogonal system $\{(x_i, f_i) : i \in I\}$ is **fundamental** in X whenever

$$\overline{\operatorname{span}}\{x_i:i\in I\}=X.$$

 $\{(x_i, f_i) : i \in I\}$ is **total** on X whenever

$$\bigcap_{i\in I} \ker(f_i) = \{0\}$$

Definition

A family $\{(x_i, f_i) : i \in I\} \subseteq X \times X^*$ is a **biorthogonal system** of the Banach space X whenever

$$f_i(x_i) = 1$$
 and $f_i(x_j) = 0$ for $i \neq j$.

We say that a biorthogonal system $\{(x_i, f_i) : i \in I\}$ is **fundamental** in X whenever

$$\overline{\operatorname{span}}\{x_i:i\in I\}=X.$$

 $\{(x_i, f_i) : i \in I\}$ is **total** on X whenever

$$\bigcap_{i\in I} \ker(f_i) = \{0\}$$

and **bounded** by a constant C if

 $\|x_i\| \cdot \|f_i\| \leq C$ for all $i \in I$.

Problem (Davis-Johnson 1972)

Does every Banach space have a bounded fundamental biorthogonal system?

Problem (Davis-Johnson 1972)

Does every Banach space have a bounded fundamental biorthogonal system?

Problem (Plichko 1983)

Equivalently, does every Banach space have a quotient with a Schauder basis of length equal to its density?

Problem (Davis-Johnson 1972)

Does every Banach space have a bounded fundamental biorthogonal system?

Problem (Plichko 1983)

Equivalently, does every Banach space have a quotient with a Schauder basis of length equal to its density?

Problem (Davis-Johnson 1972)

Does every Banach space have a bounded fundamental biorthogonal system?

Problem (Plichko 1983)

Equivalently, does every Banach space have a quotient with a Schauder basis of length equal to its density?

Theorem (Godun-Kadets 1980, Plichko 1980) If $|\Gamma|>2^{\aleph_0},$ then

$$\ell_\infty^{\aleph_0}(\Gamma) = \{x \in \ell_\infty(\Gamma) : |\mathrm{supp}(x)| \le \aleph_0\}$$

has no fundamental biorthogonal system.

1. When does an infinite-dimensional Banach space has a quotient with a Schauder basis of length ω ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1. When does an infinite-dimensional Banach space has a quotient with a Schauder basis of length ω ?
- 2. When does an infinite-dimensional Banach space has a quotient with a Schauder basis of length ω_1 ?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- 1. When does an infinite-dimensional Banach space has a quotient with a Schauder basis of length ω ?
- 2. When does an infinite-dimensional Banach space has a quotient with a Schauder basis of length ω_1 ?

Definition

The **cofinality** of an infinite-dimensional Banach space X is the minimal infinite cardinal θ for which there is a **increasing** sequence X_{ξ} ($\xi < \theta$) of **proper closed** subspaces of X such that $\bigcup_{\xi < \theta} X_{\xi}$ is dense in X.

- 1. When does an infinite-dimensional Banach space has a quotient with a Schauder basis of length ω ?
- 2. When does an infinite-dimensional Banach space has a quotient with a Schauder basis of length ω_1 ?

Definition

The **cofinality** of an infinite-dimensional Banach space X is the minimal infinite cardinal θ for which there is a **increasing** sequence X_{ξ} ($\xi < \theta$) of **proper closed** subspaces of X such that $\bigcup_{\xi < \theta} X_{\xi}$ is dense in X.

Theorem (Folklore ?)

If an infinite-dimensional space X has cofinality ω then X has a quotient with a Schauder basis of length ω .

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

Problem

1. Does every infinite-dimensional Banach space have cofinality ω ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Problem

- 1. Does every infinite-dimensional Banach space have cofinality ω ?
- 2. Does every infinite-dimensional Banach space have cofinality ω or ω_1 ?

Problem

- 1. Does every infinite-dimensional Banach space have cofinality ω ?
- 2. Does every infinite-dimensional Banach space have cofinality ω or ω_1 ?

Theorem (Todorcevic 2008)

The Open Graph Axiom implies that the cofinality of an arbitrary infinite-dimensional Banach space is at most ω_1 .

Problem

- 1. Does every infinite-dimensional Banach space have cofinality ω ?
- 2. Does every infinite-dimensional Banach space have cofinality ω or ω_1 ?

Theorem (Todorcevic 2008)

The Open Graph Axiom implies that the cofinality of an arbitrary infinite-dimensional Banach space is at most ω_1 .

Recall that OGA is the statement that for every ${\bf open}$ graph ${\cal G}$ on a separable metric space either

Problem

- 1. Does every infinite-dimensional Banach space have cofinality ω ?
- 2. Does every infinite-dimensional Banach space have cofinality ω or ω_1 ?

Theorem (Todorcevic 2008)

The Open Graph Axiom implies that the cofinality of an arbitrary infinite-dimensional Banach space is at most ω_1 .

Recall that OGA is the statement that for every ${\bf open}$ graph ${\cal G}$ on a separable metric space either

1.
$$\mathcal{G} \leq \mathcal{K}_{\aleph_0}, \text{ or }$$

Cofinality Problems

Problem

- 1. Does every infinite-dimensional Banach space have cofinality ω ?
- 2. Does every infinite-dimensional Banach space have cofinality ω or ω_1 ?

Theorem (Todorcevic 2008)

The Open Graph Axiom implies that the cofinality of an arbitrary infinite-dimensional Banach space is at most ω_1 .

Recall that OGA is the statement that for every ${\bf open}$ graph ${\cal G}$ on a separable metric space either

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1.
$$\mathcal{G} \leq \mathcal{K}_{\aleph_0}$$
, or

2.
$$\mathcal{K}_{\aleph_1} \leq \mathcal{G}$$
.

<ロ>

Definition

An **ideal** on an index set S is simply a family \mathcal{I} of subsets of S closed under taking subsets and finite unions of its elements.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition

An **ideal** on an index set S is simply a family \mathcal{I} of subsets of S closed under taking subsets and finite unions of its elements.

We shall consider only ideals of **countable** subsets of S and assume that all our ideals include the ideal of all finite subsets of S.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

An **ideal** on an index set S is simply a family \mathcal{I} of subsets of S closed under taking subsets and finite unions of its elements.

We shall consider only ideals of **countable** subsets of S and assume that all our ideals include the ideal of all finite subsets of S.

We say that such an ideal \mathcal{I} is a **P-ideal** if for every sequence (x_n) in \mathcal{I} there is $y \in \mathcal{I}$ such that $x_n \setminus y$ is finite for all n.

Definition

An **ideal** on an index set S is simply a family \mathcal{I} of subsets of S closed under taking subsets and finite unions of its elements.

We shall consider only ideals of **countable** subsets of S and assume that all our ideals include the ideal of all finite subsets of S.

We say that such an ideal \mathcal{I} is a **P-ideal** if for every sequence (x_n) in \mathcal{I} there is $y \in \mathcal{I}$ such that $x_n \setminus y$ is finite for all n.

Example

Definition

An **ideal** on an index set S is simply a family \mathcal{I} of subsets of S closed under taking subsets and finite unions of its elements.

We shall consider only ideals of **countable** subsets of S and assume that all our ideals include the ideal of all finite subsets of S.

We say that such an ideal \mathcal{I} is a **P-ideal** if for every sequence (x_n) in \mathcal{I} there is $y \in \mathcal{I}$ such that $x_n \setminus y$ is finite for all n.

Example

1. The ideal $[S]^{\leq \aleph_0}$ of all countable subsets of S is a P-ideal.

Definition

An **ideal** on an index set S is simply a family \mathcal{I} of subsets of S closed under taking subsets and finite unions of its elements.

We shall consider only ideals of **countable** subsets of S and assume that all our ideals include the ideal of all finite subsets of S.

We say that such an ideal \mathcal{I} is a **P-ideal** if for every sequence (x_n) in \mathcal{I} there is $y \in \mathcal{I}$ such that $x_n \setminus y$ is finite for all n.

Example

- 1. The ideal $[S]^{\leq \aleph_0}$ of all countable subsets of S is a P-ideal.
- 2. Given a family ${\mathcal F}$ of cardinality $< {\mathfrak b}$ the ideal

$$\mathcal{F}^{\perp} = \{x \in [\mathcal{S}]^{\leq leph_0} : (orall X \in \mathcal{F}) | x \cap X | < leph_0\}$$

is a P-ideal.

The **P-ideal dichotomy** is the statement that for every P-ideal \mathcal{I} on some index set *S* either

The **P-ideal dichotomy** is the statement that for every P-ideal \mathcal{I} on some index set S either

```
(1) there is uncountable T \subseteq S such that [T]^{\aleph_0} \subseteq \mathcal{I}.
```

The **P-ideal dichotomy** is the statement that for every P-ideal \mathcal{I} on some index set S either

- (1) there is uncountable $T \subseteq S$ such that $[T]^{\aleph_0} \subseteq \mathcal{I}$.
- (2) there is a countable decomposition $S = \bigcup_{n < \omega} S_n$ such that $S_n \perp \mathcal{I}$ for all *n*.

The **P-ideal dichotomy** is the statement that for every P-ideal \mathcal{I} on some index set S either

- (1) there is uncountable $T \subseteq S$ such that $[T]^{\aleph_0} \subseteq \mathcal{I}$.
- (2) there is a countable decomposition $S = \bigcup_{n < \omega} S_n$ such that $S_n \perp \mathcal{I}$ for all *n*.

Remark

1. It is known that PID follows from the strong Baire category principles such as PFA.

The **P-ideal dichotomy** is the statement that for every P-ideal \mathcal{I} on some index set S either

- (1) there is uncountable $T \subseteq S$ such that $[T]^{\aleph_0} \subseteq \mathcal{I}$.
- (2) there is a countable decomposition $S = \bigcup_{n < \omega} S_n$ such that $S_n \perp \mathcal{I}$ for all *n*.

Remark

1. It is known that PID follows from the strong Baire category principles such as PFA.

2. It is also known that PID is consistent with GCH.

The **P-ideal dichotomy** is the statement that for every P-ideal \mathcal{I} on some index set S either

- (1) there is uncountable $T \subseteq S$ such that $[T]^{\aleph_0} \subseteq \mathcal{I}$.
- (2) there is a countable decomposition $S = \bigcup_{n < \omega} S_n$ such that $S_n \perp \mathcal{I}$ for all *n*.

Remark

1. It is known that PID follows from the strong Baire category principles such as PFA.

- 2. It is also known that PID is consistent with GCH.
- 3. It is known that PID implies, for example, the Souslin Hypothesis.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Theorem (Todorcevic 2006)

Assume PID. Then every Banach space of density $< \mathfrak{p}$ has a quotient with a Schauder basis which can be assumed to be of length ω_1 if the space is not separable.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (Todorcevic 2006)

Assume PID. Then every Banach space of density $< \mathfrak{p}$ has a quotient with a Schauder basis which can be assumed to be of length ω_1 if the space is not separable.

Corollary

Assume PID and $\mathfrak{p} > \omega_1$. Then every non-separable Banach space has an uncountable biorthogonal system.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Todorcevic 2006)

Assume PID. Then every Banach space of density $< \mathfrak{p}$ has a quotient with a Schauder basis which can be assumed to be of length ω_1 if the space is not separable.

Corollary

Assume PID and $\mathfrak{p} > \omega_1$. Then every non-separable Banach space has an uncountable biorthogonal system.

Corollary

Assume PID and $\mathfrak{p} > \omega_1$. Then every non-separable Banach space has closed convex subset supported by all of its points.

Definition A sequence $(f_{\gamma} : \gamma \in \Gamma) \subseteq X^*$ is w^* -null whenever $\{\gamma \in \Gamma : |f_{\gamma}(x)| \ge \varepsilon\}$

is finite for all $x \in X$ and $\varepsilon > 0$.

Definition A sequence $(f_{\gamma} : \gamma \in \Gamma) \subseteq X^*$ is w^* -null whenever $\{\gamma \in \Gamma : |f_{\gamma}(x)| \ge \varepsilon\}$

is finite for all $x \in X$ and $\varepsilon > 0$.

Remark

Note that of X has a quotient with a Schauder basis of length ω then there is a normalized w^{*}-null sequence (f_n) $(n < \omega)$ in X^{*}.

Definition A sequence $(f_{\gamma} : \gamma \in \Gamma) \subseteq X^*$ is w^* -null whenever $\{\gamma \in \Gamma : |f_{\gamma}(x)| \ge \varepsilon\}$

is finite for all $x \in X$ and $\varepsilon > 0$.

Remark

Note that of X has a quotient with a Schauder basis of length ω then there is a normalized w^{*}-null sequence (f_n) $(n < \omega)$ in X^{*}.

Similarly, if X has a quotient with a Schauder basis of length ω_1 then there is a normalized w*-null sequence (f_{γ}) $(\gamma < \omega_1)$ in X*.

Definition A sequence $(f_{\gamma} : \gamma \in \Gamma) \subseteq X^*$ is w*-null whenever $\{\gamma \in \Gamma : |f_{\gamma}(x)| \ge \varepsilon\}$

is finite for all $x \in X$ and $\varepsilon > 0$.

Remark

Note that of X has a quotient with a Schauder basis of length ω then there is a normalized w^{*}-null sequence (f_n) $(n < \omega)$ in X^{*}.

Similarly, if X has a quotient with a Schauder basis of length ω_1 then there is a normalized w*-null sequence (f_{γ}) $(\gamma < \omega_1)$ in X*.

Theorem (Josefson 1975, Nissenzweig 1975) For every infinite-dimensional normed space X there is a normalized w^{*}-null sequence (f_n) $(n < \omega)$ in X^{*}.

Theorem (Todorcevic 2006)

Assume PID. Then the dual X^* of every nonseparable Banach space X of density $< \mathfrak{p}$ has an uncountable normalized w*-null sequence in X^* .

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Theorem (Todorcevic 2006)

Assume PID. Then the dual X^* of every nonseparable Banach space X of density $< \mathfrak{p}$ has an uncountable normalized w*-null sequence in X^* .

Strategy of the proof:

Theorem (Todorcevic 2006)

Assume PID. Then the dual X^* of every nonseparable Banach space X of density $< \mathfrak{p}$ has an uncountable normalized w*-null sequence in X^* .

Strategy of the proof:

Consider the ideal of all countable subsets of S_{X^*} that are w^* -null.

Theorem (Todorcevic 2006)

Assume PID. Then the dual X^* of every nonseparable Banach space X of density $< \mathfrak{p}$ has an uncountable normalized w*-null sequence in X^* .

Strategy of the proof:

Consider the ideal of all countable subsets of S_{X^*} that are w^* -null.

The alternative (1) of PID is giving us an uncountable normalized w^* -null sequence in X^* .

Theorem (Todorcevic 2006)

Assume PID. Then the dual X^* of every nonseparable Banach space X of density $< \mathfrak{p}$ has an uncountable normalized w*-null sequence in X^* .

Strategy of the proof:

Consider the ideal of all countable subsets of S_{X^*} that are w^* -null.

The alternative (1) of PID is giving us an uncountable normalized w^* -null sequence in X^* .

We concentrate on the alternative (2) of PID and design another P-ideal.

<ロ>

Theorem (Todorcevic 2006)

Assume PID. Suppose that a Banach space X has density $< \mathfrak{b}$ and that its dual X^{*} has an uncountable normalized w^{*}-null sequence. Then X has a quotient with a Schauder basis of length ω_1 .

Theorem (Todorcevic 2006)

Assume PID. Suppose that a Banach space X has density $< \mathfrak{b}$ and that its dual X^{*} has an uncountable normalized w^{*}-null sequence. Then X has a quotient with a Schauder basis of length ω_1 .

Strategy of the proof:

Theorem (Todorcevic 2006)

Assume PID. Suppose that a Banach space X has density $< \mathfrak{b}$ and that its dual X^{*} has an uncountable normalized w^{*}-null sequence. Then X has a quotient with a Schauder basis of length ω_1 .

Strategy of the proof:

Given a w*-null $(f_{\gamma} : \gamma < \omega_1) \subseteq S_{X^*}$ one selects uncountable $\Gamma \subseteq \omega_1$ such that:

Theorem (Todorcevic 2006)

Assume PID. Suppose that a Banach space X has density $< \mathfrak{b}$ and that its dual X^{*} has an uncountable normalized w^{*}-null sequence. Then X has a quotient with a Schauder basis of length ω_1 .

Strategy of the proof:

Given a w*-null $(f_{\gamma} : \gamma < \omega_1) \subseteq S_{X^*}$ one selects uncountable $\Gamma \subseteq \omega_1$ such that:

1. $\{f_{\gamma} : \gamma \in \Gamma\}$ is a Schauder basic sequence with basis constant 1.

Theorem (Todorcevic 2006)

Assume PID. Suppose that a Banach space X has density $< \mathfrak{b}$ and that its dual X^{*} has an uncountable normalized w^{*}-null sequence. Then X has a quotient with a Schauder basis of length ω_1 .

Strategy of the proof:

Given a w*-null $(f_{\gamma} : \gamma < \omega_1) \subseteq S_{X^*}$ one selects uncountable $\Gamma \subseteq \omega_1$ such that:

- 1. $\{f_{\gamma} : \gamma \in \Gamma\}$ is a Schauder basic sequence with basis constant 1.
- 2. The corresponding sequence $\{f_{\gamma}^* : \gamma \in \Gamma\}$ of linear functionals of the norm-closed linear span of $\{f_{\gamma} : \gamma \in \Gamma\}$ is also Schauder basic of constant 1.

Theorem (Todorcevic 2006)

Assume PID. Suppose that a Banach space X has density $< \mathfrak{b}$ and that its dual X^{*} has an uncountable normalized w^{*}-null sequence. Then X has a quotient with a Schauder basis of length ω_1 .

Strategy of the proof:

Given a w*-null $(f_{\gamma} : \gamma < \omega_1) \subseteq S_{X^*}$ one selects uncountable $\Gamma \subseteq \omega_1$ such that:

- 1. $\{f_{\gamma} : \gamma \in \Gamma\}$ is a Schauder basic sequence with basis constant 1.
- 2. The corresponding sequence $\{f_{\gamma}^* : \gamma \in \Gamma\}$ of linear functionals of the norm-closed linear span of $\{f_{\gamma} : \gamma \in \Gamma\}$ is also Schauder basic of constant 1.
- 3. The map $x \mapsto \sum_{\gamma \in \Gamma} f_{\gamma}(x) f_{\gamma}^*$ is a quotient map from X onto the norm-closed linear span of $\{f_{\gamma}^* : \gamma \in \Gamma\}$.

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

Definition

An **Asplund space**, or a **strong differentiability space** is a Banach space X with the property that every continuous convex function $f : U \to \mathbb{R}$ on an open convex domain $U \subseteq X$ is Fréchet differentiable in every point of a dense G_{δ} -subset of U.

Definition

An **Asplund space**, or a **strong differentiability space** is a Banach space X with the property that every continuous convex function $f : U \to \mathbb{R}$ on an open convex domain $U \subseteq X$ is Fréchet differentiable in every point of a dense G_{δ} -subset of U.

Remark

This is a well studied class of spaces with many pleasant properties such as:

Definition

An **Asplund space**, or a **strong differentiability space** is a Banach space X with the property that every continuous convex function $f : U \to \mathbb{R}$ on an open convex domain $U \subseteq X$ is Fréchet differentiable in every point of a dense G_{δ} -subset of U.

Remark

This is a well studied class of spaces with many pleasant properties such as:

the projectional resolution of the identity of its dual space,

Definition

An **Asplund space**, or a **strong differentiability space** is a Banach space X with the property that every continuous convex function $f : U \to \mathbb{R}$ on an open convex domain $U \subseteq X$ is Fréchet differentiable in every point of a dense G_{δ} -subset of U.

Remark

This is a well studied class of spaces with many pleasant properties such as:

the projectional resolution of the identity of its dual space,

the norm-fragmentability of the w^* -topology of the dual ball,

Definition

An **Asplund space**, or a **strong differentiability space** is a Banach space X with the property that every continuous convex function $f : U \to \mathbb{R}$ on an open convex domain $U \subseteq X$ is Fréchet differentiable in every point of a dense G_{δ} -subset of U.

Remark

This is a well studied class of spaces with many pleasant properties such as:

the projectional resolution of the identity of its dual space,

the norm-fragmentability of the w^* -topology of the dual ball,

sequential compactness of its dual ball with the w^* -topology,

Definition

An **Asplund space**, or a **strong differentiability space** is a Banach space X with the property that every continuous convex function $f : U \to \mathbb{R}$ on an open convex domain $U \subseteq X$ is Fréchet differentiable in every point of a dense G_{δ} -subset of U.

Remark

This is a well studied class of spaces with many pleasant properties such as:

the projectional resolution of the identity of its dual space, the norm-fragmentability of the w^* -topology of the dual ball, sequential compactness of its dual ball with the w^* -topology, separability of the dual of every separable subspace, etc.

▲□▶ ▲□▶ ▲国▶ ▲国▶ 三国 - のへで

Theorem (Todorcevic 1989)

If $\mathfrak{b} = \omega_1$ then there is a non-separable Asplund space with no uncountable biorthogonal system

Theorem (Todorcevic 1989)

If $\mathfrak{b} = \omega_1$ then there is a non-separable Asplund space with no uncountable biorthogonal system

Theorem (Brech-Todorcevic 2012)

Assume PID. Then every Asplund space of density $< \mathfrak{b}$ has a quotient with a Schauder basis which can be assumed to be of length ω_1 if the space is not separable.

Theorem (Todorcevic 1989)

If $\mathfrak{b} = \omega_1$ then there is a non-separable Asplund space with no uncountable biorthogonal system

Theorem (Brech-Todorcevic 2012)

Assume PID. Then every Asplund space of density $< \mathfrak{b}$ has a quotient with a Schauder basis which can be assumed to be of length ω_1 if the space is not separable.

Corollary

Assume PID. The following are equivalent:

Theorem (Todorcevic 1989)

If $\mathfrak{b} = \omega_1$ then there is a non-separable Asplund space with no uncountable biorthogonal system

Theorem (Brech-Todorcevic 2012)

Assume PID. Then every Asplund space of density $< \mathfrak{b}$ has a quotient with a Schauder basis which can be assumed to be of length ω_1 if the space is not separable.

Corollary

Assume PID. The following are equivalent:

1. Every non-separable Asplund space has an uncountable biorthogonal system.

Theorem (Todorcevic 1989)

If $\mathfrak{b} = \omega_1$ then there is a non-separable Asplund space with no uncountable biorthogonal system

Theorem (Brech-Todorcevic 2012)

Assume PID. Then every Asplund space of density $< \mathfrak{b}$ has a quotient with a Schauder basis which can be assumed to be of length ω_1 if the space is not separable.

Corollary

Assume PID. The following are equivalent:

- 1. Every non-separable Asplund space has an uncountable biorthogonal system.
- 2. $\mathfrak{b} = \omega_2$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

Fix an Asplund space X of density < b.

Fix an Asplund space X of density < b.Let

$$\mathcal{I} = \{ M \subseteq S_{X^*} : M \text{ is } w^* \text{-null} \}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fix an Asplund space X of density < b.Let

$$\mathcal{I} = \{ M \subseteq S_{X^*} : M \text{ is } w^*\text{-null} \}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Then ${\mathcal I}$ is a P-ideal and by PID it suffices to show that

Fix an Asplund space X of density $< \mathfrak{b}$.Let

$$\mathcal{I} = \{ M \subseteq S_{X^*} : M \text{ is } w^*\text{-null} \}.$$

Then $\ensuremath{\mathcal{I}}$ is a P-ideal and by PID it suffices to show that

Lemma

If X is not separable then S_{X^*} cannot be covered by countably many sets orthogonal to \mathcal{I} .

Fix an Asplund space X of density < b.Let

$$\mathcal{I} = \{ M \subseteq S_{X^*} : M \text{ is } w^*\text{-null} \}.$$

Then ${\mathcal I}$ is a P-ideal and by PID it suffices to show that

Lemma

If X is not separable then S_{X^*} cannot be covered by countably many sets orthogonal to \mathcal{I} .

Remark

If M orthogonal to \mathcal{I} would mean that M does not accumulate to 0^* we would be easily done, since if X is non-separable, 0^* is not a G_{δ} point of B_{X^*} .

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

Suppose there is $M \subseteq S_{X^*}$ such that:

Suppose there is $M \subseteq S_{X^*}$ such that:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1. $M \perp \mathcal{I}$,

Suppose there is $M \subseteq S_{X^*}$ such that:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- 1. $M \perp \mathcal{I}$,
- 2. *M* is uncountable,

Suppose there is $M \subseteq S_{X^*}$ such that:

- 1. $M \perp \mathcal{I}$,
- 2. *M* is uncountable,
- 3. $\{f \in M : f(x) \neq 0\}$ is countable for all $x \in X \setminus \{0\}$.

Suppose there is $M \subseteq S_{X^*}$ such that:

- 1. $M \perp \mathcal{I},$
- 2. *M* is uncountable,

3. $\{f \in M : f(x) \neq 0\}$ is countable for all $x \in X \setminus \{0\}$.

Let K be the **sequential closure** of M relative to the w^* -topology.

Suppose there is $M \subseteq S_{X^*}$ such that:

- 1. $M \perp \mathcal{I},$
- 2. *M* is uncountable,

3. $\{f \in M : f(x) \neq 0\}$ is countable for all $x \in X \setminus \{0\}$.

Let K be the **sequential closure** of M relative to the w^* -topology.Then

 $0^* \notin K$.

Suppose there is $M \subseteq S_{X^*}$ such that:

- 1. $M \perp \mathcal{I}$,
- 2. *M* is uncountable,

3. $\{f \in M : f(x) \neq 0\}$ is countable for all $x \in X \setminus \{0\}$.

Let K be the **sequential closure** of M relative to the w^* -topology. Then

 $0^* \notin K$.

We try again PID but now applied to the P-ideal

$$\mathcal{I} \upharpoonright (K \cup -K) \setminus \{0^*\}$$

Suppose there is $M \subseteq S_{X^*}$ such that:

- 1. $M \perp \mathcal{I}$,
- 2. *M* is uncountable,

3. $\{f \in M : f(x) \neq 0\}$ is countable for all $x \in X \setminus \{0\}$.

Let K be the **sequential closure** of M relative to the w^* -topology. Then

 $0^* \notin K$.

We try again PID but now applied to the P-ideal

$$\mathcal{I} \upharpoonright (K \cup -K) \setminus \{0^*\}$$

Lemma (Key) The alternative (2) fails for the ideal $\mathcal{I} \upharpoonright (K \cup -K) \setminus \{0^*\}$.

<ロ> <回> <回> <回> <三> <三> <三> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

Definition

A Banach space $(X, \|\cdot\|)$ has the **Mazur Interesection Property**, **MIP**, if every bounded closed convex set is an intersection of closed balls.

Definition

A Banach space $(X, \|\cdot\|)$ has the **Mazur Interesection Property**, **MIP**, if every bounded closed convex set is an intersection of closed balls.

Theorem (Mazur 1933)

A Banach space with a Fréchet differentiable norm has the MIP.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Definition

A Banach space $(X, \|\cdot\|)$ has the **Mazur Interesection Property**, **MIP**, if every bounded closed convex set is an intersection of closed balls.

Theorem (Mazur 1933)

A Banach space with a Fréchet differentiable norm has the MIP.

Theorem (JiménezSevilla-Moreno 1997)

Suppose that a Banach space X has a biorthogonal system $\{(x_i, f_i : i \in I)\} \subseteq X \times X^*$ such that

$$X^* = \overline{\operatorname{span}}\{f_i : i \in I\}$$

Then X admits an equivalent norm with the MIP.

Theorem (JiménezSevilla-Moreno 1997)

Suppose that a non-separable Banach space X has an equivalent norm with the MIP. Then for every $\varepsilon > 0$ there is an uncountable ε -biorthogonal system $\{(x_i, f_i : i \in I)\} \subseteq X \times X^*, i.e., a system$ such that

 $f_i(x_i) = 1$ and $|f_i(x_j)| \le \varepsilon$ for $i \ne j$.

Theorem (JiménezSevilla-Moreno 1997)

Suppose that a non-separable Banach space X has an equivalent norm with the MIP. Then for every $\varepsilon > 0$ there is an uncountable ε -biorthogonal system $\{(x_i, f_i : i \in I)\} \subseteq X \times X^*, i.e., a system$ such that

$$f_i(x_i) = 1$$
 and $|f_i(x_j)| \le \varepsilon$ for $i \ne j$.

Problem

Does every Asplund space has an equivalent norm with the MIP?

Theorem (JiménezSevilla-Moreno 1997)

Suppose that a non-separable Banach space X has an equivalent norm with the MIP. Then for every $\varepsilon > 0$ there is an uncountable ε -biorthogonal system $\{(x_i, f_i : i \in I)\} \subseteq X \times X^*, i.e., a system$ such that

$$f_i(x_i) = 1$$
 and $|f_i(x_j)| \le \varepsilon$ for $i \ne j$.

Problem

Does every Asplund space has an equivalent norm with the MIP?

Remark

This is natural to ask in view of Mazur's original theorem since a Banach space with a Fréchet differentiable norm is necessarily an Asplund space.

MIP for Asplund spaces of small density

<ロ> <回> <回> <回> <三> <三> <三> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

MIP for Asplund spaces of small density

Theorem (Bačák-Hájek 2008)

Suppose X is an Asplund space of density \aleph_1 with an uncountable biorthogonal theorem. Then X contains an uncountable normalizeed sequence which is w^{*}-null as a subset of X^{**}.

MIP for Asplund spaces of small density

Theorem (Bačák-Hájek 2008)

Suppose X is an Asplund space of density \aleph_1 with an uncountable biorthogonal theorem. Then X contains an uncountable normalizeed sequence which is w^{*}-null as a subset of X^{**}.

Corollary (Bačák-Hájek 2008)

Assume PID. Then every Asplund space of density $<\mathfrak{p}$ has an equivalent norm with the MIP.

MIP for Asplund spaces of small density

Theorem (Bačák-Hájek 2008)

Suppose X is an Asplund space of density \aleph_1 with an uncountable biorthogonal theorem. Then X contains an uncountable normalizeed sequence which is w^{*}-null as a subset of X^{**}.

Corollary (Bačák-Hájek 2008)

Assume PID. Then every Asplund space of density $<\mathfrak{p}$ has an equivalent norm with the MIP.

Problem

What is the correct bound here \mathfrak{p} of \mathfrak{b} ?

If $\mathfrak{b} = \omega_1$ then there is an Asplund space with no equivalent norm with the MIP.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

If $\mathfrak{b} = \omega_1$ then there is an Asplund space with no equivalent norm with the MIP.

Theorem (Brech-Todorcevic 2012)

Assume PID. Then every Asplund space of density < b has an equivalent norm with the MIP.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

If $\mathfrak{b} = \omega_1$ then there is an Asplund space with no equivalent norm with the MIP.

Theorem (Brech-Todorcevic 2012)

Assume PID. Then every Asplund space of density < b has an equivalent norm with the MIP.

Corollary

Assume PID. The following are equivalent:

If $\mathfrak{b} = \omega_1$ then there is an Asplund space with no equivalent norm with the MIP.

Theorem (Brech-Todorcevic 2012)

Assume PID. Then every Asplund space of density < b has an equivalent norm with the MIP.

Corollary

Assume PID. The following are equivalent:

 Every Asplund space of density ℵ₁ has an equivalent norm with the MIP.

If $\mathfrak{b} = \omega_1$ then there is an Asplund space with no equivalent norm with the MIP.

Theorem (Brech-Todorcevic 2012)

Assume PID. Then every Asplund space of density < b has an equivalent norm with the MIP.

Corollary

Assume PID. The following are equivalent:

1. Every Asplund space of density \aleph_1 has an equivalent norm with the MIP.

 $2. \ \mathfrak{b} = \aleph_2.$

Start with a C-sequence ($\mathit{C}_{\alpha}:\alpha<\omega_1)$ and read from it the function

$$\rho_1: [\omega_1]^2 \to \omega.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Start with a C-sequence ($\mathit{C}_{\alpha}:\alpha<\omega_1)$ and read from it the function

$$\rho_1: [\omega_1]^2 \to \omega.$$

By $\mathfrak{b} = \omega_1$ we can fix a sequence

$$\{a_{\xi}:\xi<\omega_1\}\subseteq\omega^{\omega}$$

that is $<^*$ -increasing and $<^*$ -unbounded,

Start with a C-sequence ($C_{\alpha}: \alpha < \omega_1$) and read from it the function

$$\rho_1: [\omega_1]^2 \to \omega.$$

By $\mathfrak{b} = \omega_1$ we can fix a sequence

$$\{a_{\xi}:\xi<\omega_1\}\subseteq\omega^{\omega}$$

that is <*-increasing and <*-unbounded, and consider the corresponding distance function $\Delta : [\omega_1]^2 \to \omega$ defined by

$$\Delta(\alpha,\beta) = \min\{n: a_{\alpha}(n) \neq a_{\beta}(n)\}.$$

Start with a C-sequence ($C_{\alpha}: \alpha < \omega_1$) and read from it the function

$$\rho_1: [\omega_1]^2 \to \omega.$$

By $\mathfrak{b} = \omega_1$ we can fix a sequence

$$\{a_{\xi}:\xi<\omega_1\}\subseteq\omega^{\omega}$$

that is <*-increasing and <*-unbounded, and consider the corresponding distance function $\Delta : [\omega_1]^2 \to \omega$ defined by

$$\Delta(\alpha,\beta) = \min\{n : a_{\alpha}(n) \neq a_{\beta}(n)\}.$$

For $n < \omega$ and $\beta < \omega_1$, set

$$\mathcal{H}_n(eta) = \{eta\} \cup \{lpha < eta : \Delta(lpha, eta) = n \text{ and }
ho_1(lpha, eta) \leq \mathsf{a}_eta(n)\}.$$

<ロト (個) (目) (目) (目) (0) (0)</p>

Define $\mathcal{H} = \{h_{\alpha} : \alpha < \omega_1\} \subseteq \{0, 1\}^{\omega_1}$ recursively as follows:

Define $\mathcal{H} = \{h_{\alpha} : \alpha < \omega_1\} \subseteq \{0, 1\}^{\omega_1}$ recursively as follows:

$$h_{lpha}(lpha) = 1, h_{lpha}(\xi) = 0$$
 for $\xi < lpha$ and for $\gamma > lpha$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Define $\mathcal{H} = \{h_{\alpha} : \alpha < \omega_1\} \subseteq \{0, 1\}^{\omega_1}$ recursively as follows:

$$h_{\alpha}(\alpha) = 1, h_{\alpha}(\xi) = 0$$
 for $\xi < \alpha$ and for $\gamma > \alpha$

$$h_{\alpha}(\gamma) = 1 \text{ iff } (\exists \beta \in [\alpha, \gamma)) \land \beta \in H_{\Delta(\alpha, \gamma)}(\gamma) \land h_{\alpha}(\beta) = 1.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Define $\mathcal{H} = \{h_{\alpha} : \alpha < \omega_1\} \subseteq \{0, 1\}^{\omega_1}$ recursively as follows:

$$h_{lpha}(lpha) = 1, h_{lpha}(\xi) = 0$$
 for $\xi < lpha$ and for $\gamma > lpha$

$$h_{\alpha}(\gamma) = 1$$
 iff $(\exists \beta \in [\alpha, \gamma)) \land \beta \in H_{\Delta(\alpha, \gamma)}(\gamma) \land h_{\alpha}(\beta) = 1.$
Define the norm $\|\cdot\|_{\mathcal{H}}$ on $c_{00}(\omega_1)$ by letting

$$||x||_{\mathcal{H}} = \sup\{|\langle h, x \rangle| : h \in \mathcal{H}\}.$$

Define $\mathcal{H} = \{h_{\alpha} : \alpha < \omega_1\} \subseteq \{0, 1\}^{\omega_1}$ recursively as follows:

$$h_{\alpha}(\alpha) = 1, h_{\alpha}(\xi) = 0$$
 for $\xi < \alpha$ and for $\gamma > \alpha$

$$h_{\alpha}(\gamma) = 1$$
 iff $(\exists \beta \in [\alpha, \gamma)) \land \beta \in H_{\Delta(\alpha, \gamma)}(\gamma) \land h_{\alpha}(\beta) = 1.$
Define the norm $\|\cdot\|_{\mathcal{H}}$ on $c_{00}(\omega_1)$ by letting

$$||x||_{\mathcal{H}} = \sup\{|\langle h, x\rangle| : h \in \mathcal{H}\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $X_{\mathcal{H}}$ be the completion of $(c_{00}(\omega_1), \|\cdot\|_{\mathcal{H}})$.

Define $\mathcal{H} = \{h_{\alpha} : \alpha < \omega_1\} \subseteq \{0, 1\}^{\omega_1}$ recursively as follows:

$$h_{lpha}(lpha)=1, h_{lpha}(\xi)=0$$
 for $\xi and for $\gamma>lpha$$

 $h_{\alpha}(\gamma) = 1$ iff $(\exists \beta \in [\alpha, \gamma)) \land \beta \in H_{\Delta(\alpha, \gamma)}(\gamma) \land h_{\alpha}(\beta) = 1.$ Define the norm $\|\cdot\|_{\mathcal{H}}$ on $c_{00}(\omega_1)$ by letting

$$||x||_{\mathcal{H}} = \sup\{|\langle h, x \rangle| : h \in \mathcal{H}\}.$$

Let $X_{\mathcal{H}}$ be the completion of $(c_{00}(\omega_1), \|\cdot\|_{\mathcal{H}})$.

Theorem (Todorcevic 1989)

 $X_{\mathcal{H}}$ is a nonseparable Asplund space whose weak topology is hereditarily Lindelöf. So X has no uncountable biorthogoal systems nor equivalent norms with the MIP.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?

$$X_{\mathcal{F}} = \lim_{t \to \mathcal{F}} X_t,$$

where

$$X_{\mathcal{F}} = \lim_{t \to \mathcal{F}} X_t,$$

where

 \mathcal{F} is a cofinal family of finite subsets of ω_1 ,

$$X_{\mathcal{F}} = \lim_{t \to \mathcal{F}} X_t,$$

where

 \mathcal{F} is a cofinal family of finite subsets of ω_1 ,

 $X_t = (\mathbb{R}^t, \|\cdot\|_t)$

$$X_{\mathcal{F}} = \lim_{t \to \mathcal{F}} X_t,$$

where

 \mathcal{F} is a cofinal family of finite subsets of ω_1 ,

$$X_t = (\mathbb{R}^t, \|\cdot\|_t)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where the norm $\|\cdot\|_t$ is given by a finite set of functionals

$$X_{\mathcal{F}} = \lim_{t \to \mathcal{F}} X_t,$$

where

 \mathcal{F} is a cofinal family of finite subsets of ω_1 ,

$$X_t = (\mathbb{R}^t, \|\cdot\|_t)$$

where the norm $\|\cdot\|_t$ is given by a finite set of functionals

$$([-1,1]\cap\mathbb{Q})^t\supseteq\mathcal{G}_t\supseteq\{h_\gamma^t:\gamma\in t\},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$X_{\mathcal{F}} = \lim_{t \to \mathcal{F}} X_t,$$

where

 \mathcal{F} is a cofinal family of finite subsets of ω_1 ,

$$X_t = (\mathbb{R}^t, \|\cdot\|_t)$$

where the norm $\|\cdot\|_t$ is given by a finite set of functionals

$$([-1,1]\cap\mathbb{Q})^t\supseteq\mathcal{G}_t\supseteq\{h_\gamma^t:\gamma\in t\},$$

where

$$h_{\gamma}^{t} \upharpoonright \gamma = 0, \quad h_{t}^{\gamma}(\gamma) \neq 0.$$

or, given by a finite set of functionals

$$([-1,1] \cap \mathbb{Q})^t \supseteq \mathcal{G}_t^* \supseteq \{f_\gamma^t, g_\gamma^t : \gamma \in t\},$$

where

$$f_{\gamma}^t \upharpoonright \gamma = g_{\gamma}^t \upharpoonright \gamma, \ \ f_t^{\gamma}(\gamma) = 0 < 1 = g_t^{\gamma}(\gamma).$$

or, given by a finite set of functionals

$$([-1,1] \cap \mathbb{Q})^t \supseteq \mathcal{G}_t^* \supseteq \{f_{\gamma}^t, g_{\gamma}^t : \gamma \in t\},\$$

where

$$f_{\gamma}^t \upharpoonright \gamma = g_{\gamma}^t \upharpoonright \gamma, \ \ f_t^{\gamma}(\gamma) = 0 < 1 = g_t^{\gamma}(\gamma).$$

Problem

Which properties of the cofinal family $\mathcal{F} \subseteq [\omega_1]^{<\omega}$ will give us a rich spectrum of limit spaces $X_{\mathcal{F}}$?

or, given by a finite set of functionals

$$([-1,1]\cap\mathbb{Q})^t\supseteq\mathcal{G}_t^*\supseteq\{f_\gamma^t,g_\gamma^t:\gamma\in t\},$$

where

$$f_{\gamma}^t \upharpoonright \gamma = g_{\gamma}^t \upharpoonright \gamma, \ \ f_t^{\gamma}(\gamma) = 0 < 1 = g_t^{\gamma}(\gamma).$$

Problem

Which properties of the cofinal family $\mathcal{F} \subseteq [\omega_1]^{<\omega}$ will give us a rich spectrum of limit spaces $X_{\mathcal{F}}$?

Remark

We give an answer to this question by borrowing both from the theory of ρ -functions on ω_1 and known forcing constructions of Boolean algebras and Banach spaces.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

For every $t \in \mathcal{F}$,

 $t=s_1\cup s_2\cup\cdots\cup s_{n_t},$

For every $t \in \mathcal{F}$,

 $t=s_1\cup s_2\cup\cdots\cup s_{n_t},$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where $s_1, ..., s_{n_t} \in \mathcal{F}$ are all of rank equal to $\operatorname{rk}(t) - 1$ and

For every $t \in \mathcal{F}$,

 $t=s_1\cup s_2\cup\cdots\cup s_{n_t},$

where $s_1, ..., s_{n_t} \in \mathcal{F}$ are all of rank equal to $\operatorname{rk}(t) - 1$ and

 $s_i \cap s_j = r_t$ for $i \neq j$,

・ロト・日本・モート モー うへぐ

For every $t \in \mathcal{F}$,

 $t=s_1\cup s_2\cup\cdots\cup s_{n_t},$ where $s_1,...,s_{n_t}\in \mathcal{F}$ are all of rank equal to $\operatorname{rk}(t)-1$ and $s_i\cap s_j=r_t$ for i
eq j,

 $r_t < (s_1 \setminus r_t) < (s_2 \setminus r_t) < \cdots < (s_{n_t} \setminus r_t).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

For every $t \in \mathcal{F}$,

 $t = s_1 \cup s_2 \cup \cdots \cup s_{n_t},$ where $s_1, \dots, s_{n_t} \in \mathcal{F}$ are all of rank equal to $\operatorname{rk}(t) - 1$ and $s_i \cap s_j = r_t$ for $i \neq j,$

$$r_t < (s_1 \setminus r_t) < (s_2 \setminus r_t) < \cdots < (s_{n_t} \setminus r_t).$$

When n_t and the cardinality of t and r_t depend only on the rank of t in \mathcal{F} , we say that \mathcal{F} is **homogeneous**.

$$X_t = \operatorname{Amalg}\{X_{s_1}, X_{s_2}, \dots, X_{s_{n_t}}\},\$$

$$X_t = \operatorname{Amalg}\{X_{s_1}, X_{s_2}, \dots, X_{s_{n_t}}\},\$$

where the amalgamation needs to give us $\ensuremath{\textit{naturally}}$ isometric spaces

$$X_t \cong X_u$$

whenever

$$t, u \in \mathcal{F}$$
 and $\operatorname{rk}(t) = \operatorname{rk}(u)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$X_t = \operatorname{Amalg}\{X_{s_1}, X_{s_2}, \dots, X_{s_{n_t}}\},\$$

where the amalgamation needs to give us **naturally** isometric spaces

$$X_t \cong X_u$$

whenever

$$t, u \in \mathcal{F}$$
 and $\operatorname{rk}(t) = \operatorname{rk}(u)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Note that condition indeed passes from rank k to rank k+1

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへぐ

Definition

We say that $t \in \mathcal{F}$ captures a finite Δ -system a_{ξ} ($\xi \in I$) of finite subsets of ω_1 with root a if there is a injection

$$\varphi: I \to \{1, ..., n_t\}$$

such that $a \subseteq r_t$ and $a_{\xi} \subseteq (s_{\varphi(\xi)} \setminus r_t)$ for all $\xi \in I$.

Definition

We say that $t \in \mathcal{F}$ captures a finite Δ -system a_{ξ} ($\xi \in I$) of finite subsets of ω_1 with root a if there is a injection

$$\varphi: I \to \{1, ..., n_t\}$$

such that $a \subseteq r_t$ and $a_{\xi} \subseteq (s_{\varphi(\xi)} \setminus r_t)$ for all $\xi \in I$. We say that $t \in \mathcal{F}$ totally captures the finite Δ -system a_{ξ} ($\xi \in I$) if φ is a bijection

Remark

We really want that for $\xi, \eta \in I$ the natural isomorphism between $s_{\varphi(\xi)}$ and $s_{\varphi(\eta)}$ moves a_{ξ} to a_{η} .

Definition

We say that $t \in \mathcal{F}$ captures a finite Δ -system a_{ξ} ($\xi \in I$) of finite subsets of ω_1 with root *a* if there is a injection

$$\varphi: I \to \{1, ..., n_t\}$$

such that $a \subseteq r_t$ and $a_{\xi} \subseteq (s_{\varphi(\xi)} \setminus r_t)$ for all $\xi \in I$. We say that $t \in \mathcal{F}$ totally captures the finite Δ -system a_{ξ} ($\xi \in I$) if φ is a bijection

Remark

We really want that for $\xi, \eta \in I$ the natural isomorphism between $s_{\varphi(\xi)}$ and $s_{\varphi(\eta)}$ moves a_{ξ} to a_{η} . We call this sort of capturing the **positional capturing**. We do not add this here since we will be essentially free to choose the sequence n_t to be rather fast relative to the cardinalities of the tails $s_i \setminus r_t$ of terms of the decomposition of t.

Definition

We say that \mathcal{F} is **dense** if an arbitrary **uncountable** Δ -system of finite subsets of ω_1 has arbitrarily large finite subsystems totally captured by members of \mathcal{F} .

Definition

We say that \mathcal{F} is **dense** if an arbitrary **uncountable** Δ -system of finite subsets of ω_1 has arbitrarily large finite subsystems totally captured by members of \mathcal{F} .

Remark

The notions of capturing and density alow many variations. What seem easiest to use is capturing of arbitrarily large finite subsystems a_{ξ} ($\xi \in I$) of an uncountable Δ -system with $\varphi : I \rightarrow \{1, ..., n_t\}$ whose range is an **initial segment** of $\{1, ..., n_t\}$ and that a_{ξ} gets moved to a_{η} in the natural isomorphism between $s_{\varphi(\xi)}$ and $s_{\varphi(\eta)}$.

Definition

We say that \mathcal{F} is **dense** if an arbitrary **uncountable** Δ -system of finite subsets of ω_1 has arbitrarily large finite subsystems totally captured by members of \mathcal{F} .

Remark

The notions of capturing and density alow many variations. What seem easiest to use is capturing of arbitrarily large finite subsystems a_{ξ} ($\xi \in I$) of an uncountable Δ -system with $\varphi : I \rightarrow \{1, ..., n_t\}$ whose range is an **initial segment** of $\{1, ..., n_t\}$ and that a_{ξ} gets moved to a_{η} in the natural isomorphism between $s_{\varphi(\xi)}$ and $s_{\varphi(\eta)}$.

Problem

Does any of the two assumptions $\mathfrak{b} = \omega_1$ or $\mathfrak{p} = \omega_1$ give us homogeneous cofinal families of finite subsets of ω_1 that (in some sense) capture uncountable Δ -systems of finite subsets of ω_1 ? A diamond example of ${\mathcal F}$

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 → の Q @

A diamond example of ${\mathcal F}$

Theorem

Assume \Diamond . Then there is a cofinal homogeneous family \mathcal{F} of finite subsets of ω_1 which totally and positionally captures an arbitrary uncountable Δ -system of finite subsets of ω_1 .

A diamond example of ${\mathcal F}$

Theorem

Assume \Diamond . Then there is a cofinal homogeneous family \mathcal{F} of finite subsets of ω_1 which totally and positionally captures an arbitrary uncountable Δ -system of finite subsets of ω_1 . Moreover, the corresponding sequences of cardinalities $(r_k)_k$, $(m_k)_k$ and $(n_k)_k$ can essentially be given in advance.

A diamond example of \mathcal{F}

Theorem

Assume \Diamond . Then there is a cofinal homogeneous family \mathcal{F} of finite subsets of ω_1 which totally and positionally captures an arbitrary uncountable Δ -system of finite subsets of ω_1 . Moreover, the corresponding sequences of cardinalities $(r_k)_k$, $(m_k)_k$ and $(n_k)_k$ can essentially be given in advance.

Remark

Only the sequence $(r_k)_k$ of cardinalities of roots needs to satisfy certain mild requirement, the other two sequences are arbitrary, modulo the requirements

$$m_0 = 1, r_{k+1} < m_k, n_{k+1} > 1, \text{ and } m_{k+1} = r_{k+1} + n_{k+1}(m_k - r_{k+1}).$$

An Asplund example from ${\cal F}$

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 → の Q @

Define $\mathcal{H}(\mathcal{F}) = \{h_{\alpha} : \alpha < \omega_1\} \subseteq \{0,1\}^{\omega_1}$ recursively as follows:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Define $\mathcal{H}(\mathcal{F}) = \{h_{\alpha} : \alpha < \omega_1\} \subseteq \{0, 1\}^{\omega_1}$ recursively as follows:

$$h_{lpha}(lpha) = 1, h_{lpha}(\xi) = 0$$
 for $\xi < lpha$ and for $\gamma > lpha$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Define $\mathcal{H}(\mathcal{F}) = \{h_{\alpha} : \alpha < \omega_1\} \subseteq \{0,1\}^{\omega_1}$ recursively as follows:

$$h_{lpha}(lpha)=1, h_{lpha}(\xi)=0$$
 for $\xi and for $\gamma>lpha$$

if $t = s_1 \cup s_2 \cup \cdots \cup s_{n_k}$, is a decomposition of a $t \in \mathcal{F}$ of minimal rank k containing both α and γ then

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Define $\mathcal{H}(\mathcal{F}) = \{h_{\alpha} : \alpha < \omega_1\} \subseteq \{0,1\}^{\omega_1}$ recursively as follows:

$$h_{lpha}(lpha)=1, h_{lpha}(\xi)=0$$
 for $\xi and for $\gamma>lpha$$

if $t = s_1 \cup s_2 \cup \cdots \cup s_{n_k}$, is a decomposition of a $t \in \mathcal{F}$ of minimal rank k containing both α and γ then

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1.
$$\alpha \in s_1 \setminus r_t$$
 implies $h_{\alpha}(\gamma) = h_{\alpha}(\bar{\gamma})$,

Define $\mathcal{H}(\mathcal{F}) = \{h_{\alpha} : \alpha < \omega_1\} \subseteq \{0,1\}^{\omega_1}$ recursively as follows:

$$h_{lpha}(lpha)=1, h_{lpha}(\xi)=0$$
 for $\xi and for $\gamma>lpha$$

if $t = s_1 \cup s_2 \cup \cdots \cup s_{n_k}$, is a decomposition of a $t \in \mathcal{F}$ of minimal rank k containing both α and γ then

1.
$$\alpha \in s_1 \setminus r_t$$
 implies $h_{\alpha}(\gamma) = h_{\alpha}(\bar{\gamma})$, where $\bar{\gamma}$ is the copy of γ in s_1 ,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Define $\mathcal{H}(\mathcal{F}) = \{h_{\alpha} : \alpha < \omega_1\} \subseteq \{0,1\}^{\omega_1}$ recursively as follows:

$$h_{lpha}(lpha)=1, h_{lpha}(\xi)=0$$
 for $\xi and for $\gamma>lpha$$

if $t = s_1 \cup s_2 \cup \cdots \cup s_{n_k}$, is a decomposition of a $t \in \mathcal{F}$ of minimal rank k containing both α and γ then

1. $\alpha \in s_1 \setminus r_t$ implies $h_{\alpha}(\gamma) = h_{\alpha}(\bar{\gamma})$, where $\bar{\gamma}$ is the copy of γ in s_1 ,

(日) (同) (三) (三) (三) (○) (○)

2. $\alpha \notin s_1 \setminus r_t$ implies $h_{\alpha}(\gamma) = 0$.

Define $\mathcal{H}(\mathcal{F}) = \{h_{\alpha} : \alpha < \omega_1\} \subseteq \{0,1\}^{\omega_1}$ recursively as follows:

$$h_{lpha}(lpha)=1, h_{lpha}(\xi)=0$$
 for $\xi and for $\gamma>lpha$$

if $t = s_1 \cup s_2 \cup \cdots \cup s_{n_k}$, is a decomposition of a $t \in \mathcal{F}$ of minimal rank k containing both α and γ then

1. $\alpha \in s_1 \setminus r_t$ implies $h_{\alpha}(\gamma) = h_{\alpha}(\bar{\gamma})$, where $\bar{\gamma}$ is the copy of γ in s_1 ,

2. $\alpha \not\in s_1 \setminus r_t$ implies $h_{\alpha}(\gamma) = 0$.

As before let $X_{\mathcal{F}}$ be the completion of $(c_{00}(\omega_1), \|\cdot\|_{\mathcal{H}(\mathcal{F})})$.

Define $\mathcal{H}(\mathcal{F}) = \{h_{\alpha} : \alpha < \omega_1\} \subseteq \{0,1\}^{\omega_1}$ recursively as follows:

$$h_{lpha}(lpha)=1, h_{lpha}(\xi)=0$$
 for $\xi and for $\gamma>lpha$$

if $t = s_1 \cup s_2 \cup \cdots \cup s_{n_k}$, is a decomposition of a $t \in \mathcal{F}$ of minimal rank k containing both α and γ then

- 1. $\alpha \in s_1 \setminus r_t$ implies $h_{\alpha}(\gamma) = h_{\alpha}(\bar{\gamma})$, where $\bar{\gamma}$ is the copy of γ in s_1 ,
- 2. $\alpha \notin s_1 \setminus r_t$ implies $h_{\alpha}(\gamma) = 0$.

As before let $X_{\mathcal{F}}$ be the completion of $(c_{00}(\omega_1), \|\cdot\|_{\mathcal{H}(\mathcal{F})})$.

Proposition

If \mathcal{F} is a homogeneous cofinal family of finite subsets of ω_1 which positionally and totally captures uncountable Δ -systems then $X_{\mathcal{F}}$ is a nonseparable Asplund space with no uncountable biorthogonal system.