Towards a structure theory of Maharam algebras

Boban Velickovic

Equipe de Logique
Université de Paris 7

Trends in Set Theory
Warsaw, July 92012

Outline

(1) Introduction
2. Control Measure Problem

3 Structure of Maharam algebras

Outline

（1）Introduction

2 Control Measure Problem

3 Structure of Maharam algebras

Introduction

Definition

\mathcal{B} is a measure algebra if there exists a measure $\mu: \mathcal{B} \rightarrow[0,1]$ which is σ-additive, strictly positive and such that $\mu\left(\mathbf{1}_{\mathcal{B}}\right)=1$.

Introduction

Definition

\mathcal{B} is a measure algebra if there exists a measure $\mu: \mathcal{B} \rightarrow[0,1]$ which is σ-additive, strictly positive and such that $\mu\left(\mathbf{1}_{\mathcal{B}}\right)=1$.

Proposition

Let \mathcal{B} be a measure algebra. Then
(1) \mathcal{B} satisfies the countable chain condition, i.e. if $\mathcal{A} \subseteq \mathcal{B} \backslash\{0\}$ is such that $a \wedge b=\mathbf{0}$, for all $a, b \in \mathcal{A}$ such that $a \neq b$ then \mathcal{A} is at most countable.
(2) \mathcal{B} is weakly distributive, i.e. if $\left\{b_{n, k}\right\}_{n, k}$ is a double sequence of elements of \mathcal{B} then

$$
\bigwedge_{n} \bigvee_{k} b_{n, k}=\bigvee_{f: \mathbb{N} \rightarrow \mathbb{N}} \bigwedge_{n} \bigvee_{i<f(n)} b_{n, i}
$$

Question (Von Neumann, July 4 1937)
Let \mathcal{B} be a complete Boolean algebra satisfying 1. and 2. Is \mathcal{B} a
measure algebra?
Prize
Δ hottle of whisky of measure >0.

Question (Von Neumann, July 4 1937)

Let \mathcal{B} be a complete Boolean algebra satisfying 1. and 2. Is \mathcal{B} a measure algebra?

Question (Von Neumann, July 4 1937)

Let \mathcal{B} be a complete Boolean algebra satisfying 1. and 2. Is \mathcal{B} a measure algebra?

Prize

A bottle of whisky of measure >0.

Let μ be a measure on a complete Boolean algebra \mathcal{B}. One can define
a distance d on \mathcal{B} by

$$
d_{\mu}(a, b)=\mu(a \Delta b)
$$

Observation (Maharam, 1947)
One can give a purely algebraic char acterization of the topology
induced by d_{μ}.

Let μ be a measure on a complete Boolean algebra \mathcal{B}. One can define a distance d on \mathcal{B} by

$$
d_{\mu}(a, b)=\mu(a \Delta b)
$$

Observation (Maharam, 1947) One can give a purely algebraic char acterization of the topology induced by d_{μ}.

Let μ be a measure on a complete Boolean algebra \mathcal{B}. One can define a distance d on \mathcal{B} by

$$
d_{\mu}(a, b)=\mu(a \Delta b)
$$

Observation (Maharam, 1947)

One can give a purely algebraic characterization of the topology induced by d_{μ}.

Definition (Maharam)

We say that a sequence $\left\{x_{n}\right\}_{n}$ of elements of \mathcal{B} strongly converges to x and we write $x_{n} \rightarrow x$ if

$$
\limsup x_{n} x_{n}=\lim \inf _{n} x_{n}=x
$$

Proposition (Maharam)

Definition (Maharam)

We say that a sequence $\left\{x_{n}\right\}_{n}$ of elements of \mathcal{B} strongly converges to x and we write $x_{n} \rightarrow x$ if

$$
\limsup x_{n} x_{n}=\lim \inf _{n} x_{n}=x
$$

Let $X \subseteq \mathcal{B}$. We define:

$$
\bar{X}=\left\{x \in \mathcal{B}: \text { there exists }\left\{x_{n}\right\}_{n} \subseteq \mathcal{B} \text { such that } x_{n} \rightarrow x\right\}
$$

Definition (Maharam)

We say that a sequence $\left\{x_{n}\right\}_{n}$ of elements of \mathcal{B} strongly converges to x and we write $x_{n} \rightarrow x$ if

$$
\limsup x_{n} x_{n}=\liminf x_{n} x_{n}=x
$$

Let $X \subseteq \mathcal{B}$. We define:

$$
\bar{X}=\left\{x \in \mathcal{B}: \text { there exists }\left\{x_{n}\right\}_{n} \subseteq \mathcal{B} \text { such that } x_{n} \rightarrow x\right\}
$$

Proposition (Maharam)

(1) If \mathcal{B} satisfies Von Neumann's conditions that the strong convergence defines a topology on \mathcal{B}.
(2) If μ is a strictly positive measure on \mathcal{B} this topology is induced by the metric d_{μ}.

Question

Let \mathcal{B} be a complete Boolean algebra verifying the conditions of Von Neumann. When is the strong topology on \mathcal{B} metrizable?

Question

Let \mathcal{B} be a complete Boolean algebra verifying the conditions of Von Neumann. When is the strong topology on \mathcal{B} metrizable?

Definition (Maharam)

A continuous submeasure on \mathcal{B} is a function $\mu: \mathcal{B} \rightarrow[0,1]$ such that
(1) $\mu(x)=0$ iff $x=\mathbf{0}$
(2) If $x \leq y$ then $\mu(x) \leq \mu(y)$
(3) $\mu(x \vee y) \leq \mu(x)+\mu(y)$
(4) If $x_{n} \rightarrow x$ then $\mu\left(x_{n}\right) \rightarrow \mu(x)$.

Theorem (Maharam, 1947)

Let \mathcal{B} be a complete Boolean algebra. Then the strong topology on \mathcal{B} is metrizable iff \mathcal{B} admits a continuous submeasure.

Theorem (Maharam, 1947)

Let \mathcal{B} be a complete Boolean algebra. Then the strong topology on \mathcal{B} is metrizable iff \mathcal{B} admits a continuous submeasure.

Definition

Let \mathcal{B} be a complete Boolean algebra. We say that \mathcal{B} is a Maharam algebra if it admits such a submeasure.

Theorem (Maharam, 1947)

Let \mathcal{B} be a complete Boolean algebra. Then the strong topology on \mathcal{B} is metrizable iff \mathcal{B} admits a continuous submeasure.

Definition

Let \mathcal{B} be a complete Boolean algebra. We say that \mathcal{B} is a Maharam algebra if it admits such a submeasure.

One verifies easily that if \mathcal{B} is a Maharam algebra then it is weakly distributive and satisfies the c.c.c., i.e. it satisfies Von Neumann's conditions.

Therefore, Von Neumann's problem decomposes into two questions.

Question (1)
 If \mathcal{R} ic acco weakly distributive complete Boolean algebra is \mathcal{B} a Maharam algebra?

Question (2)
Is every Mahara algebra a measure algebra?

Therefore, Von Neumann's problem decomposes into two questions.

Question (1)

If \mathcal{B} is a c.c.c. weakly distributive complete Boolean algebra is \mathcal{B} a Maharam algebra?

Therefore, Von Neumann's problem decomposes into two questions.

Question (1)

If \mathcal{B} is a c.c.c. weakly distributive complete Boolean algebra is \mathcal{B} a Maharam algebra?

Question (2)

Is every Maharam algebra a measure algebra?

Relative consistency results

We now have a fairly complete answer to Question 1.

Theorem (Farah, V.)

Theorem (Balcar, Jech, Pazak, V.)
The Proper Forcing Axiom implies that every c.c.c. weakly
distributive complete Boolean algebra is a Maharam algebra. In fact,
this follows from the P-ideal dichotomy.

Relative consistency results

We now have a fairly complete answer to Question 1.

Theorem (Farah, V.)

Suppose every c.c.c. weakly distributive complete Boolean algebra is a Maharam algebra. Then there is an inner model of ZFC with with (hyper) measurable cardinals.

Relative consistency results

We now have a fairly complete answer to Question 1.

Theorem (Farah, V.)

Suppose every c.c.c. weakly distributive complete Boolean algebra is a Maharam algebra. Then there is an inner model of ZFC with with (hyper) measurable cardinals.

Theorem (Balcar, Jech, Pazak, V.)

The Proper Forcing Axiom implies that every c.c.c. weakly distributive complete Boolean algebra is a Maharam algebra. In fact, this follows from the P-ideal dichotomy.

Outline

1）Introduction

2．Control Measure Problem

3 Structure of Maharam algebras

Definition

Let μ be a submeasure on \mathcal{B}.
(1) We say that μ is exhaustive if for every sequence $\left\{a_{n}\right\}_{n}$ of pairwise disjoint elements of \mathcal{B} we have $\lim _{n} \mu\left(a_{n}\right)=0$.
(2) We say that μ is uniformly exhaustive if for every $\epsilon>0$ there exists n such that there are no n pairwise disjoint elements a_{1}, \ldots, a_{n} of \mathcal{B} such that $\mu\left(a_{i}\right) \geq \epsilon$, for all i.

Definition

Let μ be a submeasure on \mathcal{B}.
(1) We say that μ is exhaustive if for every sequence $\left\{a_{n}\right\}_{n}$ of pairwise disjoint elements of \mathcal{B} we have $\lim _{n} \mu\left(a_{n}\right)=0$.
(2) We say that μ is uniformly exhaustive if for every $\epsilon>0$ there exists n such that there are no n pairwise disjoint elements a_{1}, \ldots, a_{n} of \mathcal{B} such that $\mu\left(a_{i}\right) \geq \epsilon$, for all i.

Theorem (Kalton \& Roberts, 1983)

If a submeasure μ is uniformly exhaustive then it is equivalent to a measure.

Definition

Let μ be a submeasure on \mathcal{B}.
(1) We say that μ is exhaustive if for every sequence $\left\{a_{n}\right\}_{n}$ of pairwise disjoint elements of \mathcal{B} we have $\lim _{n} \mu\left(a_{n}\right)=0$.
(2) We say that μ is uniformly exhaustive if for every $\epsilon>0$ there exists n such that there are no n pairwise disjoint elements a_{1}, \ldots, a_{n} of \mathcal{B} such that $\mu\left(a_{i}\right) \geq \epsilon$, for all i.

Theorem (Kalton \& Roberts, 1983)

If a submeasure μ is uniformly exhaustive then it is equivalent to a measure.

Therefore, Question 2 is equivalent to the statement that every exhaustive submeasure is uniformly exhaustive.

Definition

Let $\mathcal{A} \subseteq \mathcal{P}(X)$ be a Boolean algebra and $\nu: \mathcal{A} \rightarrow[0,1]$ a positive submeasure on \mathcal{A}. We say that μ is pathological if for every $\epsilon>0$ there is a finite sequence $\left(b_{i}\right)_{i \leq n}$ of elements of \mathcal{A} such that $\nu\left(b_{i}^{c}\right) \leq \epsilon$, for all i, and for all $x \in X$

$$
\left|\left\{i: x \in b_{i}\right\}\right| \leq \epsilon n .
$$

Definition

Let $\mathcal{A} \subseteq \mathcal{P}(X)$ be a Boolean algebra and $\nu: \mathcal{A} \rightarrow[0,1]$ a positive submeasure on \mathcal{A}. We say that μ is pathological iffor every $\epsilon>0$ there is a finite sequence $\left(b_{i}\right)_{i \leq n}$ of elements of \mathcal{A} such that $\nu\left(b_{i}^{c}\right) \leq \epsilon$, for all i, and for all $x \in X$

$$
\left|\left\{i: x \in b_{i}\right\}\right| \leq \epsilon n .
$$

If $\mathcal{A} \subset \mathcal{P}(X)$ is a Boolean algebra, ν a pathological submeasure and μ a measure. Then ν et μ are orthogonal, i.e., for all $\epsilon>0$ there is $b \in \mathcal{A}$ such that $\nu\left(b^{c}\right) \leq \epsilon$ and $\mu(b) \leq \epsilon$.

Theorem (Talagrand, 2005)

Let $T=\prod_{n} 2^{n}$. Let \mathcal{A} be the algebra of clopen subsets of T. Then there is an exhaustive pathological submeasure ν on \mathcal{A}.

Once we have such a submeasure ν we can use the usual construction of the Lebesgue measure to extend it to all Borel subsets of T. In this

Corollary (Talagrand, 2005)

Theorem (Talagrand, 2005)

Let $T=\prod_{n} 2^{n}$. Let \mathcal{A} be the algebra of clopen subsets of T. Then there is an exhaustive pathological submeasure ν on \mathcal{A}.

Once we have such a submeasure ν we can use the usual construction of the Lebesgue measure to extend it to all Borel subsets of T. In this way, we obtain a continuous submeasure $\bar{\nu}$ on $\operatorname{Bor}(T)$. Let $\mathcal{I}_{\bar{\nu}}$ be the ideal of null sets in the sense of $\bar{\nu}$. Then $\mathcal{B}=\operatorname{Bor}(T) / \mathcal{I}_{\bar{\nu}}$ is a Maharam algebra which is not a measure algebra.

Theorem (Talagrand, 2005)

Let $T=\prod_{n} 2^{n}$. Let \mathcal{A} be the algebra of clopen subsets of T. Then there is an exhaustive pathological submeasure ν on \mathcal{A}.

Once we have such a submeasure ν we can use the usual construction of the Lebesgue measure to extend it to all Borel subsets of T. In this way, we obtain a continuous submeasure $\bar{\nu}$ on $\operatorname{Bor}(T)$. Let $\mathcal{I}_{\bar{\nu}}$ be the ideal of null sets in the sense of $\bar{\nu}$. Then $\mathcal{B}=\operatorname{Bor}(T) / \mathcal{I}_{\bar{\nu}}$ is a Maharam algebra which is not a measure algebra.

Corollary (Talagrand, 2005)

There exists a Maharam algebra which is not a measure algebra.

Outline

1）Introduction

2 Control Measure Problem

3 Structure of Maharam algebras

Structure of Maharam algebras

Little is known about the properties of Maharam algebras, in particular the one constructed by Talagrand. First we show that they share some properties of measure algebras.

Proposition (V.)
Every non atomic Mah aram algebra contains a splitting sequence

Structure of Maharam algebras

Little is known about the properties of Maharam algebras, in particular the one constructed by Talagrand. First we show that they share some properties of measure algebras.

Definition

Let \mathcal{B} be a Boolean algebra. A sequence $\left\{b_{n}\right\}_{n}$ of elements of \mathcal{B} is splitting iffor every infinite $I \subseteq \omega$ and $\alpha \in\{0,1\}^{I} \wedge_{n \in I} b_{n}^{\alpha(n)}=\mathbf{0}$ where $b^{0}=b$ and $b^{1}=\mathbf{1}-b$.

Structure of Maharam algebras

Little is known about the properties of Maharam algebras, in particular the one constructed by Talagrand. First we show that they share some properties of measure algebras.

Definition

Let \mathcal{B} be a Boolean algebra. A sequence $\left\{b_{n}\right\}_{n}$ of elements of \mathcal{B} is splitting if for every infinite $I \subseteq \omega$ and $\alpha \in\{0,1\}^{I} \wedge_{n \in I} b_{n}^{\alpha(n)}=\mathbf{0}$ where $b^{0}=b$ and $b^{1}=\mathbf{1}-b$.

Proposition (V.)

Every non atomic Maharam algebra contains a splitting sequence.

Theorem (Farah, V.)

Let \mathcal{B} be a non atomic Maharam algebra. Then the Cohen algebra (of regular open subsets of \mathcal{C}) can be embedded into $\mathcal{B} \times \mathcal{B}$.

In the case of measure algebras there is a nice classification result. Given an infinite cardinal κ let λ_{κ} be the usual product measure on is the homogeneous measure algebra of density κ

Theorem (Farah, V.)

Let \mathcal{B} be a non atomic Maharam algebra. Then the Cohen algebra (of regular open subsets of \mathcal{C}) can be embedded into $\mathcal{B} \times \mathcal{B}$.

In the case of measure algebras there is a nice classification result. Given an infinite cardinal κ let λ_{κ} be the usual product measure on $\{0,1\}^{\kappa}$. Let \mathcal{B}_{κ} be the σ-algebra of Baire sets in $\{0,1\}^{\kappa}$ and \mathcal{N}_{κ} the ideal of λ_{κ}-null sets. Finally, we let \mathcal{M}_{κ} be the algebra $\mathcal{B}_{\kappa} / \mathcal{N}_{\kappa} . \mathcal{M}_{\kappa}$ is the homogeneous measure algebra of density κ.

Theorem (Farah, V.)

Let \mathcal{B} be a non atomic Maharam algebra. Then the Cohen algebra (of regular open subsets of \mathcal{C}) can be embedded into $\mathcal{B} \times \mathcal{B}$.

In the case of measure algebras there is a nice classification result. Given an infinite cardinal κ let λ_{κ} be the usual product measure on $\{0,1\}^{\kappa}$. Let \mathcal{B}_{κ} be the σ-algebra of Baire sets in $\{0,1\}^{\kappa}$ and \mathcal{N}_{κ} the ideal of λ_{κ}-null sets. Finally, we let \mathcal{M}_{κ} be the algebra $\mathcal{B}_{\kappa} / \mathcal{N}_{\kappa} . \mathcal{M}_{\kappa}$ is the homogeneous measure algebra of density κ.

Theorem (Maharam)

For every non atomic measure algebra \mathcal{M} there is a countable set I of cardinals such that

$$
\mathcal{M} \simeq \bigoplus_{\kappa \in I} \mathcal{M}_{\kappa}
$$

For Maharam algebras no such simple classification is possible. First, we define a notion of rank.

Definition

Since ν is exhaustive it follows that $\mathcal{D}_{\epsilon}(\mathcal{B})$ is well founded. Let $r k(v)$ he the rank of this ordering Finally let

For Maharam algebras no such simple classification is possible. First, we define a notion of rank.

Definition

Let \mathcal{B} be a Boolean algebra, ν an exhaustive submeasure on \mathcal{B} and $\epsilon>0$. Let $\mathcal{D}_{\epsilon}(\mathcal{B})$ be the set of all finite pairwise disjoint subsets F of \mathcal{B} such that $\nu(a) \geq \epsilon$, for all $a \in F$. Define the order on $\mathcal{D}_{\epsilon}(\mathcal{B})$ by $F \leq G$ iff $F \subseteq G$.

For Maharam algebras no such simple classification is possible. First, we define a notion of rank.

Definition

Let \mathcal{B} be a Boolean algebra, ν an exhaustive submeasure on \mathcal{B} and $\epsilon>0$. Let $\mathcal{D}_{\epsilon}(\mathcal{B})$ be the set of all finite pairwise disjoint subsets F of \mathcal{B} such that $\nu(a) \geq \epsilon$, for all $a \in F$. Define the order on $\mathcal{D}_{\epsilon}(\mathcal{B})$ by $F \leq G$ iff $F \subseteq G$.

Since ν is exhaustive it follows that $\mathcal{D}_{\epsilon}(\mathcal{B})$ is well founded. Let $\mathrm{rk}_{\epsilon}(\nu)$ be the rank of this ordering. Finally, let

$$
\operatorname{rk}(\nu)=\sup \left\{\operatorname{rk}_{\epsilon}(\nu): \epsilon>0\right\} .
$$

For Maharam algebras no such simple classification is possible. First, we define a notion of rank.

Definition

Let \mathcal{B} be a Boolean algebra, ν an exhaustive submeasure on \mathcal{B} and $\epsilon>0$. Let $\mathcal{D}_{\epsilon}(\mathcal{B})$ be the set of all finite pairwise disjoint subsets F of \mathcal{B} such that $\nu(a) \geq \epsilon$, for all $a \in F$. Define the order on $\mathcal{D}_{\epsilon}(\mathcal{B})$ by $F \leq G$ iff $F \subseteq G$.

Since ν is exhaustive it follows that $\mathcal{D}_{\epsilon}(\mathcal{B})$ is well founded. Let $\mathrm{rk}_{\epsilon}(\nu)$ be the rank of this ordering. Finally, let

$$
\operatorname{rk}(\nu)=\sup \left\{\operatorname{rk}_{\epsilon}(\nu): \epsilon>0\right\} .
$$

Fact

Let ν be an exhaustive submeasure on a Boolean algebra \mathcal{B}. Then ν is equivalent to a measure if and only if $\operatorname{rank}(\nu) \leq \omega$.

Fact

If ν is an exhaustive submeasure which is not uniformly exhaustive then $\operatorname{rk}(\nu) \geq \omega^{\omega}$.

Question

What is the r nk of Talagrand's submeasure?

Proposition (Fremlin)
Let ν be the pathological e chaustive submeasure constructed by

Fact

If ν is an exhaustive submeasure which is not uniformly exhaustive then $\operatorname{rk}(\nu) \geq \omega^{\omega}$.

Question

What is the rank of Talagrand's submeasure?

Proposition (Fremlin) Let ν be the pathological \in chaustive submeasure constructed b) Talagrand. Then $\omega^{\omega} \leq \operatorname{rk}(\nu) \leq \omega^{\omega^{2}}$.
If ν is an exhaustive submeasure on a countable Boolean algebra \mathcal{A}
then $r k(\nu)$ is a countable ordinal. Can we get arbitrary high countable ordinals?

Fact

If ν is an exhaustive submeasure which is not uniformly exhaustive then $\operatorname{rk}(\nu) \geq \omega^{\omega}$.

Question

What is the rank of Talagrand's submeasure?

Proposition (Fremlin)

Let ν be the pathological exhaustive submeasure constructed by Talagrand. Then $\omega^{\omega} \leq \operatorname{rk}(\nu) \leq \omega^{\omega^{2}}$.

Fact

If ν is an exhaustive submeasure which is not uniformly exhaustive then $\operatorname{rk}(\nu) \geq \omega^{\omega}$.

Question

What is the rank of Talagrand's submeasure?

Proposition (Fremlin)

Let ν be the pathological exhaustive submeasure constructed by Talagrand. Then $\omega^{\omega} \leq \operatorname{rk}(\nu) \leq \omega^{\omega^{2}}$.

If ν is an exhaustive submeasure on a countable Boolean algebra \mathcal{A} then $\operatorname{rk}(\nu)$ is a countable ordinal. Can we get arbitrary high countable ordinals?

Theorem (Perovic, V.)

There exist exhaustive submeasures on the Boolean algebra \mathcal{A} of clopen subsets of T of arbitrary high rank below ω_{1}.

Theorem (Perovic, V.)

There exist exhaustive submeasures on the Boolean algebra \mathcal{A} of clopen subsets of T of arbitrary high rank below ω_{1}.

Corollary

The set of exhaustive submeasure on \mathcal{A} is a true Π_{1}^{1} set, i.e. it is not Borel.

Theorem (Perovic, V.)

There exist exhaustive submeasures on the Boolean algebra \mathcal{A} of clopen subsets of T of arbitrary high rank below ω_{1}.

Corollary

The set of exhaustive submeasure on \mathcal{A} is a true Π_{1}^{1} set, i.e. it is not Borel.

Corollary

There exist at least \aleph_{1} non isomorphic separable non atomic Maharam algebras.

Definition (Schreier families)

For every countable ordinal α, we define a family \mathcal{S}_{α} of finite subsets of \mathbb{N} as follows.
(1) $\mathcal{S}_{0}=\{\{n\}: n \in \mathbb{N}\} \cup\{\varnothing\}$.
(2) Given \mathcal{S}_{α} we let

$$
\mathcal{S}_{\alpha+1}=\left\{\bigcup_{i<n} F_{i}: n \leq F_{0}<F_{1}<\ldots<F_{n-1}, F_{i} \in \mathcal{S}_{\alpha}(i<n)\right\} .
$$

(3) If α is a limit ordinal, fix an increasing sequence $\left(\alpha_{n}\right)_{n}$ converging to α and let

$$
S_{\alpha}=\bigcup_{n}\left\{F \in \mathcal{S}_{\alpha_{n}}: n \leq F\right\} \cup\{\varnothing\} .
$$

Definition

Fix a countable ordinal α. We say that F is maximal for \mathcal{S}_{α} if $F \in \mathcal{S}_{\alpha}$ and whenever $G \in \mathcal{S}_{\alpha}$ is such that $F \subseteq G$ then $G=F$.

Definition

Fix a countable ordinal α. We say that F is maximal for \mathcal{S}_{α} if $F \in \mathcal{S}_{\alpha}$ and whenever $G \in \mathcal{S}_{\alpha}$ is such that $F \subseteq G$ then $G=F$.

Definition

Fix an ordinal α. For every finite subset F of \mathbb{N} we define $m_{i}^{\alpha}(F)$ by induction on i as follows.
(1) $m_{0}^{\alpha}(F)=\min (F)$.
(2) Suppose $m_{i}^{\alpha}(F)$ has been defined. Let $m_{i+1}^{\alpha}(F)$ be the least $m \in F$ (if it exists) such that $F \cap\left[m_{i}^{\alpha}(F), m\right)$ is \mathcal{S}_{α} maximal.
Let $k_{\alpha}(F)$ be the least k such that $m_{k}^{\alpha}(F)$ is not defined. We set $F^{*}=\left\{m_{i}^{\alpha}(F): i<k_{\alpha}(F)\right\}$. Elements of F^{*} are called the leaders of F. Finally, set $\|F\|_{\alpha}=k_{\alpha}(F)$.

Proposition

Fix $\alpha<\omega_{1}$ and finite $A, B \subseteq \mathbb{N}$.
(1) If $A \subseteq B$ then $\|A\|_{\alpha} \leq\|B\|_{\alpha}$.
(2) if $A=\left\{a_{0}<\ldots<a_{n-1}\right\}$ and $B=\left\{b_{0}<\ldots<b_{n-1}\right\}$ with $a_{i} \leq b_{i}$, for $i<n$, then $\|A\|_{\alpha} \leq\|B\|_{\alpha}$.
(3) $\|A \cup B\|_{\alpha} \leq\|A\|_{\alpha}+\|B\|_{\alpha}$.

Proposition

Fix $\alpha<\omega_{1}$ and finite $A, B \subseteq \mathbb{N}$.
(1) If $A \subseteq B$ then $\|A\|_{\alpha} \leq\|B\|_{\alpha}$.
(2) if $A=\left\{a_{0}<\ldots<a_{n-1}\right\}$ and $B=\left\{b_{0}<\ldots<b_{n-1}\right\}$ with $a_{i} \leq b_{i}$, for $i<n$, then $\|A\|_{\alpha} \leq\|B\|_{\alpha}$.
(3) $\|A \cup B\|_{\alpha} \leq\|A\|_{\alpha}+\|B\|_{\alpha}$.

We call $\|\cdot\|_{\alpha}$ the α-Schreier norm.

Recall that $T=\prod_{n} 2^{n}$. Let P be the collection of all finite partial functions s such that $\operatorname{dom}(s) \subseteq \mathbb{N}$ and $s(k)<2^{k}$, for all $k \in \operatorname{dom}(s)$. For $s \in P$ Let

$$
N(s)=\{f \in T: s \subseteq T\} .
$$

Then $N(s)$ is a typical clopen subset of T. We adapt Talagrand's construction to show the following.

Recall that $T=\prod_{n} 2^{n}$. Let P be the collection of all finite partial functions s such that $\operatorname{dom}(s) \subseteq \mathbb{N}$ and $s(k)<2^{k}$, for all $k \in \operatorname{dom}(s)$. For $s \in P$ Let

$$
N(s)=\{f \in T: s \subseteq T\} .
$$

Then $N(s)$ is a typical clopen subset of T. We adapt Talagrand's construction to show the following.

Theorem (Perovic, V.)

Suppose α is a countable ordinal. Then there is an exhaustive submeasure ν_{α} on clopen subsets of T such that
(1) $\nu_{\alpha}(T) \geq 8$
(2) $\nu_{\alpha}(N(s)) \geq 1$, for all $s \in P$ with $\|\operatorname{dom}(s)\|_{\alpha} \leq 1$.

Definition

(1) Let $P_{\alpha}=\left\{s \in P:\|\operatorname{dom}(s)\|_{\alpha} \leq 1\right\}$.
(2) Let \mathcal{D}_{α} be the collection of all finite subsets F of P_{α} such that $s \perp t$, for all $s, t \in F$ such that $s \neq t$. We let $G \leq F$ if $F \subseteq G$.

Definition

(1) Let $P_{\alpha}=\left\{s \in P:\|\operatorname{dom}(s)\|_{\alpha} \leq 1\right\}$.
(2) Let \mathcal{D}_{α} be the collection of all finite subsets F of P_{α} such that $s \perp t$, for all $s, t \in F$ such that $s \neq t$. We let $G \leq F$ if $F \subseteq G$.

Proposition

\mathcal{D}_{α} is well founded and $\operatorname{rk}\left(\mathcal{D}_{\alpha}\right) \geq \omega^{\alpha}$.

Definition

(1) Let $P_{\alpha}=\left\{s \in P:\|\operatorname{dom}(s)\|_{\alpha} \leq 1\right\}$.
(2) Let \mathcal{D}_{α} be the collection of all finite subsets F of P_{α} such that $s \perp t$, for all $s, t \in F$ such that $s \neq t$. We let $G \leq F$ if $F \subseteq G$.

Proposition

\mathcal{D}_{α} is well founded and $\operatorname{rk}\left(\mathcal{D}_{\alpha}\right) \geq \omega^{\alpha}$.

Sketch of proof : The fact that \mathcal{D}_{α} is well founded follows from a straightforward application of the Δ-system lemma. We show that $\operatorname{rk}\left(\mathcal{D}_{\alpha}\right)$ is at least ω^{α} by induction on α. We consider the following game.

The game G_{α} :

I	ρ_{0}		ρ_{1}		ρ_{2}		\ldots	
II		s_{0}		s_{1}		s_{2}		\cdots

Player I plays a decreasing sequence of ordinals smaller than ω^{α} and Player II plays pairwise incompatible elements of P_{α}. The game has to stop after finitely many moves. Player II wins the game if he can continue playing till Player I reaches 0 .

The game G_{α} :

I	ρ_{0}		ρ_{1}		ρ_{2}		\cdots	
II		s_{0}		s_{1}		s_{2}		\cdots

Player I plays a decreasing sequence of ordinals smaller than ω^{α} and Player II plays pairwise incompatible elements of P_{α}. The game has to stop after finitely many moves. Player II wins the game if he can continue playing till Player I reaches 0 .

To prove that $\operatorname{rk}\left(D_{\alpha}\right) \geq \omega^{\alpha}$ it suffices to show the following.

The game G_{α} :

I	ρ_{0}		ρ_{1}		ρ_{2}		\ldots	
II		s_{0}		s_{1}		s_{2}		\cdots

Player I plays a decreasing sequence of ordinals smaller than ω^{α} and Player II plays pairwise incompatible elements of P_{α}. The game has to stop after finitely many moves. Player II wins the game if he can continue playing till Player I reaches 0 .

To prove that $\operatorname{rk}\left(D_{\alpha}\right) \geq \omega^{\alpha}$ it suffices to show the following.

Fact

Player II has a winning strategy in G_{α}.

Definition

Given $s \in P$ and an integer n we define the shift $\operatorname{sh}_{n}(s)$ of s by n. We let $\operatorname{dom}\left(\operatorname{sh}_{n}\right)=\{k+n: k \in \operatorname{dom}(s)\}$ and $\operatorname{sh}_{n}(k+n)=s(k)$, for all $k \in \operatorname{dom}(s)$.

Definition

Given $s \in P$ and an integer n we define the shift $\operatorname{sh}_{n}(s)$ of s by n. We let $\operatorname{dom}\left(\operatorname{sh}_{n}\right)=\{k+n: k \in \operatorname{dom}(s)\}$ and $\operatorname{sh}_{n}(k+n)=s(k)$, for all $k \in \operatorname{dom}(s)$.

We show that Player II has a winning strategy in G_{α} by induction on α. Suppose first $\alpha=\beta+1$ and fix a winning strategy σ_{β} for II in G_{β}. Let ρ_{0} be the first move of Player I in G_{α}. We may assume ρ_{0} is of the form $\omega^{\beta} \cdot n_{0}+\xi_{0}$, for some integer n_{0} and $\xi_{0}<\omega^{\beta}$. We pick an integer $a_{0} \geq 2$ such that $2^{a_{0}}>n_{0}$. Let t_{0} be the response of σ_{β} in the game G_{β} if Player I plays as his first move ξ_{0}. In G_{α} we play $s_{0}=\left\{\left(a_{0}, n_{0}\right)\right\} \cup \operatorname{sh}_{a_{0}+1}\left(t_{0}\right)$. It is easy to check that $s_{0} \in S_{\alpha}$. As long as Player I plays ordinals ρ_{i} of the form $\omega^{\beta} \cdot n_{0}+\xi_{i}$, for some $\xi_{i}<\omega^{\beta}$, Player II uses the strategy σ_{β} to obtain t_{i} and then plays
$s_{i}=\left\{\left(a_{0}, n_{0}\right)\right\} \cup \operatorname{sh}_{a_{0}+1}\left(t_{i}\right)$.

Suppose at some stage i Player I plays an ordinal ρ_{i} of the form $\omega^{\beta} \cdot n_{1}+\xi_{i}$, for some $n_{1}<n_{0}$. Then Player II starts another round of the game G_{β}. Let t_{i} be the response of σ_{β} if Player I plays ξ_{i} as the first move. Then Player II plays $s_{i}=\left\{\left(a_{0}, n_{1}\right)\right\} \cup \operatorname{sh}_{a_{0}+1}\left(t_{i}\right)$. Then Player II keeps simulating the game G_{β} as long as Player I plays ordinals of the form $\omega^{\beta} \cdot n_{1}+\xi$, shifting the response of σ_{β} by $a_{0}+1$ and adding $\left\{\left(a_{0}, n_{1}\right)\right\}$, etc. In this way Player II produces pairwise incompatible elements of P. Since the union of $\left\{a_{0}\right\}$ and an element of S_{β} is in S_{α} it follows that all these partial functions are in P_{α}. This completes the proof in the successor case.

The limit case is similar.

Question

Does every non atomic Maharam algebra contain a non atomic measure algebra?

Question
Can a Mahar: malgebra be rigid? minimal? etc.

Question

Does every non atomic Maharam algebra contain a non atomic measure algebra?

Question

Can a Maharam algebra be rigid? minimal? etc.

