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Schauder basic sequences

A sequence {xγ : γ ∈ Γ} in some Banach space X indexed by a set
of ordinals Γ is basic, or Schauder basic, in E if it is normalized,
independent and if there is a constant C ≥ 1 such that

∥∥∥∑
i∈I

aixi

∥∥∥ ≤ C
∥∥∥∑

j∈J
ajxj

∥∥∥
for any pair I v J of finite subsets of Γ such that I is an initial
segment of J and for every sequence (aj : j ∈ J) of scalars.

Theorem (Mazur 1932)

Every infinite-dimensional Banach space contains an infinite basic
sequence.
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The quotient problem

Problem (Banach 1932, Pelczynski, 1964)

Does every infinite-dimensional Banach space has an
infinite-dimensional quotient with a Schauder basis?

Theorem (Johnson-Rosenthal 1972)

Every separable infinite-dimensional Banach space has an
infinite-dimensional quotient with a Schauder basis.

Problem
Does every infinite-dimensional Banach space has a separable
infinite-dimensional quotient?
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Biorthogonal systems

Definition
A family {(xi , fi ) : i ∈ I} ⊆ X × X ∗ is a biorthogonal system of
the Banach space X whenever

fi (xi ) = 1 and fi (xj) = 0 for i 6= j .

We say that a biorthogonal system {(xi , fi ) : i ∈ I} is
fundamental in X whenever

span{xi : i ∈ I} = X .

{(xi , fi ) : i ∈ I} is total on X whenever⋂
i∈I

ker(fi ) = {0}

and bounded by a constant C if

‖xi‖ · ‖fi‖ ≤ C for all i ∈ I .
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The biorthogonal system problems

Problem (Davis-Johnson 1972)

Does every Banach space have a bounded fundamental
biorthogonal system?

Problem (Plichko 1983)

Equivalently, does every Banach space have a quotient with a
Schauder basis of length equal to its density?

Theorem (Godun-Kadets 1980, Plichko 1980)

If |Γ| > 2ℵ0 , then

`ℵ0
∞(Γ) = {x ∈ `∞(Γ) : |supp(x)| ≤ ℵ0}

has no fundamental biorthogonal system.
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Problem

1. When does an infinite-dimensional Banach space has a
quotient with a Schauder basis of length ω?

2. When does an infinite-dimensional Banach space has a
quotient with a Schauder basis of length ω1?

Definition
The cofinality of an infinite-dimensional Banach space X is the
minimal infinite cardinal θ for which there is a increasing sequence
Xξ (ξ < θ) of proper closed subspaces of X such that

⋃
ξ<θ Xξ is

dense in X .

Theorem (Folklore ?)

If an infinite-dimensional space X has cofinality ω then X has a
quotient with a Schauder basis of length ω.



Problem

1. When does an infinite-dimensional Banach space has a
quotient with a Schauder basis of length ω?

2. When does an infinite-dimensional Banach space has a
quotient with a Schauder basis of length ω1?

Definition
The cofinality of an infinite-dimensional Banach space X is the
minimal infinite cardinal θ for which there is a increasing sequence
Xξ (ξ < θ) of proper closed subspaces of X such that

⋃
ξ<θ Xξ is

dense in X .

Theorem (Folklore ?)

If an infinite-dimensional space X has cofinality ω then X has a
quotient with a Schauder basis of length ω.



Problem

1. When does an infinite-dimensional Banach space has a
quotient with a Schauder basis of length ω?

2. When does an infinite-dimensional Banach space has a
quotient with a Schauder basis of length ω1?

Definition
The cofinality of an infinite-dimensional Banach space X is the
minimal infinite cardinal θ for which there is a increasing sequence
Xξ (ξ < θ) of proper closed subspaces of X such that

⋃
ξ<θ Xξ is

dense in X .

Theorem (Folklore ?)

If an infinite-dimensional space X has cofinality ω then X has a
quotient with a Schauder basis of length ω.



Problem

1. When does an infinite-dimensional Banach space has a
quotient with a Schauder basis of length ω?

2. When does an infinite-dimensional Banach space has a
quotient with a Schauder basis of length ω1?

Definition
The cofinality of an infinite-dimensional Banach space X is the
minimal infinite cardinal θ for which there is a increasing sequence
Xξ (ξ < θ) of proper closed subspaces of X such that

⋃
ξ<θ Xξ is

dense in X .

Theorem (Folklore ?)

If an infinite-dimensional space X has cofinality ω then X has a
quotient with a Schauder basis of length ω.



Cofinality Problems

Problem

1. Does every infinite-dimensional Banach space have cofinality
ω?

2. Does every infinite-dimensional Banach space have cofinality
ω or ω1?

Theorem (Todorcevic 2008)

The Open Graph Axiom implies that the cofinality of an arbitrary
infinite-dimensional Banach space is at most ω1.

Recall that OGA is the statement that for every open graph G on
a separable metric space either

1. G ≤ Kℵ0 , or

2. Kℵ1 ≤ G.
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P-ideal dichotomy, PID

Definition
An ideal on an index set S is simply a family I of subsets of S
closed under taking subsets and finite unions of its elements.

We shall consider only ideals of countable subsets of S and
assume that all our ideals include the ideal of all finite subsets of S .

We say that such an ideal I is a P-ideal if for every sequence (xn)
in I there is y ∈ I such that xn \ y is finite for all n.

Example

1. The ideal [S ]≤ℵ0 of all countable subsets of S is a P-ideal.

2. Given a family F of cardinality < b the ideal

F⊥ = {x ∈ [S ]≤ℵ0 : (∀X ∈ F)|x ∩ X | < ℵ0}

is a P-ideal.
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Definition
The P-ideal dichotomy is the statement that for every P-ideal I
on some index set S either

(1) there is uncountable T ⊆ S such that [T ]ℵ0 ⊆ I.
(2) there is a countable decomposition S =

⋃
n<ω Sn such that

Sn ⊥ I for all n.

Remark

1. It is known that PID follows from the strong Baire category
principles such as PFA.

2. It is also known that PID is consistent with GCH.

3. It is known that PID implies, for example, the Souslin
Hypothesis.
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PID and the Quotient Problem

Theorem (Todorcevic 2006)

Assume PID. Then every Banach space of density < p has a
quotient with a Schauder basis which can be assumed to be of
length ω1 if the space is not separable.

Corollary

Assume PID and p > ω1. Then every non-separable Banach space
has an uncountable biorthogonal system.

Corollary

Assume PID and p > ω1. Then every non-separable Banach space
has closed convex subset supported by all of its points.
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w ∗-null sequences

Definition
A sequence (fγ : γ ∈ Γ) ⊆ X ∗ is w∗-null whenever

{γ ∈ Γ : |fγ(x)| ≥ ε}

is finite for all x ∈ X and ε > 0.

Remark
Note that of X has a quotient with a Schauder basis of length ω
then there is a normalized w∗-null sequence (fn) (n < ω) in X ∗.

Similarly, if X has a quotient with a Schauder basis of length ω1

then there is a normalized w∗-null sequence (fγ) (γ < ω1) in X ∗.

Theorem (Josefson 1975, Nissenzweig 1975)

For every infinite-dimensional normed space X there is a
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PID and w ∗-null sequences

Theorem (Todorcevic 2006)

Assume PID. Then the dual X ∗ of every nonseparable Banach
space X of density < p has an uncountable normalized w∗-null
sequence in X ∗.

Strategy of the proof:

Consider the ideal of all countable subsets of SX∗ that are w∗-null.

The alternative (1) of PID is giving us an uncountable normalized
w∗-null sequence in X ∗.

We concentrate on the alternative (2) of PID and design another
P-ideal.
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Quotient with long Schauder Basic sequences

Theorem (Todorcevic 2006)

Assume PID. Suppose that a Banach space X has density < b and
that its dual X ∗ has an uncountable normalized w∗-null sequence.
Then X has a quotient with a Schauder basis of length ω1.

Strategy of the proof:

Given a w∗-null (fγ : γ < ω1) ⊆ SX∗ one selects uncountable
Γ ⊆ ω1 such that:

1. {fγ : γ ∈ Γ} is a Schauder basic sequence with basis constant
1.

2. The corresponding sequence {f ∗γ : γ ∈ Γ} of linear functionals
of the norm-closed linear span of {fγ : γ ∈ Γ} is also Schauder
basic of constant 1.

3. The map x 7→
∑

γ∈Γ fγ(x)f ∗γ is a quotient map from X onto
the norm-closed linear span of {f ∗γ : γ ∈ Γ}.
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Asplund spaces

Definition
An Asplund space, or a strong differentiability space is a
Banach space X with the property that every continuous convex
function f : U → R on an open convex domain U ⊆ X is Fréchet
differentiable in every point of a dense Gδ-subset of U.

Remark
This is a well studied class of spaces with many pleasant properties
such as:

the projectional resolution of the identity of its dual space,

the norm-fragmentability of the w∗-topology of the dual ball,

sequential compactness of its dual ball with the w∗-topology,

separability of the dual of every separable subspace, etc.
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PID and Asplund spaces

Theorem (Todorcevic 1989)

If b = ω1 then there is a non-separable Asplund space with no
uncountable biorthogonal system

Theorem (Brech-Todorcevic 2012)

Assume PID. Then every Asplund space of density < b has a
quotient with a Schauder basis which can be assumed to be of
length ω1 if the space is not separable.

Corollary

Assume PID. The following are equivalent:

1. Every non-separable Asplund space has an uncountable
biorthogonal system.

2. b = ω2.
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PID and Asplund spaces, contd

Fix an Asplund space X of density < b.Let

I = {M ⊆ SX∗ : M is w∗-null}.

Then I is a P-ideal and by PID it suffices to show that

Lemma
If X is not separable then SX∗ cannot be covered by countably
many sets orthogonal to I.

Remark
If M orthogonal to I would mean that M does not accumulate to
0∗ we would be easily done, since if X is non-separable, 0∗ is not a
Gδ point of BX∗ .
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PID and Asplund spaces, contd

Suppose there is M ⊆ SX∗ such that:

1. M ⊥ I,
2. M is uncountable,

3. {f ∈ M : f (x) 6= 0} is countable for all x ∈ X \ {0}.

Let K be the sequential closure of M relative to the
w∗-topology.Then

0∗ 6∈ K .

We try again PID but now applied to the P-ideal

I � (K ∪ −K ) \ {0∗}

Lemma (Key)

The alternative (2) fails for the ideal I � (K ∪ −K ) \ {0∗}.
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Mazur Intersection Property

Definition
A Banach space (X , ‖ · ‖) has the Mazur Interesection Property,
MIP, if every bounded closed convex set is an intersection of
closed balls.

Theorem (Mazur 1933)

A Banach space with a Fréchet differentiable norm has the MIP.

Theorem (JiménezSevilla-Moreno 1997)

Suppose that a Banach space X has a biorthogonal system
{(xi , fi : i ∈ I )} ⊆ X × X ∗ such that

X ∗ = span{fi : i ∈ I}

Then X admits an equivalent norm with the MIP.
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Theorem (JiménezSevilla-Moreno 1997)

Suppose that a non-separable Banach space X has an equivalent
norm with the MIP. Then for every ε > 0 there is an uncountable
ε-biorthogonal system {(xi , fi : i ∈ I )} ⊆ X × X ∗, i.e., a system
such that

fi (xi ) = 1 and |fi (xj)| ≤ ε for i 6= j .

Problem
Does every Asplund space has an equivalent norm with the MIP?

Remark
This is natural to ask in view of Mazur’s original theorem since a
Banach space with a Fréchet differentiable norm is necessarily an
Asplund space.
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MIP for Asplund spaces of small density

Theorem (Bac̆ák-Hájek 2008)

Suppose X is an Asplund space of density ℵ1 with an uncountable
biorthogonal theorem. Then X contains an uncountable
normalizeed sequence which is w∗-null as a subset of X ∗∗.

Corollary (Bac̆ák-Hájek 2008)

Assume PID. Then every Asplund space of density < p has an
equivalent norm with the MIP.

Problem
What is the correct bound here p of b?
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Theorem (Todorcevic 1989)

If b = ω1 then there is an Asplund space with no equivalent norm
with the MIP.

Theorem (Brech-Todorcevic 2012)

Assume PID. Then every Asplund space of density < b has an
equivalent norm with the MIP.

Corollary

Assume PID. The following are equivalent:

1. Every Asplund space of density ℵ1 has an equivalent norm
with the MIP.

2. b = ℵ2.
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The Asplund space from b = ω1

Start with a C -sequence (Cα : α < ω1) and read from it the
function

ρ1 : [ω1]2 → ω.

By b = ω1 we can fix a sequence

{aξ : ξ < ω1} ⊆ ωω

that is <∗-increasing and <∗-unbounded, and consider the
corresponding distance function ∆ : [ω1]2 → ω defined by

∆(α, β) = min{n : aα(n) 6= aβ(n)}.

For n < ω and β < ω1, set

Hn(β) = {β} ∪ {α < β : ∆(α, β) = n and ρ1(α, β) ≤ aβ(n)}.
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The Asplund space, cntd

Define H = {hα : α < ω1} ⊆ {0, 1}ω1 recursively as follows:

hα(α) = 1, hα(ξ) = 0 for ξ < α and for γ > α

hα(γ) = 1 iff (∃β ∈ [α, γ)) ∧ β ∈ H∆(α,γ)(γ) ∧ hα(β) = 1.

Define the norm ‖ · ‖H on c00(ω1) by letting

‖x‖H = sup{|〈h, x〉| : h ∈ H}.

Let XH be the completion of (c00(ω1), ‖ · ‖H).

Theorem (Todorcevic 1989)

XH is a nonseparable Asplund space whose weak topology is
hereditarily Lindelöf. So X has no uncountable biorthogoal systems
nor equivalent norms with the MIP.
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hereditarily Lindelöf. So X has no uncountable biorthogoal systems
nor equivalent norms with the MIP.



The Asplund space, cntd

Define H = {hα : α < ω1} ⊆ {0, 1}ω1 recursively as follows:

hα(α) = 1, hα(ξ) = 0 for ξ < α and for γ > α

hα(γ) = 1 iff (∃β ∈ [α, γ)) ∧ β ∈ H∆(α,γ)(γ) ∧ hα(β) = 1.

Define the norm ‖ · ‖H on c00(ω1) by letting

‖x‖H = sup{|〈h, x〉| : h ∈ H}.

Let XH be the completion of (c00(ω1), ‖ · ‖H).

Theorem (Todorcevic 1989)

XH is a nonseparable Asplund space whose weak topology is
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Finite-dimensional isometric approximations

XF = limt→FXt ,

where

F is a cofinal family of finite subsets of ω1,

Xt = (Rt , ‖ · ‖t)

where the norm ‖ · ‖t is given by a finite set of functionals

([−1, 1] ∩Q)t ⊇ Gt ⊇ {ht
γ : γ ∈ t},

where

ht
γ � γ = 0, hγt (γ) 6= 0.
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or, given by a finite set of functionals

([−1, 1] ∩Q)t ⊇ G∗t ⊇ {f t
γ , g

t
γ : γ ∈ t},

where

f t
γ � γ = g t

γ � γ, f γt (γ) = 0 < 1 = gγt (γ).

Problem
Which properties of the cofinal family F ⊆ [ω1]<ω will give us a
rich spectrum of limit spaces XF?

Remark
We give an answer to this question by borrowing both from the
theory of ρ-functions on ω1 and known forcing constructions of
Boolean algebras and Banach spaces.
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Homogeneity of F

For every t ∈ F ,

t = s1 ∪ s2 ∪ · · · ∪ snt ,

where s1, ...., snt ∈ F are all of rank equal to rk(t)− 1 and

si ∩ sj = rt for i 6= j ,

rt < (s1 \ rt) < (s2 \ rt) < · · · < (snt \ rt).

When nt and the cardinality of t and rt depend only on the rank of
t in F , we say that F is homogeneous.
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Homogeneity of amalgamations

Xt = Amalg{Xs1 ,Xs2 , ....,Xsnt },

where the amalgamation needs to give us naturally isometric
spaces

Xt
∼= Xu

whenever
t, u ∈ F and rk(t) = rk(u).

Note that condition indeed passes from rank k to rank k + 1
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Capturing

Definition
We say that t ∈ F captures a finite ∆-system aξ (ξ ∈ I ) of finite
subsets of ω1 with root a if there is a injection

ϕ : I → {1, ..., nt}

such that a ⊆ rt and aξ ⊆ (sϕ(ξ) \ rt) for all ξ ∈ I .
We say that t ∈ F totally captures the finite ∆-system aξ (ξ ∈ I )
if ϕ is a bijection

Remark
We really want that for ξ, η ∈ I the natural isomorphism between
sϕ(ξ) and sϕ(η) moves aξ to aη. We call this sort of capturing the
positional capturing. We do not add this here since we will be
essentially free to choose the sequence nt to be rather fast relative
to the cardinalities of the tails si \ rt of terms of the decomposition
of t.
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Density

Definition
We say that F is dense if an arbitrary uncountable ∆-system of
finite subsets of ω1 has arbitrarily large finite subsystems totally
captured by members of F .

Remark
The notions of capturing and density alow many variations. What
seem easiest to use is capturing of arbitrarily large finite subsystems
aξ (ξ ∈ I ) of an uncountable ∆-system with ϕ : I → {1, ..., nt}
whose range is an initial segment of {1, ..., nt} and that aξ gets
moved to aη in the natural isomorphism between sϕ(ξ) and sϕ(η).

Problem
Does any of the two assumptions b = ω1 or p = ω1 give us
homogeneous cofinal families of finite subsets of ω1 that (in some
sense) capture uncountable ∆-systems of finite subsets of ω1?
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A diamond example of F

Theorem
Assume ♦. Then there is a cofinal homogeneous family F of finite
subsets of ω1 which totally and positionally captures an arbitrary
uncountable ∆-system of finite subsets of ω1.
Moreover, the corresponding sequences of cardinalities (rk)k ,
(mk)k and (nk)k can essentially be given in advance.

Remark
Only the sequence (rk)k of cardinalities of roots needs to satisfy
certain mild requirement, the other two sequences are arbitrary,
modulo the requirements

m0 = 1, rk+1 < mk , nk+1 > 1, and mk+1 = rk+1+nk+1(mk−rk+1).
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An Asplund example from F

Define H(F) = {hα : α < ω1} ⊆ {0, 1}ω1 recursively as follows:

hα(α) = 1, hα(ξ) = 0 for ξ < α and forγ > α

if t = s1 ∪ s2 ∪ · · · ∪ snk , is a decomposition of a t ∈ F of minimal
rank k containing both α and γ then

1. α ∈ s1 \ rt implies hα(γ) = hα(γ̄),where γ̄ is the copy of γ in
s1,

2. α 6∈ s1 \ rt implies hα(γ) = 0.

As before let XF be the completion of (c00(ω1), ‖ · ‖H(F)).

Proposition

If F is a homogeneous cofinal family of finite subsets of ω1 which
positionally and totally captures uncountable ∆-systems then XF
is a nonseparable Asplund space with no uncountable biorthogonal
system.
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