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2-point sets

Definition

A subset of the plane that intersects every line in exactly two
points is called a 2-point set.

Existence

Theorem. (S. Mazurkiewicz) There exists a 2-point set.

Complexity

Can be a 2-point set Borel?
Theorem. (Bouhjar, Dijkstra, and van Mill) It cannot be Fσ!
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2-point sets

Inductive proof

Standard proof of the existence:

purely set theoretic construction,
by transfinite induction.

Question

The set of possible choices is very large. Could it be done in a
”nice” way?
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Coanalytic sets

Coanalytic sets

The projections of Gδ sets are called analytic (Σ1
1) (or equivalently

the continuous images of the Borel sets). The complements are
called coanalytic (Π1

1).

Miller’s theorem

Theorem. (A. W. Miller 91’) (V = L) There exists a Π1
1 2-point

set. Furthermore there exist Π1
1

Hamel basis

MAD family

Method

Miller’s method is frequently needed. The proof uses effective
descriptive set theory and model theory.
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General method

x ≤T y

Definition. Let x , y ∈ R, x ≤T y iff there is a Turing machine
computing x from y .

Cofinality in the Turing degrees

Definition. A set X ⊂ R is cofinal in the Turing degrees if
(∀z ∈ R)(∃y ∈ X )(y ≤T x).
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General method

Compatibility

Definition. Let F ⊂ R≤ω × R× R, and X ⊂ R. We say that X is
compatible with F if there exist enumerations R = {pα : α < ω1},
X = {xα : α < ω1} and for every α < ω1 a sequence Aα ∈ R≤ω
that is an enumeration of {xβ : β < α} in type ≤ ω such that
(∀α < ω1)(xα ∈ F(Aα,pα)) holds.

General method

Theorem 1. (V=L) Suppose that F ⊂ R≤ω × R× R is a Π1
1 set

and for all p ∈ R, A ∈ R≤ω the section F(A,p) is cofinal in the

Turing degrees. Then there exists a Π1
1 set X that is compatible

with F .
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Effectiveness

Σ0
1(y), Π0

1(y)

Definition. Let {In : n ∈ ω} be a recursive enumeration of the open
intervals with rational endpoints. An open set G is called recursive
in y , iff there exists {nk : k ∈ ω} (as an element of 2ω) ≤T y such
that G = ∪k Ink

. (denoted by Σ0
1(y)).

Π0
1(y) = {G c : G ∈ Σ0

1(y)}

We can define these classes similarly for subsets of ω, ω × R, R2

etc. using a recursive enumeration of {n}, {n} × Im, In × Im etc.
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The lightface classes

Let us define for n ≥ 2

Σ0
n(y) = {projR(A) : A ⊂ R× ω,A ∈ Π0

n−1(y)},

Π0
n(y) = {Ac : A ∈ Σ0

n(y)}.

Σ1
1(y) = {projR(A) : A ⊂ R× R,A ∈ Π0

2(y)},

Π1
1(y) = {Ac : A ∈ Σ1

1(y)},

∆1
1(y) = Σ1

1(y) ∩ Π1
1(y).

For x , y ⊂ ω the relation x ∈ ∆1
1(y) is denoted by x ≤h y .

Lightface and boldface

Σi
j = ∪y∈RΣi

j(y)
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Strengthenings

Cofinality in the hyperdegrees

Definition. A set X ⊂ R is called cofinal in the hyperdegrees if
(∀z ∈ R)(∃y ∈ X )(z ≤h y).

Stronger version

Theorem 2. (V=L) Let t ∈ R, F ⊂ R≤ω × R× R be a Π1
1(t) set.

Assume that for every (A, p) ∈ R≤ω × R the section F(A,p) is
cofinal in the hyperdegrees. Then there exists a Π1

1(t) set X that is
compatible with F .

Remark

The previous theorem holds true replacing R with Rn, ωω or 2ω.
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Application

Miller’s results

Theorem 2. =⇒ Miller’s results: consistent existence of Π1
1 MAD

family, 2-point set and Hamel basis.
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2-point set

Recall Theorem 1.

(V=L) If F is Π1
1 and every section F(A,p) is cofinal in the Turing

degrees then there exists a Π1
1 set X and enumerations

R = {pα : α < ω1}, X = {xα : α < ω1}, Aα of {xβ : β < α}, such
that (∀α < ω1)(xα ∈ F(Aα,pα)).

Proof

(A, p, x) ∈ F ⇐⇒ EITHER 1 ∧ 2 ∧ 3 where

1 there are no 3 distinct collinear points in A

2 |A ∩ lp| < 2 and lp 6= ∅
3 x ∈ lp \ A, x is not collinear with any two distinct points of A

OR 1∧¬2 holds and x is not collinear with two distinct points of A
OR ¬1.
Transfinite induction =⇒ X is a 2-point set.
Theorem 1. =⇒ X is a Π1

1 set.
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Zoltán Vidnyánszky Transfinite constructions in V = L



2-point set

Recall Theorem 1.

(V=L) If F is Π1
1 and every section F(A,p) is cofinal in the Turing

degrees then there exists a Π1
1 set X and enumerations

R = {pα : α < ω1}, X = {xα : α < ω1}, Aα of {xβ : β < α}, such
that (∀α < ω1)(xα ∈ F(Aα,pα)).

Proof

(A, p, x) ∈ F ⇐⇒ EITHER 1 ∧ 2 ∧ 3 where

1 there are no 3 distinct collinear points in A

2 |A ∩ lp| < 2 and lp 6= ∅

3 x ∈ lp \ A, x is not collinear with any two distinct points of A

OR 1∧¬2 holds and x is not collinear with two distinct points of A
OR ¬1.
Transfinite induction =⇒ X is a 2-point set.
Theorem 1. =⇒ X is a Π1

1 set.
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Consequences: C 1 curves

Existence

(CH) There exists an uncountable X ⊂ R2 intersecting every C 1

curve in countably many points.

Consistent nonexistence

Theorem (J. Hart, K. Kunen) (PFA) For every uncountable
X ⊂ R2 there exists a C 1 curve intersecting it in uncountably
many points.
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Consequences: C 1 curves

General version

Theorem 3. (V=L) Suppose that G ⊂ R× Rn is a Borel set and
for every countable A ⊂ R the complement of the set ∪p∈AGp is
cofinal in the Turing degrees. Then there exists an uncountable Π1

1
set X ⊂ Rn which intersects every Gp in a countable set.

Coanalytic in V=L

Theorem 3. =⇒ that under (V=L) there exists an uncountable
Π1

1 set X ⊂ R2 intersecting every C 1 curve in countably many
points.

Remark

In almost every cases there are no Σ1
1 sets.
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Thank you!
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