Idiosynchromatic Poetry 03E02, 03E10, 05C15, 05C20, 05C63

Thilo Weinert

Hausdorff Research Centre for Mathematics, Bonn, Germany

Trends in set theory, Sunday, $8^{\text {th }}$ of July 2012, 11:45-12:00

Introduction
The context
Results by other people
$\alpha=\beta$
$\alpha>\beta$
Ramsey numbers
Now in colour
An eclectical definition
An analogue theorem
Two counterexamples
A new Ramsey number
An upper bound
Another context
A variation
Yet another definition
Yet again some upper bounds
Two other counterexamples
Now we know more
Open questions
Gratitude

Definition

$\alpha \rightarrow(\beta, \gamma)$ means
$\forall E \subset[\alpha]^{2}\left(\exists X \in[\alpha]^{\beta}:[X]^{2} \subset E \vee \exists X \in[\alpha]^{\gamma}: E \cap[X]^{2}=\emptyset\right)$.

Remark

Here we are always referring to the order-type, i.e. $[\gamma]^{8}$ is the set of all subsets of γ whose order-type is δ.

Fact (AC)

For any linear order φ we have $\varphi \nrightarrow(\bar{\varphi}+1, \omega)$.

Definition

$r(\beta, \gamma)$ is the least ordinal α such that $\alpha \rightarrow(\beta, \gamma)$.

Theorem (Specker, 1957)
$r\left(\omega^{2}, m\right)=\omega^{2}$ for all $m<\omega$.
Theorem (Specker, 1957)
$r\left(\omega^{l}, 3\right)>\omega^{l}$ for all $l \in \omega \backslash 3$.
Theorem (Baumgartner, 1989)
$\mathrm{MA}_{\aleph_{1}}$ implies $r\left(\omega_{1} \omega, m\right)=\omega_{1} \omega$ for all $m<\omega$
Theorem (Baumgartner, 1989)
$\mathrm{MA}_{\aleph_{1}}$ implies $r\left(\omega_{1} \omega^{2}, m\right)=\omega_{1} \omega^{2}$ for all $m<\omega$.

Notation

$r\left(I_{l}, L_{m}\right)$ is the least n such that any digraph on n vertices contains an independent set of size l or a transitive induced subtournament of size m.

Theorem (Erdős \& Rado, 1956)
$r(\omega l, m)=\omega r\left(I_{l}, L_{m}\right)$.
Theorem (Baumgartner, 1974)
$r(\lambda l, m)=\lambda r\left(I_{l}, L_{m}\right)$ for all infinite cardinals λ.

Theorem (Larson, Mitchell, 1997)

$\forall n \in \omega \backslash 2: r\left(I_{n}, L_{3}\right) \leqslant n^{2}$.
Theorem (Erdős, Moser, 1964)
$\forall n \in \omega \backslash 3: r\left(I_{2}, L_{n}\right) \leqslant 2^{n-1}$.
Theorem (Larson, Mitchell, 1997)
$\forall m \in \omega \backslash 3, n \in \omega \backslash 4: r\left(I_{2}, L_{n}\right) \leqslant u(m, n)$ with

$$
\begin{aligned}
u(m, n):= & \frac{1}{2}\left(2 ^ { n - 3 } \left(4\binom{m+n-4}{n-1}+6\binom{m+n-5}{n-2}\right.\right. \\
& \left.\left.+9\binom{m+n-6}{n-3}\right)+2^{n-4} \cdot 17\binom{m+n-6}{m-2}-1\right)
\end{aligned}
$$

	3	4	5	6	7	8	9	m
3	6	9	14	18	23	28	36	
4	9	18	25					
λ								
$\lambda 2$	$\lambda 4$	$\lambda 8$	$\lambda 14$	$\lambda 28$				
$\lambda 3$	$\lambda 9$							
ω^{2}								
$\omega^{2} 2$								
ω^{3}	ω^{4}	ω^{4}	ω^{5}	ω^{5}	ω^{5}	ω^{5}	ω^{6}	$\omega^{2+1 \mathrm{Id}(m) \mid}$
ω^{4}	ω^{7}	ω^{7}	ω^{10}	ω^{10}	ω^{10}	ω^{10}		
ω^{5+l}	$\omega^{9+2 l}$	$\omega^{9+2 l}$	$\omega^{13+3 l}$	$\omega^{13+3 l}$	$\omega^{13+3 l}$	$\omega^{13+3 l}$	$\omega^{17+4 l}$	$\omega^{1+(4+l)\lceil 1 \mathrm{l}(m) T}$
ω^{ω}								
$\omega^{\omega^{2}}$	$\omega^{\omega^{2}}$	$\omega^{\omega^{2}}$						
$\kappa \lambda 2$								
$\kappa \lambda 3$								
2								

Definition

A triple is called agreeable if and only if it is one of the following.

Fact

A triple is disagreeable if and only if it is either...

- . . a cyclic triple, regardless of the colouring, i.e.

- ... or one of the following transitive triples:

Notation

$r\left(I_{l}, A_{m}\right)$ is the least n such that any arc-3-coloured digraph on n vertices contains an independent set of size l or an induced subtournament of size m all induced
3-person-subtournaments of which are agreeable.

Theorem (W.)

Let κ be such that $r(\kappa, \kappa)=\kappa$ and $\kappa \in \Omega \backslash 3$-this means that $\kappa=\omega$ or κ is weakly compact.
Then $r\left(\kappa^{2} m, n\right)=\kappa^{2} r\left(I_{m}, A_{n}\right)$.
Theorem (Erdős, Hajnal, 1971)
$2^{\kappa}=\kappa^{+}$implies that $\kappa^{+^{2}} \nrightarrow\left(\kappa^{+^{2}}, 3\right)$.

An analogue theorem

An analogue theorem

Two counterexamples

Two counterexamples

Theorem (W.)

$$
\forall n \in \omega \backslash 2: r\left(I_{n}, A_{3}\right) \leqslant \frac{(2 n+1)\left(n^{2}+4 n-6\right)}{3} .
$$

Corollary

$r\left(I_{2}, A_{3}\right)=10$.
Remark
We have $r(n, 3), r\left(I_{n}, L_{3}\right) \in \mathcal{O}\left(n^{2}\right)$.

$\xrightarrow[\text { 三를 }]{\longrightarrow}$ つQく

A variation

A variation

Definition

A triple is called strongly agreeable if and only if it is agreeable and does not contain any yellow arrow. So it is strongly agreeable precisely if it is one of these:

1

Notation

$r\left(I_{l}, S_{m}\right)$ is the least n such that any arc-2-coloured digraph on n vertices contains an independent set of size l or an induced subtournament of size m all induced
3-person-subtournaments of which are strongly agreeable.

Theorem (W.)
Let κ be weakly compact, let $\lambda \in \kappa \backslash \omega$ be a cardinal and let $l, m<\omega$. Then $r(\kappa \lambda l, m)=\kappa \lambda r\left(I_{l}, S_{m}\right)$.

Theorem (W.)
Assume $\mathrm{MA}_{\aleph_{1}}$. Then for all $l, m<\omega$ we have
$r\left(\omega_{1} \omega l, m\right)=\omega_{1} \omega r\left(I_{l}, S_{m}\right)$.
Theorem (W.)
For all $m \in \omega \backslash 2$ and all $n \in \omega \backslash 3$ we have $r\left(I_{m}, S_{n}\right) \leqslant u(m, n)$ where

$$
u(m, n):=\frac{1}{4}\left(3+\sum_{i=0}^{n-1}\binom{i+m-2}{i} 4^{i}\right)
$$

Theorem (W.)

For all $m \in \omega \backslash 2$ and all $n \in \omega \backslash 3$ we have $r\left(I_{m}, S_{n}\right) \leqslant u(m, n)$ where

$$
u(m, n):=\frac{1}{4}\left(3+\sum_{i=0}^{n-1}\binom{i+m-2}{i} 4^{i}\right)
$$

Corollary

For all $m \in \omega \backslash 3$ we have $r\left(I_{m}, S_{3}\right) \leqslant m(2 m-1)$.
Corollary

$$
\text { For any } n \in \omega \backslash 3 \text { we have } r\left(I_{2}, S_{n}\right) \leqslant \frac{4^{n-1}+2}{3} \text {. }
$$

Now in colour 0000000

Two other counterexamples

	3	4	5	6	7	8	9	m
3	6	9	14	18	23	28	36	
4	9	18	25					
λ								
$\lambda 2$	$\lambda 4$	$\lambda 8$	$\lambda 14$	$\lambda 28$				
$\lambda 3$	$\lambda 9$							
ω^{2}								
$\omega^{2} 2$	$\omega^{2} 10$							
ω^{3}	ω^{4}	ω^{4}	ω^{5}	ω^{5}	ω^{5}	ω^{5}	ω^{6}	$\omega^{2+\mid l(m) /}$
ω^{4}	ω^{7}	ω^{7}	ω^{10}	ω^{10}	ω^{10}	ω^{10}		
ω^{5+l}	$\omega^{9+2 l}$	$\omega^{9+2 l}$	$\omega^{13+3 l}$	$\omega^{13+3 l}$	$\omega^{13+3 l}$	$\omega^{13+3 l}$	$\omega^{17+4 l}$	$\omega^{1+(4+l) / l \mathrm{ld}(m) \top}$
ω^{ω}								
$\omega^{\omega^{2}}$	$\omega^{\omega^{2}}$	$\omega^{\omega^{2}}$						
$\kappa \lambda 2$	$\kappa \lambda 6$							
$\kappa \lambda 3$	$\kappa \lambda 15$							
$\kappa \lambda^{2}$								

Open questions

Question

What are $\mathcal{O}\left(r\left(I_{n}, A_{3}\right)\right)$ and $\Omega\left(r\left(I_{n}, A_{3}\right)\right)$?

Remark

Proving lower bounds is often difficult.

Example (Jeong Han Kim, 1995) $r(n, 3) \in \Theta\left(\frac{n^{2}}{\log n}\right)$

Example (Noga Alon, 2005)

 $r(n, 3,3) \in \Theta\left(\frac{n^{3}}{\operatorname{poly} \log n}\right)$.
Question

Assume that $r\left(\omega_{1} \omega, m\right)=\omega_{1} \omega$ for all $m<\omega$. Does it follow that $r\left(\omega_{1} \omega l, m\right)=\omega_{1} \omega r\left(I_{l}, S_{m}\right)$ for all $l, m<\omega$?

Results by other people 0000

Gratitude

Gratitude

Thank you very much for your attention!

