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Introduction

Definition
B is a measure algebra if there exists a measure µ ∶ B → [0,1] which
is σ-additive, strictly positive and such that µ(1B) = 1.

Proposition
Let B be a measure algebra. Then

1 B satisfies the countable chain condition, i.e. if A ⊆ B ∖ {0} is
such that a ∧ b = 0, for all a, b ∈ A such that a ≠ b then A is at
most countable.

2 B is weakly distributive, i.e. if {bn,k}n,k is a double sequence of
elements of B then

⋀
n
⋁
k

bn,k = ⋁
f ∶N→N

⋀
n

⋁
i<f(n)

bn,i
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Question (Von Neumann, July 4 1937)
Let B be a complete Boolean algebra satisfying 1. and 2. Is B a
measure algebra?

Prize
A bottle of whisky of measure > 0.
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Let µ be a measure on a complete Boolean algebra B. One can define
a distance d on B by

dµ(a, b) = µ(a∆b).

Observation (Maharam, 1947)
One can give a purely algebraic characterization of the topology
induced by dµ.
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Definition (Maharam)
We say that a sequence {xn}n of elements of B strongly converges to
x and we write xn → x if

lim sup
n
xn = lim inf

n
xn = x

Let X ⊆ B. We define:

X = {x ∈ B ∶ there exists {xn}n ⊆ B such that xn → x}.

Proposition (Maharam)
1 If B satisfies Von Neumann’s conditions that the strong

convergence defines a topology on B.
2 If µ is a strictly positive measure on B this topology is induced

by the metric dµ.
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Question
Let B be a complete Boolean algebra verifying the conditions of Von
Neumann. When is the strong topology on B metrizable?

Definition (Maharam)
A continuous submeasure on B is a function µ ∶ B → [0,1] such that

1 µ(x) = 0 iff x = 0

2 If x ≤ y then µ(x) ≤ µ(y)
3 µ(x ∨ y) ≤ µ(x) + µ(y)
4 If xn → x then µ(xn) → µ(x).
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Theorem (Maharam, 1947)
Let B be a complete Boolean algebra. Then the strong topology on B
is metrizable iff B admits a continuous submeasure.

Definition
Let B be a complete Boolean algebra. We say that B is a Maharam
algebra if it admits such a submeasure.

One verifies easily that if B is a Maharam algebra then it is weakly
distributive and satisfies the c.c.c., i.e. it satisfies Von Neumann’s
conditions.
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If B is a c.c.c. weakly distributive complete Boolean algebra is B a
Maharam algebra?
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Is every Maharam algebra a measure algebra?
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Relative consistency results

We now have a fairly complete answer to Question 1.

Theorem (Farah, V.)
Suppose every c.c.c. weakly distributive complete Boolean algebra is
a Maharam algebra. Then there is an inner model of ZFC with with
(hyper) measurable cardinals.

Theorem (Balcar, Jech, Pazak, V.)
The Proper Forcing Axiom implies that every c.c.c. weakly
distributive complete Boolean algebra is a Maharam algebra. In fact,
this follows from the P-ideal dichotomy.



Relative consistency results

We now have a fairly complete answer to Question 1.

Theorem (Farah, V.)
Suppose every c.c.c. weakly distributive complete Boolean algebra is
a Maharam algebra. Then there is an inner model of ZFC with with
(hyper) measurable cardinals.

Theorem (Balcar, Jech, Pazak, V.)
The Proper Forcing Axiom implies that every c.c.c. weakly
distributive complete Boolean algebra is a Maharam algebra. In fact,
this follows from the P-ideal dichotomy.



Relative consistency results

We now have a fairly complete answer to Question 1.

Theorem (Farah, V.)
Suppose every c.c.c. weakly distributive complete Boolean algebra is
a Maharam algebra. Then there is an inner model of ZFC with with
(hyper) measurable cardinals.

Theorem (Balcar, Jech, Pazak, V.)
The Proper Forcing Axiom implies that every c.c.c. weakly
distributive complete Boolean algebra is a Maharam algebra. In fact,
this follows from the P-ideal dichotomy.



Outline

1 Introduction

2 Control Measure Problem

3 Structure of Maharam algebras



Definition
Let µ be a submeasure on B.

1 We say that µ is exhaustive if for every sequence {an}n of
pairwise disjoint elements of B we have limn µ(an) = 0.

2 We say that µ is uniformly exhaustive if for every ε > 0 there
exists n such that there are no n pairwise disjoint elements
a1, . . . , an of B such that µ(ai) ≥ ε, for all i.

Theorem (Kalton & Roberts, 1983)
If a submeasure µ is uniformly exhaustive then it is equivalent to a
measure.

Therefore, Question 2 is equivalent to the statement that every
exhaustive submeasure is uniformly exhaustive.
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Definition
Let A ⊆ P(X) be a Boolean algebra and ν ∶ A → [0,1] a positive
submeasure on A. We say that µ is pathological if for every ε > 0
there is a finite sequence (bi)i≤n of elements of A such that ν(bci) ≤ ε,
for all i, and for all x ∈X

∣{i ∶ x ∈ bi}∣ ≤ εn.

If A ⊂ P(X) is a Boolean algebra, ν a pathological submeasure and
µ a measure. Then ν et µ are orthogonal, i.e., for all ε > 0 there is
b ∈ A such that ν(bc) ≤ ε and µ(b) ≤ ε.
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Theorem (Talagrand, 2005)
Let T = ∏n 2n. Let A be the algebra of clopen subsets of T . Then
there is an exhaustive pathological submeasure ν on A.

Once we have such a submeasure ν we can use the usual construction
of the Lebesgue measure to extend it to all Borel subsets of T . In this
way, we obtain a continuous submeasure ν̄ on Bor(T ). Let Iν̄ be the
ideal of null sets in the sense of ν̄. Then B = Bor(T )/Iν̄ is a
Maharam algebra which is not a measure algebra.

Corollary (Talagrand, 2005)
There exists a Maharam algebra which is not a measure algebra.
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Structure of Maharam algebras

Little is known about the properties of Maharam algebras, in
particular the one constructed by Talagrand. First we show that they
share some properties of measure algebras.

Definition
Let B be a Boolean algebra. A sequence {bn}n of elements of B is
splitting if for every infinite I ⊆ ω and α ∈ {0,1}I ⋀n∈I bα(n)n = 0
where b0 = b and b1 = 1 − b.

Proposition (V.)
Every non atomic Maharam algebra contains a splitting sequence.
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Theorem (Farah, V.)
Let B be a non atomic Maharam algebra. Then the Cohen algebra (of
regular open subsets of C) can be embedded into B × B.

In the case of measure algebras there is a nice classification result.
Given an infinite cardinal κ let λκ be the usual product measure on
{0,1}κ. Let Bκ be the σ-algebra of Baire sets in {0,1}κ and Nκ the
ideal of λκ-null sets. Finally, we letMκ be the algebra Bκ/Nκ.Mκ

is the homogeneous measure algebra of density κ.

Theorem (Maharam)
For every non atomic measure algebraM there is a countable set I of
cardinals such that

M≃⊕
κ∈I
Mκ.
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For Maharam algebras no such simple classification is possible. First,
we define a notion of rank.

Definition
Let B be a Boolean algebra, ν an exhaustive submeasure on B and
ε > 0. Let Dε(B) be the set of all finite pairwise disjoint subsets F of
B such that ν(a) ≥ ε, for all a ∈ F . Define the order on Dε(B) by
F ≤ G iff F ⊆ G.

Since ν is exhaustive it follows that Dε(B) is well founded. Let
rkε(ν) be the rank of this ordering. Finally, let

rk(ν) = sup{rkε(ν) ∶ ε > 0}.

Fact
Let ν be an exhaustive submeasure on a Boolean algebra B. Then ν is
equivalent to a measure if and only if rank(ν) ≤ ω.
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Fact
If ν is an exhaustive submeasure which is not uniformly exhaustive
then rk(ν) ≥ ωω.

Question
What is the rank of Talagrand’s submeasure?

Proposition (Fremlin)
Let ν be the pathological exhaustive submeasure constructed by
Talagrand. Then ωω ≤ rk(ν) ≤ ωω2

.

If ν is an exhaustive submeasure on a countable Boolean algebra A
then rk(ν) is a countable ordinal. Can we get arbitrary high countable
ordinals?
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Theorem (Perovic, V.)
There exist exhaustive submeasures on the Boolean algebra A of
clopen subsets of T of arbitrary high rank below ω1.

Corollary

The set of exhaustive submeasure on A is a true Π1
1 set, i.e. it is not

Borel.

Corollary
There exist at least ℵ1 non isomorphic separable non atomic
Maharam algebras.
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Definition (Schreier families)
For every countable ordinal α, we define a family Sα of finite subsets
of N as follows.

1 S0 = {{n} ∶ n ∈ N} ∪ {∅}.
2 Given Sα we let

Sα+1 = {⋃
i<n

Fi ∶ n ≤ F0 < F1 < . . . < Fn−1, Fi ∈ Sα(i < n)}.

3 If α is a limit ordinal, fix an increasing sequence (αn)n
converging to α and let

Sα = ⋃
n
{F ∈ Sαn ∶ n ≤ F} ∪ {∅}.



Definition
Fix a countable ordinal α. We say that F is maximal for Sα if F ∈ Sα
and whenever G ∈ Sα is such that F ⊆ G then G = F .

Definition
Fix an ordinal α. For every finite subset F of N we define mα

i (F ) by
induction on i as follows.

1 mα
0 (F ) = min(F ).

2 Suppose mα
i (F ) has been defined. Let mα

i+1(F ) be the least
m ∈ F (if it exists) such that F ∩ [mα

i (F ),m) is Sα maximal.

Let kα(F ) be the least k such that mα
k (F ) is not defined. We set

F ∗ = {mα
i (F ) ∶ i < kα(F )}. Elements of F ∗ are called the leaders of

F . Finally, set ∣∣F ∣∣α = kα(F ).
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Proposition
Fix α < ω1 and finite A,B ⊆ N.

1 If A ⊆ B then ∣∣A∣∣α ≤ ∣∣B∣∣α.
2 if A = {a0 < . . . < an−1} and B = {b0 < . . . < bn−1} with ai ≤ bi,

for i < n, then ∣∣A∣∣α ≤ ∣∣B∣∣α.
3 ∣∣A ∪B∣∣α ≤ ∣∣A∣∣α + ∣∣B∣∣α.

We call ∣∣ ⋅ ∣∣α the α-Schreier norm.
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Recall that T = ∏n 2n. Let P be the collection of all finite partial
functions s such that dom(s) ⊆ N and s(k) < 2k, for all k ∈ dom(s).
For s ∈ P Let

N(s) = {f ∈ T ∶ s ⊆ T}.

Then N(s) is a typical clopen subset of T . We adapt Talagrand’s
construction to show the following.

Theorem (Perovic, V.)
Suppose α is a countable ordinal. Then there is an exhaustive
submeasure να on clopen subsets of T such that

1 να(T ) ≥ 8

2 να(N(s)) ≥ 1, for all s ∈ P with ∣∣dom(s)∣∣α ≤ 1.
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Definition
1 Let Pα = {s ∈ P ∶ ∣∣dom(s)∣∣α ≤ 1}.
2 Let Dα be the collection of all finite subsets F of Pα such that
s ⊥ t, for all s, t ∈ F such that s ≠ t. We let G ≤ F if F ⊆ G.

Proposition
Dα is well founded and rk(Dα) ≥ ωα.

Sketch of proof : The fact that Dα is well founded follows from a
straightforward application of the ∆-system lemma. We show that
rk(Dα) is at least ωα by induction on α. We consider the following
game.
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Proposition
Dα is well founded and rk(Dα) ≥ ωα.

Sketch of proof : The fact that Dα is well founded follows from a
straightforward application of the ∆-system lemma. We show that
rk(Dα) is at least ωα by induction on α. We consider the following
game.



The game Gα:

I ρ0 ρ1 ρ2 . . .

II s0 s1 s2 . . .

Player I plays a decreasing sequence of ordinals smaller than ωα and
Player II plays pairwise incompatible elements of Pα. The game has
to stop after finitely many moves. Player II wins the game if he can
continue playing till Player I reaches 0.

To prove that rk(Dα) ≥ ωα it suffices to show the following.

Fact
Player II has a winning strategy in Gα.
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Definition
Given s ∈ P and an integer n we define the shift shn(s) of s by n. We
let dom(shn) = {k + n ∶ k ∈ dom(s)} and shn(k + n) = s(k), for all
k ∈ dom(s).

We show that Player II has a winning strategy in Gα by induction on
α. Suppose first α = β + 1 and fix a winning strategy σβ for II in Gβ .
Let ρ0 be the first move of Player I in Gα. We may assume ρ0 is of
the form ωβ ⋅ n0 + ξ0, for some integer n0 and ξ0 < ωβ . We pick an
integer a0 ≥ 2 such that 2a0 > n0. Let t0 be the response of σβ in the
game Gβ if Player I plays as his first move ξ0. In Gα we play
s0 = {(a0, n0)} ∪ sha0+1(t0). It is easy to check that s0 ∈ Sα. As long
as Player I plays ordinals ρi of the form ωβ ⋅ n0 + ξi, for some ξi < ωβ ,
Player II uses the strategy σβ to obtain ti and then plays
si = {(a0, n0)} ∪ sha0+1(ti).
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Suppose at some stage i Player I plays an ordinal ρi of the form
ωβ ⋅ n1 + ξi, for some n1 < n0. Then Player II starts another round of
the game Gβ . Let ti be the response of σβ if Player I plays ξi as the
first move. Then Player II plays si = {(a0, n1)} ∪ sha0+1(ti). Then
Player II keeps simulating the game Gβ as long as Player I plays
ordinals of the form ωβ ⋅ n1 + ξ, shifting the response of σβ by a0 + 1
and adding {(a0, n1)}, etc. In this way Player II produces pairwise
incompatible elements of P . Since the union of {a0} and an element
of Sβ is in Sα it follows that all these partial functions are in Pα. This
completes the proof in the successor case.

The limit case is similar.



Question
Does every non atomic Maharam algebra contain a non atomic
measure algebra?

Question
Can a Maharam algebra be rigid? minimal? etc.
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