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Introduction

Definition

B is a measure algebra if there exists a measure . : B — [0, 1] which
is o-additive, strictly positive and such that u(1p) = 1.
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Introduction

Definition

B is a measure algebra if there exists a measure . : B — [0, 1] which
is o-additive, strictly positive and such that u(1p) = 1.

Proposition
Let B be a measure algebra. Then
@ B satisfies the countable chain condition, i.e. if Ac B~ {0} is
such that a Ab = 0, for all a,b € A such that a + b then A is at
most countable.

@ B is weakly distributive, i.e. if {b, i }n k is a double sequence of
elements of B then

/n\\k/bn,k: V AV ba,

FN-N 7 i<f(n)
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Question (Von Neumann, July 4 1937)

Let B be a complete Boolean algebra satistying 1. and 2. Is B a
measure algebra?
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The Scottish Book
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R. DANIEL MAULDIN

Question (Von Neumann, July 4 1937)

Let B be a complete Boolean algebra satistying 1. and 2. Is B a
measure algebra?

Prize

A bottle of whisky of measure > 0.
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Let 1 be a measure on a complete Boolean algebra 3. One can define
a distance d on B by

dyu(a,b) = p(albd).
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Let 12 be a measure on a complete Boolean algebra B. One can define
a distance d on B by

dyu(a,b) = p(albd).

Observation (Maharam, 1947)

One can give a purely algebraic characterization of the topology
induced by d,.
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Definition (Maharam)

We say that a sequence {xy, }r, of elements of B strongly converges to
x and we write x,, - x if

limsup z,, = liminf z,, =
n n
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Definition (Maharam)

We say that a sequence {xy, }r, of elements of B strongly converges to
x and we write x,, - x if

limsup z,, = liminf z,, =
n n

Let X ¢ B. We define:

X ={z € B: there exists {x,,},, € B such that z,, - z}.
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Definition (Maharam)

We say that a sequence {xy, }r, of elements of B strongly converges to
x and we write x,, - x if

limsup z,, = liminf z,, =
n n

Let X ¢ B. We define:

X ={z € B: there exists {x,,},, € B such that z,, - z}.

Proposition (Maharam)

@ If B satisfies Von Neumann’s conditions that the strong
convergence defines a topology on B.

@ If pis a strictly positive measure on B this topology is induced
by the metric d,,.
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Question

Let B be a complete Boolean algebra verifying the conditions of Von
Neumann. When is the strong topology on 3 metrizable?
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Question
Let B be a complete Boolean algebra verifying the conditions of Von
Neumann. When is the strong topology on 3 metrizable?

Definition (Maharam)
A continuous submeasure on B is a function . : B — [0, 1] such that
@ p(z)=0iffz=0
@ Ifz <y then p(z) < p(y)
@ plzvy) <p(z)+p(y)
@ Ifx, - x then p(xy,) - p(x).
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Theorem (Maharam, 1947)

Let B be a complete Boolean algebra. Then the strong topology on B
is metrizable iff B admits a continuous submeasure.
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Theorem (Maharam, 1947)

Let B be a complete Boolean algebra. Then the strong topology on B
is metrizable iff B admits a continuous submeasure.

Definition
Let B be a complete Boolean algebra. We say that B is a Maharam
algebra if it admits such a submeasure.

P
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Theorem (Maharam, 1947)

Let B be a complete Boolean algebra. Then the strong topology on B
is metrizable iff B admits a continuous submeasure.

Definition

Let B be a complete Boolean algebra. We say that B is a Maharam
algebra if it admits such a submeasure.

One verifies easily that if B is a Maharam algebra then it is weakly
distributive and satisfies the c.c.c., i.e. it satisfies Von Neumann’s
conditions.
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Therefore, Von Neumann’s problem decomposes into two questions.
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Therefore, Von Neumann’s problem decomposes into two questions.

Question (1)
If B is a c.c.c. weakly distributive complete Boolean algebra is B a
Maharam algebra?
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Therefore, Von Neumann’s problem decomposes into two questions.

Question (1)

If B is a c.c.c. weakly distributive complete Boolean algebra is B a
Maharam algebra?

Question (2)

Is every Maharam algebra a measure algebra?
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Relative consistency results

We now have a fairly complete answer to Question 1.
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Relative consistency results

We now have a fairly complete answer to Question 1.

Theorem (Farah, V.)

Suppose every c.c.c. weakly distributive complete Boolean algebra is
a Maharam algebra. Then there is an inner model of ZFC with with
(hyper) measurable cardinals.
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Relative consistency results

We now have a fairly complete answer to Question 1.

Theorem (Farah, V.)

Suppose every c.c.c. weakly distributive complete Boolean algebra is
a Maharam algebra. Then there is an inner model of ZFC with with
(hyper) measurable cardinals.

Theorem (Balcar, Jech, Pazak, V.)

The Proper Forcing Axiom implies that every c.c.c. weakly
distributive complete Boolean algebra is a Maharam algebra. In fact,
this follows from the P-ideal dichotomy.
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@ Control Measure Problem
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Definition
Let 14 be a submeasure on BB.
@ We say that p is exhaustive if for every sequence {ay }, of
pairwise disjoint elements of B we have lim,, u(ay,) = 0.

@ We say that y is uniformly exhaustive if for every € > 0 there
exists n such that there are no n pairwise disjoint elements
ai,...,an of B such that u(a;) > €, for all i.
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Definition
Let 14 be a submeasure on BB.

@ We say that p is exhaustive if for every sequence {ay }, of
pairwise disjoint elements of B we have lim,, u(ay,) = 0.

@ We say that y is uniformly exhaustive if for every € > 0 there
exists n such that there are no n pairwise disjoint elements
ai,...,an of B such that u(a;) > €, for all i.

Theorem (Kalton & Roberts, 1983)

If a submeasure | is uniformly exhaustive then it is equivalent to a
measure.
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Definition

Let i be a submeasure on B.

@ We say that p is exhaustive if for every sequence {ay }, of
pairwise disjoint elements of B we have lim,, u(ay,) = 0.

@ We say that y is uniformly exhaustive if for every € > 0 there
exists n such that there are no n pairwise disjoint elements
ai,...,an of B such that u(a;) > €, for all i.

Theorem (Kalton & Roberts, 1983)

If a submeasure | is uniformly exhaustive then it is equivalent to a
measure.

Therefore, Question 2 is equivalent to the statement that every
exhaustive submeasure is uniformly exhaustive.
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Definition

Let A ¢ P(X) be a Boolean algebra and v : A — [0, 1] a positive
submeasure on A. We say that . is pathological if for every ¢ > 0
there is a finite sequence (b;)i<n, of elements of A such that v(b5) <,
for all i, and for all x € X

[{i:zeb;}| <en.
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Definition

Let A ¢ P(X) be a Boolean algebra and v : A — [0, 1] a positive
submeasure on A. We say that . is pathological if for every ¢ > 0
there is a finite sequence (b;)i<n, of elements of A such that v(b5) <,
for all i, and for all x € X

[{i:zeb;}| <en.

If A cP(X) is a Boolean algebra, v a pathological submeasure and
1 a measure. Then v et p are orthogonal, i.e., for all € > 0 there is
b € A such that v(b°) < e and p(b) <e.
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Theorem (Talagrand, 2005)

Let T =T1,,2". Let A be the algebra of clopen subsets of T. Then
there is an exhaustive pathological submeasure v on A.
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Theorem (Talagrand, 2005)

Let T =T1,, 2". Let A be the algebra of clopen subsets of T. Then
there is an exhaustive pathological submeasure v on A.

Once we have such a submeasure v we can use the usual construction
of the Lebesgue measure to extend it to all Borel subsets of 7. In this
way, we obtain a continuous submeasure 7 on Bor(T'). Let Z; be the
ideal of null sets in the sense of 7. Then B = Bor(T)/Z; is a
Maharam algebra which is not a measure algebra.
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Theorem (Talagrand, 2005)

Let T =T1,, 2". Let A be the algebra of clopen subsets of T. Then
there is an exhaustive pathological submeasure v on A.

Once we have such a submeasure v we can use the usual construction
of the Lebesgue measure to extend it to all Borel subsets of 7. In this
way, we obtain a continuous submeasure 7 on Bor(T'). Let Z; be the
ideal of null sets in the sense of 7. Then B = Bor(T)/Z; is a
Maharam algebra which is not a measure algebra.

Corollary (Talagrand, 2005)
There exists a Maharam algebra which is not a measure algebra.
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@ Structure of Maharam algebras
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Structure of Maharam algebras

Little is known about the properties of Maharam algebras, in
particular the one constructed by Talagrand. First we show that they
share some properties of measure algebras.
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Structure of Maharam algebras

Little is known about the properties of Maharam algebras, in
particular the one constructed by Talagrand. First we show that they
share some properties of measure algebras.

Definition

Let B be a Boolean algebra. A sequence {by }, of elements of B is
splitting if for every infinite I € w and o € {0, 1} Aper bg(”) =0
where b° = b and b* =1 - b.
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Structure of Maharam algebras

Little is known about the properties of Maharam algebras, in
particular the one constructed by Talagrand. First we show that they
share some properties of measure algebras.

Definition

Let B be a Boolean algebra. A sequence {by }, of elements of B is
splitting if for every infinite I € w and o € {0, 1} Aper bg(”) =0
where b° = b and b* =1 - b.

Proposition (V.)
Every non atomic Maharam algebra contains a splitting sequence.
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Theorem (Farah, V.)

Let B be a non atomic Maharam algebra. Then the Cohen algebra (of
regular open subsets of C) can be embedded into B x B.
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Theorem (Farah, V.)

Let B be a non atomic Maharam algebra. Then the Cohen algebra (of
regular open subsets of C) can be embedded into B x B.

In the case of measure algebras there is a nice classification result.
Given an infinite cardinal x let A\, be the usual product measure on
{0,1}". Let B, be the o-algebra of Baire sets in {0, 1}" and N, the
ideal of \,-null sets. Finally, we let M ; be the algebra B, /N;. M,
is the homogeneous measure algebra of density «.
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Theorem (Farah, V.)

Let B be a non atomic Maharam algebra. Then the Cohen algebra (of
regular open subsets of C) can be embedded into B x B.

In the case of measure algebras there is a nice classification result.
Given an infinite cardinal x let A\, be the usual product measure on
{0,1}". Let B, be the o-algebra of Baire sets in {0, 1}" and N, the
ideal of \,-null sets. Finally, we let M ; be the algebra B, /N;. M,
is the homogeneous measure algebra of density «.

Theorem (Maharam)

For every non atomic measure algebra M there is a countable set I of
cardinals such that

M =@ M,.

kel
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For Maharam algebras no such simple classification is possible. First,
we define a notion of rank.
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For Maharam algebras no such simple classification is possible. First,
we define a notion of rank.

Definition

Let B be a Boolean algebra, v an exhaustive submeasure on B and

€ > 0. Let D(B) be the set of all finite pairwise disjoint subsets F' of
B such that v(a) > €, for all a € F. Define the order on D.(BB) by
F<Giff FcG.
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For Maharam algebras no such simple classification is possible. First,
we define a notion of rank.

Definition

Let B be a Boolean algebra, v an exhaustive submeasure on B and

€ > 0. Let D(B) be the set of all finite pairwise disjoint subsets F' of
B such that v(a) > €, for all a € F. Define the order on D.(BB) by
F<Giff FcG.

Since v is exhaustive it follows that D (1) is well founded. Let
rke(v) be the rank of this ordering. Finally, let

rk(v) = sup{rk.(v) : € > 0}.
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For Maharam algebras no such simple classification is possible. First,
we define a notion of rank.

Definition

Let B be a Boolean algebra, v an exhaustive submeasure on B and

€ > 0. Let D(B) be the set of all finite pairwise disjoint subsets F' of
B such that v(a) > €, for all a € F. Define the order on D.(BB) by
F<Giff FcG.

Since v is exhaustive it follows that D (1) is well founded. Let
rke(v) be the rank of this ordering. Finally, let

rk(v) = sup{rk.(v) : € > 0}.

Fact

Let v be an exhaustive submeasure on a Boolean algebra B. Then v is
equivalent to a measure if and only if rank(v) < w.
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Fact

If v is an exhaustive submeasure which is not uniformly exhaustive
then tk(v) > w®.
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Fact

If v is an exhaustive submeasure which is not uniformly exhaustive
then tk(v) > w®.

Question
What is the rank of Talagrand’s submeasure?
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Fact

If v is an exhaustive submeasure which is not uniformly exhaustive
then tk(v) > w®.

Question
What is the rank of Talagrand’s submeasure?

Proposition (Fremlin)

Let v be the pathological exhausti\;e submeasure constructed by
Talagrand. Then w* < tk(v) <w*".
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Fact

If v is an exhaustive submeasure which is not uniformly exhaustive
then tk(v) > w®.

Question
What is the rank of Talagrand’s submeasure?

Proposition (Fremlin)

Let v be the pathological exhausti\;e submeasure constructed by
Talagrand. Then w* < tk(v) <w*".

If v is an exhaustive submeasure on a countable Boolean algebra A
then rk(v) is a countable ordinal. Can we get arbitrary high countable
ordinals?
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Theorem (Perovic, V.)

There exist exhaustive submeasures on the Boolean algebra A of
clopen subsets of T of arbitrary high rank below w;.
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Theorem (Perovic, V.)

There exist exhaustive submeasures on the Boolean algebra A of
clopen subsets of T of arbitrary high rank below w;.

Corollary

The set of exhaustive submeasure on A is a true H% set, i.e. it is not
Borel.
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Theorem (Perovic, V.)

There exist exhaustive submeasures on the Boolean algebra A of
clopen subsets of T of arbitrary high rank below w;.

Corollary

The set of exhaustive submeasure on A is a true H% set, i.e. it is not
Borel.

Corollary

There exist at least Ry non isomorphic separable non atomic
Maharam algebras.
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Definition (Schreier families)

For every countable ordinal o, we define a family S, of finite subsets
of N as follows.

@ So={{n}:neN}u{z}
@ Given S, we let

Sa+1:{UFi:nSF0<F1<...<Fn_1,BESa(i<n)}.

<n

@ If ais a limit ordinal, fix an increasing sequence (au, )r,
converging to « and let

So = {F €8, :n< F}u{gz}.
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Definition

Fix a countable ordinal a. We say that F' is maximal for S, if F' € S,
and whenever G € S, is such that F' ¢ G then G = F.
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Definition

Fix a countable ordinal a. We say that F' is maximal for S, if F' € S,
and whenever G € S, is such that F' ¢ G then G = F.

Definition
Fix an ordinal o For every finite subset F' of N we define m$*(F') by
induction on 1 as follows.
@ m§(F) =min(F).
@ Suppose m$ (F) has been defined. Let mS, | (F') be the least
m € F (if it exists) such that F' 0 [m$ (F'), m) is Sq maximal.
Let ko (F') be the least k such that m§ (F') is not defined. We set

F*={my(F) :i < ko(F')}. Elements of F* are called the leaders of
F. Finally, set ||F||o = ko (F).
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Proposition
Fix a < wy and finite A, B ¢ N.
@ IfAc Bthen||Alla <||Blla-

Q ifA:{a0<...<an_1}andB:{bg<...<bn_1}wiz‘hai£bi,
Jori <n, then ||A||o < ||B||a-

@ [|[Au Blla <[|Alla + |Blla-

P
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Proposition
Fix a < wy and finite A, B ¢ N.
@ IfAc Bthen||Alla <||Blla-

Q ifA:{a0<...<an_1}andB:{bg<...<bn_1}wiz‘hai£bi,
Jori <n, then ||A||o < ||B||a-

@ [|[Au Blla <[|Alla + |Blla-

We call || - || the a-Schreier norm.

P
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Recall that 7" = [],, 2". Let P be the collection of all finite partial
functions s such that dom(s) ¢ N and s(k) < 2¥, for all k € dom(s).
For s € P Let

N(s)={feT:scT}.

Then N (s) is a typical clopen subset of 7. We adapt Talagrand’s
construction to show the following.
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Recall that 7" = [],, 2". Let P be the collection of all finite partial
functions s such that dom(s) ¢ N and s(k) < 2¥, for all k € dom(s).
For s € P Let

N(s)={feT:scT}.

Then N (s) is a typical clopen subset of 7. We adapt Talagrand’s
construction to show the following.

Theorem (Perovic, V.)

Suppose « is a countable ordinal. Then there is an exhaustive
submeasure v, on clopen subsets of T' such that

@ v, (T)>8
@ vo(N(s)) 21, for all s € P with ||dom(s)]|q < 1.
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Definition
@ Let Py ={seP:|dom(s)||o <1}.

@ Let D, be the collection of all finite subsets F of P, such that
s Lt forall s,teF suchthats+t. WeletG< Fif F cG.
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Definition
@ Let Py ={seP:|dom(s)||o <1}.

@ Let D, be the collection of all finite subsets F of P, such that
s Lt forall s,teF suchthats+t. WeletG< Fif F cG.

Proposition
D, is well founded and rk(D,,) > w®.
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Definition
@ Let Py ={seP:|dom(s)||o <1}.

@ Let D, be the collection of all finite subsets F of P, such that
s Lt forall s,teF suchthats+t. WeletG< Fif F cG.

Proposition
D, is well founded and rk(D,,) > w®.

Sketch of proof : The fact that D, is well founded follows from a
straightforward application of the A-system lemma. We show that
rk(D,,) is at least w® by induction on a.. We consider the following
game.
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The game G:

I | po P1 P2
I s 51 52

Player I plays a decreasing sequence of ordinals smaller than w® and
Player II plays pairwise incompatible elements of P,. The game has
to stop after finitely many moves. Player II wins the game if he can
continue playing till Player I reaches 0.
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The game G:

I | po P1 P2
I s 51 52

Player I plays a decreasing sequence of ordinals smaller than w® and
Player II plays pairwise incompatible elements of P,. The game has
to stop after finitely many moves. Player II wins the game if he can
continue playing till Player I reaches 0.

To prove that rk(D,) > w® it suffices to show the following.
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The game G:

I | po P1 P2
I s 51 52

Player I plays a decreasing sequence of ordinals smaller than w® and
Player II plays pairwise incompatible elements of P,. The game has
to stop after finitely many moves. Player II wins the game if he can
continue playing till Player I reaches 0.

To prove that rk(D,) > w® it suffices to show the following.

Fact
Player 11 has a winning strategy in G,.
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Definition

Given s € P and an integer n we define the shift sh,,(s) of s by n. We
let dom(shy,) = {k +n: k edom(s)} and sh,,(k +n) = s(k), for all
k € dom(s).
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Definition

Given s € P and an integer n we define the shift sh,,(s) of s by n. We
let dom(shy,) = {k +n: k edom(s)} and sh,,(k +n) = s(k), for all
k € dom(s).

We show that Player II has a winning strategy in GG, by induction on
. Suppose first o = 3 + 1 and fix a winning strategy o for Il in Gg.
Let po be the first move of Player I in G,. We may assume py is of
the form w?® - ng + &, for some integer ng and & < w”. We pick an
integer ag > 2 such that 2%° > ng. Let £y be the response of o3 in the
game G if Player I plays as his first move &. In G, we play

s0 = {(ao,np) } Ushgy+1(to). It is easy to check that sg € S,. As long
as Player I plays ordinals p; of the form w? - ng + &, for some &; < w?®,
Player II uses the strategy o to obtain ¢; and then plays

S; = {(ao,no)} @] Sha0+1(ti)-
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Suppose at some stage 7 Player I plays an ordinal p; of the form

w? - ny + &, for some nq < ng. Then Player II starts another round of
the game Gg. Let ¢; be the response of o if Player I plays &; as the
first move. Then Player II plays s; = {(ag,n1)} Ushgy+1(%;). Then
Player II keeps simulating the game G/g as long as Player I plays
ordinals of the form w? - n; + &, shifting the response of ogbyag+1
and adding {(ag,n1)}, etc. In this way Player II produces pairwise
incompatible elements of P. Since the union of {ag} and an element
of Sgis in S, it follows that all these partial functions are in P, . This
completes the proof in the successor case.

The limit case is similar.
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Question

Does every non atomic Maharam algebra contain a non atomic
measure algebra?
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Question
Does every non atomic Maharam algebra contain a non atomic
measure algebra?

Question
Can a Maharam algebra be rigid? minimal? etc.
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