Variants of the Borel Conjecture and Sacks dense ideals

Wolfgang Wohofsky

Vienna University of Technology (TU Wien) and
Kurt Gödel Research Center, Vienna (KGRC)
wolfgang.wohofsky@gmx.at
Trends in set theory
Warsaw, Poland, July 08-11, 2012

Outline of the talk

(1) Special sets of real numbers, Borel Conjecture

- strong measure zero, strongly meager
- Borel Conjecture, dual Borel Conjecture, Con(BC + dBC)
(2) Another variant of the Borel Conjecture
- Marczewski ideal s_{0}, "Marczewski Borel Conjecture" investigating "Sacks dense ideals"

Outline of the talk

(1) Special sets of real numbers, Borel Conjecture

- strong measure zero, strongly meager
- Borel Conjecture, dual Borel Conjecture, Con(BC + dBC)
(2) Another variant of the Borel Conjecture
- Marczewski ideal s_{0}, "Marczewski Borel Conjecture"
- ...investigating "Sacks dense ideals"

Special sets of real numbers, Borel Conjecture

(1) Special sets of real numbers, Borel Conjecture

- strong measure zero, strongly meager
- Borel Conjecture, dual Borel Conjecture, Con(BC + dBC)
(2) Another variant of the Borel Conjecture
- Marczewski ideal s_{0}, "Marczewski Borel Conjecture"
- ...investigating "Sacks dense ideals"

The real numbers: topology, measure, algebraic structure

The real numbers ("the reals")

- \mathbb{R}, the classical real line
- 2^{ω}, the Cantor space (totally disconnected, compact)

Structure on the reals:

- natural topology (intervals/basic clopen sets form a basis)
- standard (Lebesgue) measure
- group structure
- $\left(2^{\omega},+\right)$ is a topological group, with + bitwise modulo 2
- Two translation-invariant σ-ideals
- meager sets \mathcal{M}
- measure zero sets

The real numbers: topology, measure, algebraic structure

The real numbers ("the reals")

- \mathbb{R}, the classical real line
- 2^{ω}, the Cantor space (totally disconnected, compact)

Structure on the reals:

- natural topology (intervals/basic clopen sets form a basis)
- standard (Lebesgue) measure
- group structure
- $\left(2^{\omega},+\right)$ is a topological group, with + bitwise modulo 2
- Two translation-invariant σ-ideals
- meager sets M
- measure zero sets

The real numbers: topology, measure, algebraic structure

The real numbers ("the reals")

- \mathbb{R}, the classical real line
- 2^{ω}, the Cantor space (totally disconnected, compact)

Structure on the reals:

- natural topology (intervals/basic clopen sets form a basis)
- standard (Lebesgue) measure
- group structure
- $\left(2^{\omega},+\right)$ is a topological group, with + bitwise modulo 2
- Two translation-invariant σ-ideals
- meager sets \mathcal{M}
- measure zero sets \mathcal{N}

Strong measure zero sets

For an interval $I \subseteq \mathbb{R}$, let $\lambda(I)$ denote its length.

Definition (well-known)

A set $X \subseteq \mathbb{R}$ is (Lebesgue) measure zero $(X \in \mathcal{N})$ iff for each positive real number $\varepsilon>0$
there is a sequence of intervals $\left(I_{n}\right)_{n<\omega}$ of total length $\sum_{n<\omega} \lambda\left(I_{n}\right) \leq \varepsilon$ such that $X \subseteq \bigcup_{n<\omega} I_{n}$.

Definition (Borel; 1919)

A set $X \subseteq \mathbb{R}$ is strong measure zero $(X \in S \mathcal{N})$ iff
for each sequence of positive real numbers

Strong measure zero sets

For an interval $I \subseteq \mathbb{R}$, let $\lambda(I)$ denote its length.

Definition (well-known)

A set $X \subseteq \mathbb{R}$ is (Lebesgue) measure zero $(X \in \mathcal{N})$ iff for each positive real number $\varepsilon>0$ there is a sequence of intervals $\left(I_{n}\right)_{n<\omega}$ of total length $\sum_{n<\omega} \lambda\left(I_{n}\right) \leq \varepsilon$ such that $X \subseteq \bigcup_{n<\omega} I_{n}$.

Definition (Borel; 1919)

A set $X \subseteq \mathbb{R}$ is strong measure zero $(X \in \mathcal{S N})$ iff for each sequence of positive real numbers $\left(\varepsilon_{n}\right)_{n<\omega}$ there is a sequence of intervals $\left(I_{n}\right)_{n<\omega}$ with $\forall n \in \omega \lambda\left(I_{n}\right) \leq \varepsilon_{n}$ such that $X \subseteq \bigcup_{n<\omega} I_{n}$.

Equivalent characterization of strong measure zero sets

For $Y, Z \subseteq 2^{\omega}$, let $Y+Z=\{y+z: y \in Y, z \in Z\}$.
Key Theorem (Galvin,Mycielski,Solovay; 1973)
A set $Y \subseteq 2^{\omega}$ is strong measure zero if and only if for every meager set $M \in \mathcal{M}, Y+M \neq 2^{\omega}$.

Note that $Y+M \neq 2^{\omega}$ if and only if Y can be "translated away" from M, i.e., there exists a $t \in 2^{\omega}$ such that $(Y+t) \cap M=\emptyset$.

Key Definition

Let $\mathcal{J} \subseteq \mathcal{P}\left(2^{\omega}\right)$ be arbitrary. Define

\mathcal{J}^{\star} is the collection of " \mathcal{J}-shiftable sets"

\square

Equivalent characterization of strong measure zero sets

For $Y, Z \subseteq 2^{\omega}$, let $Y+Z=\{y+z: y \in Y, z \in Z\}$.

Key Theorem (Galvin,Mycielski,Solovay; 1973)

A set $Y \subseteq 2^{\omega}$ is strong measure zero if and only if for every meager set $M \in \mathcal{M}, Y+M \neq 2^{\omega}$.

Note that $Y+M \neq 2^{\omega}$ if and only if Y can be "translated away" from M, i.e., there exists a $t \in 2^{\omega}$ such that $(Y+t) \cap M=\emptyset$.

Key Definition

Let $\mathcal{J} \subseteq \mathcal{P}\left(2^{\omega}\right)$ be arbitrary. Define

$$
\mathcal{J}^{\star}:=\left\{Y \subseteq 2^{\omega}: Y+Z \neq 2^{\omega} \text { for every set } Z \in \mathcal{J}\right\} .
$$

\mathcal{J}^{\star} is the collection of " \mathcal{J}-shiftable sets",
i.e., $Y \in \mathcal{J}^{\star}$ iff Y can be translated away from every set in \mathcal{J}.

Strongly meager sets

Key Definition (from previous slide)

Let $\mathcal{J} \subseteq \mathcal{P}\left(2^{\omega}\right)$ be arbitrary. Define

$$
\mathcal{J}^{\star}:=\left\{Y \subseteq 2^{\omega}: Y+Z \neq 2^{\omega} \text { for every set } Z \in \mathcal{J}\right\} .
$$

Key Theorem (Galvin,Mycielski,Solovay; 1973)

A set Y is strong measure zero if and only if it is

Replacing \mathcal{M} by \mathcal{N} yields a notion dual to strong measure zero:

Defintition

A set Y is strongly meager $(Y \in \mathcal{S} \mathcal{M})$ iff it is " \mathcal{N}-shiftable", i.e.

Strongly meager sets

Key Definition (from previous slide)

Let $\mathcal{J} \subseteq \mathcal{P}\left(2^{\omega}\right)$ be arbitrary. Define

$$
\mathcal{J}^{\star}:=\left\{Y \subseteq 2^{\omega}: Y+Z \neq 2^{\omega} \text { for every set } Z \in \mathcal{J}\right\} .
$$

Key Theorem (Galvin,Mycielski,Solovay; 1973)

A set Y is strong measure zero if and only if it is " \mathcal{M}-shiftable", i.e.,

$$
\mathcal{S N}=\mathcal{M}^{\star}
$$

Replacing \mathcal{M} by \mathcal{N} yields a notion dual to strong measure zero:

Definition

A set Y is strongly meager $(Y \in S \mathcal{M})$ iff it is " \mathcal{N}-shiftable", i.e.,

Strongly meager sets

Key Definition (from previous slide)

Let $\mathcal{J} \subseteq \mathcal{P}\left(2^{\omega}\right)$ be arbitrary. Define

$$
\mathcal{J}^{\star}:=\left\{Y \subseteq 2^{\omega}: Y+Z \neq 2^{\omega} \text { for every set } Z \in \mathcal{J}\right\} .
$$

Key Theorem (Galvin,Mycielski,Solovay; 1973)

A set Y is strong measure zero if and only if it is " \mathcal{M}-shiftable", i.e.,

$$
\mathcal{S N}=\mathcal{M}^{\star}
$$

Replacing \mathcal{M} by \mathcal{N} yields a notion dual to strong measure zero:

Definition

A set Y is strongly meager $(Y \in \mathcal{S M})$ iff it is " \mathcal{N}-shiftable", i.e.,

$$
\mathcal{S M}:=\mathcal{N}^{\star}
$$

Borel Conjecture + dual Borel Conjecture

Definition

The Borel Conjecture (BC) is the statement that there are no uncountable strong measure zero sets, i.e., $\mathcal{S N}=\mathcal{M}^{\star}=\left[2^{\omega}\right] \leq \aleph_{0}$.

- Con(BC), actually BC holds in the Laver model (Laver, 1976)

Definition

The dual Borel Conjecture (dBC) is the statement that there are no uncountable strongly meager sets, i.e., $\mathcal{S M}=\mathcal{N}^{*}=\left[2^{\omega}\right]^{\leq \aleph_{0}}$.

- Con(dBC), actually dBC holds in the Cohen model (Carlson, 1993)

Theorem (Goldstern,Kellner, Shelah, W.; 2011)

There is a model of ZFC in which both the Borel Conjecture and the dual Borel Conjecture hold, i.e., Con $(B C+d B C)$.

Borel Conjecture + dual Borel Conjecture

Definition

The Borel Conjecture (BC) is the statement that there are no uncountable strong measure zero sets, i.e., $\mathcal{S N}=\mathcal{M}^{\star}=\left[2^{\omega}\right] \leq \aleph_{0}$.

- Con(BC), actually BC holds in the Laver model (Laver, 1976)

Definition

The dual Borel Conjecture (dBC) is the statement that there are no uncountable strongly meager sets, i.e., $\mathcal{S} \mathcal{M}=\mathcal{N}^{\star}=\left[2^{\omega}\right]^{\leq \aleph_{0}}$.

- Con(dBC), actually dBC holds in the Cohen model (Carlson, 1993)
\square
There is a model of ZFC in which both the Borel Conjecture and the dual Borel Conjecture hold, i.e., Con $(\mathrm{BC}+\mathrm{dBC})$.

Borel Conjecture + dual Borel Conjecture

Definition

The Borel Conjecture (BC) is the statement that there are no uncountable strong measure zero sets, i.e., $\mathcal{S N}=\mathcal{M}^{\star}=\left[2^{\omega}\right] \leq \aleph_{0}$.

- Con(BC), actually BC holds in the Laver model (Laver, 1976)

Definition

The dual Borel Conjecture (dBC) is the statement that there are no uncountable strongly meager sets, i.e., $\mathcal{S M}=\mathcal{N}^{\star}=\left[2^{\omega}\right]^{\leq \aleph_{0}}$.

- Con(dBC), actually dBC holds in the Cohen model (Carlson, 1993)

Theorem (Goldstern,Kellner,Shelah,W.; 2011)

There is a model of ZFC in which both the Borel Conjecture and the dual Borel Conjecture hold, i.e., Con $(B C+d B C)$.

Small subsets of the real line and generalizations of the Borel Conjecture Wolfgang Wohofsky (advisor: Martin Goldstern)

Recipient of a DOC-fellowship of the Austrian Academy of Sciences at the Institute of Discrete Mathematics and Geometry 20.022016

Small sets of real numbers

Even smaller sets and the (dual) Borel Conjecture

Shelah's oracle c.c.c. forcing

ground model: $2^{\aleph_{0}}=\aleph_{1}$

Another variant of the Borel Conjecture

(1) Special sets of real numbers, Borel Conjecture

- strong measure zero, strongly meager
- Borel Conjecture, dual Borel Conjecture, Con(BC + dBC)
(2) Another variant of the Borel Conjecture
- Marczewski ideal s_{0}, "Marczewski Borel Conjecture"
- ...investigating "Sacks dense ideals"

Marczewski Borel Conjecture (MBC)

Assume that $\mathcal{J} \subseteq \mathcal{P}\left(2^{\omega}\right)$ is a translation-invariant σ-ideal. Recall that

$$
\mathcal{J}^{\star}:=\left\{Y \subseteq 2^{\omega}: Y+Z \neq 2^{\omega} \text { for every set } Z \in \mathcal{J}\right\} .
$$

```
Definition
The \mathcal{J}\mathrm{ -Borel Conjecture ( }\mathcal{J}-\textrm{BC}) the statement that there are
no uncountable }\mathcal{J}\mathrm{ -shiftable sets, i.e., }\mp@subsup{\mathcal{J}}{}{\star}=[\mp@subsup{2}{}{\omega}
The Marczewski ideal so is the collection of all Z\subseteq\mp@subsup{2}{}{\omega}\mathrm{ such that}
for each perfect set P, there exists a perfect subset Q\subseteqP with Q\capZ=\emptyset
```


Definition

\square no uncountable s_{0}-shiftable sets, i.e., $s_{0}{ }^{*}=\left[2^{\omega}\right]$

Can MBC be forced?

Marczewski Borel Conjecture (MBC)

Assume that $\mathcal{J} \subseteq \mathcal{P}\left(2^{\omega}\right)$ is a translation-invariant σ-ideal. Recall that

$$
\mathcal{J}^{\star}:=\left\{Y \subseteq 2^{\omega}: Y+Z \neq 2^{\omega} \text { for every set } Z \in \mathcal{J}\right\}
$$

Definition

The \mathcal{J}-Borel Conjecture $(\mathcal{J}-\mathrm{BC})$ the statement that there are no uncountable \mathcal{J}-shiftable sets, i.e., $\mathcal{J}^{\star}=\left[2^{\omega}\right]^{\leq \omega}$.

\square
The Marczev ski Borel Conjecture (MBC) is the statement that there are no uncountable s_{0}-shiftable sets, i.e., $s_{0}{ }^{\star}=\left[2^{\omega}\right]$

What about Con(MBC)?

Can MBC be forced?

Marczewski Borel Conjecture (MBC)

Assume that $\mathcal{J} \subseteq \mathcal{P}\left(2^{\omega}\right)$ is a translation-invariant σ-ideal. Recall that

$$
\mathcal{J}^{\star}:=\left\{Y \subseteq 2^{\omega}: Y+Z \neq 2^{\omega} \text { for every set } Z \in \mathcal{J}\right\}
$$

Definition

The \mathcal{J}-Borel Conjecture $(\mathcal{J}-\mathrm{BC})$ the statement that there are no uncountable \mathcal{J}-shiftable sets, i.e., $\mathcal{J}^{\star}=\left[2^{\omega}\right]^{\leq \omega}$.

The Marczewski ideal s_{0} is the collection of all $Z \subseteq 2^{\omega}$ such that for each perfect set P, there exists a perfect subset $Q \subseteq P$ with $Q \cap Z=\emptyset$.
\square
The Marczewski Borel Conjecture (MBC) is the statement that there are
no uncountable s_{0}-shiftable sets, i.e., $s_{0}{ }^{\star}=\left[2^{\omega}\right]$
What about Con(MBC)?

> Can MBC be forced?

Marczewski Borel Conjecture (MBC)

Assume that $\mathcal{J} \subseteq \mathcal{P}\left(2^{\omega}\right)$ is a translation-invariant σ-ideal. Recall that

$$
\mathcal{J}^{\star}:=\left\{Y \subseteq 2^{\omega}: Y+Z \neq 2^{\omega} \text { for every set } Z \in \mathcal{J}\right\}
$$

Definition

The \mathcal{J}-Borel Conjecture $(\mathcal{J}-\mathrm{BC})$ the statement that there are no uncountable \mathcal{J}-shiftable sets, i.e., $\mathcal{J}^{\star}=\left[2^{\omega}\right] \leq \omega$.

The Marczewski ideal s_{0} is the collection of all $Z \subseteq 2^{\omega}$ such that for each perfect set P, there exists a perfect subset $Q \subseteq P$ with $Q \cap Z=\emptyset$.

Definition

The Marczewski Borel Conjecture (MBC) is the statement that there are no uncountable s_{0}-shiftable sets, i.e., $s_{0}{ }^{\star}=\left[2^{\omega}\right]^{\leq \omega}$.

What about Con(MBC)?

> Can MBC be forced?

Marczewski Borel Conjecture (MBC)

Assume that $\mathcal{J} \subseteq \mathcal{P}\left(2^{\omega}\right)$ is a translation-invariant σ-ideal. Recall that

$$
\mathcal{J}^{\star}:=\left\{Y \subseteq 2^{\omega}: Y+Z \neq 2^{\omega} \text { for every set } Z \in \mathcal{J}\right\}
$$

Definition

The \mathcal{J}-Borel Conjecture $(\mathcal{J}-\mathrm{BC})$ the statement that there are no uncountable \mathcal{J}-shiftable sets, i.e., $\mathcal{J}^{\star}=\left[2^{\omega}\right] \leq \omega$.

The Marczewski ideal s_{0} is the collection of all $Z \subseteq 2^{\omega}$ such that for each perfect set P, there exists a perfect subset $Q \subseteq P$ with $Q \cap Z=\emptyset$.

Definition

The Marczewski Borel Conjecture (MBC) is the statement that there are no uncountable s_{0}-shiftable sets, i.e., $s_{0}{ }^{\star}=\left[2^{\omega}\right]^{\leq \omega}$.

What about Con(MBC)?

Can MBC be forced?

Sacks dense ideals

Unlike BC and dBC , the status of MBC under CH is unclear...

- Is MBC (i.e., $s_{0}{ }^{\star}=\left[2^{\omega}\right]^{\leq \kappa_{0}}$) consistent with CH ?
- Or does CH even imply MBC?

To investigate the situation under CH, I introduced the following notion:
Definition
A collection $\mathcal{I} \subseteq \mathcal{P}\left(2^{\omega}\right)$ is a Sacks dense ideal (S.d.i.) iff

- \mathcal{I} is a σ-ideal
- \mathcal{I} is translation-invariant
- \mathcal{I} is dense in Sacks forcing, more explicitly, for each perfect $P \subseteq 2$ there is a perfect subset Q in the ideal, i.e., $\exists Q \subseteq P, Q \in \mathcal{I}$

Lemma

Assume CH. Let I be a Sacks dense ideal. Then $s_{0}{ }^{*} \subset \mathcal{I}$

Sacks dense ideals

Unlike BC and dBC, the status of MBC under CH is unclear...

- Is MBC (i.e., $\left.s_{0}{ }^{\star}=\left[2^{\omega}\right]\right]^{\leq \kappa_{0}}$) consistent with CH?
- Or does CH even imply MBC?

To investigate the situation under CH, I introduced the following notion:

Definition

A collection $\mathcal{I} \subseteq \mathcal{P}\left(2^{\omega}\right)$ is a Sacks dense ideal (S.d.i.) iff

- \mathcal{I} is a σ-ideal
- \mathcal{I} is translation-invariant
- \mathcal{I} is dense in Sacks forcing, more explicitly, for each perfect $P \subseteq 2^{\omega}$, there is a perfect subset Q in the ideal, i.e., $\exists Q \subseteq P, Q \in \mathcal{I}$
\square

Sacks dense ideals

Unlike BC and dBC, the status of MBC under CH is unclear...

- Is MBC (i.e., $\left.s_{0}{ }^{\star}=\left[2^{\omega}\right]\right]^{\leq \kappa_{0}}$) consistent with CH?
- Or does CH even imply MBC?

To investigate the situation under CH, I introduced the following notion:

Definition

A collection $\mathcal{I} \subseteq \mathcal{P}\left(2^{\omega}\right)$ is a Sacks dense ideal (S.d.i.) iff

- \mathcal{I} is a σ-ideal
- \mathcal{I} is translation-invariant
- \mathcal{I} is dense in Sacks forcing, more explicitly, for each perfect $P \subseteq 2^{\omega}$, there is a perfect subset Q in the ideal, i.e., $\exists Q \subseteq P, Q \in \mathcal{I}$

Lemma ("Main Lemma")

Assume CH. Let \mathcal{I} be a Sacks dense ideal. Then $s_{0}{ }^{\star} \subseteq \mathcal{I}$.

More and more Sacks dense ideals

Lemma ("Main Lemma"; from previous slide)
Assume CH. Let \mathcal{I} be a Sacks dense ideal. Then $s_{0}{ }^{\star} \subseteq \mathcal{I}$.
In other words: $s_{0}{ }^{\star} \subseteq \bigcap\{\mathcal{I}: \mathcal{I}$ is a Sacks dense ideal $\}$.
Can we (consistently) find many Sacks dense ideals under CH?
are Sacks dense ideals

More and more Sacks dense ideals

Lemma ("Main Lemma"; from previous slide)
Assume CH. Let \mathcal{I} be a Sacks dense ideal. Then $s_{0}{ }^{\star} \subseteq \mathcal{I}$.
In other words: $s_{0}{ }^{\star} \subseteq \bigcap\{\mathcal{I}: \mathcal{I}$ is a Sacks dense ideal $\}$.
Can we (consistently) find many Sacks dense ideals under CH ?

More and more Sacks dense ideals

Lemma ("Main Lemma"; from previous slide)
Assume CH . Let \mathcal{I} be a Sacks dense ideal. Then $s_{0}{ }^{\star} \subseteq \mathcal{I}$.
In other words: $s_{0}{ }^{\star} \subseteq \bigcap\{\mathcal{I}: \mathcal{I}$ is a Sacks dense ideal $\}$.
Can we (consistently) find many Sacks dense ideals under CH?
$\mathcal{M} \quad \mathcal{N} \quad$ are Sacks dense ideals

More and more Sacks dense ideals

Lemma ("Main Lemma"; from previous slide)

Assume CH. Let \mathcal{I} be a Sacks dense ideal. Then $s_{0}{ }^{\star} \subseteq \mathcal{I}$.
In other words: $s_{0}{ }^{\star} \subseteq \bigcap\{\mathcal{I}: \mathcal{I}$ is a Sacks dense ideal $\}$.
Can we (consistently) find many Sacks dense ideals under CH ?
$\mathcal{M} \mathcal{N}$ are Sacks dense ideals
$\mathcal{M}^{\boldsymbol{M}} \mathcal{C}_{\neq \mathcal{N}}$
\mathcal{E}
\mathcal{E}

More and more Sacks dense ideals

Lemma ("Main Lemma"; from previous slide)

Assume CH. Let \mathcal{I} be a Sacks dense ideal. Then $s_{0}{ }^{\star} \subseteq \mathcal{I}$.
In other words: $s_{0}{ }^{\star} \subseteq \bigcap\{\mathcal{I}: \mathcal{I}$ is a Sacks dense ideal $\}$.
Can we (consistently) find many Sacks dense ideals under CH ?
$\mathcal{M} \mathcal{N}$ are Sacks dense ideals
$\mathcal{M}^{\boldsymbol{M}} \mathcal{C}_{\neq \mathcal{N}}$
\mathcal{E}
\mathcal{E}
$\mathcal{S N}$ is NOT a Sacks dense ideal, BUT...

U*
$\bigcap\left\{\mathcal{I}_{f}: f \in \omega^{\omega}\right\}$

$\bigcap\left\{\mathcal{I}_{f}: f \in \omega^{\omega}\right\} \cap \mathcal{E}_{0}$

\exists uncount. $Y \in \bigcap\left\{\mathcal{I}_{\alpha}: \alpha \in \omega_{1}\right\}$, for any \aleph_{1}-sized family of \mathcal{I}_{α} 's U\# \longleftarrow proved(?) 5 days ago (using $s_{0}^{\text {trans }}$) $\bigcap\{I: \mathcal{I}$ is a Sacks dense ideal $\}$

\mathcal{E}
UW
$\bigcap\left\{\mathcal{I}_{f}: f \in \omega^{\omega}\right\} \quad \subseteq$ null-additive $\subseteq \mathcal{S N} \cap \mathcal{S} \mathcal{M}$

\exists uncount. $Y \in \bigcap\left\{\mathcal{I}_{\alpha}: \alpha \in \omega_{1}\right\}$, for any \aleph_{1}-sized family of \mathcal{I}_{α} 's
Uw , proved(?) 5 days ago (using strans) $\bigcap\{\mathcal{I}: \mathcal{I}$ is a Sacks dense ideal $\}$

$\left[2^{\omega}\right] \leq \aleph_{0}$

UW
$\bigcap\left\{\mathcal{I}_{f}: f \in \omega^{\omega}\right\} \quad \subseteq$ null-additive $\subseteq \mathcal{S N} \cap \mathcal{S M}$
UW
$\bigcap\left\{\mathcal{I}_{f}: f \in \omega^{\omega}\right\} \cap \mathcal{E}_{0}$

$\bigcap\{\mathcal{I}: \mathcal{I}$ is a Sacks dense ideal $\}$
$\left[2^{\omega}\right] \leq \aleph_{0}$

\mathcal{E}

U*
$\bigcap\left\{\mathcal{I}_{f}: f \in \omega^{\omega}\right\} \quad \subseteq$ null-additive $\subseteq \mathcal{S N} \cap \mathcal{S} \mathcal{M}$
U*
$\bigcap\left\{\mathcal{I}_{f}: f \in \omega^{\omega}\right\} \cap \mathcal{E}_{0}$
UI
\exists uncount. $Y \in \bigcap\left\{\mathcal{I}_{\alpha}: \alpha \in \omega_{1}\right\}$, for any \aleph_{1}-sized family of \mathcal{I}_{α} 's
$\bigcap\{\mathcal{I}: \mathcal{I}$ is a Sacks dense ideal $\}$
$\left[2^{\omega}\right] \leq \aleph_{0}$
\mathcal{E}
UW
$\bigcap\left\{\mathcal{I}_{f}: f \in \omega^{\omega}\right\} \quad \subseteq$ null-additive $\subseteq \mathcal{S N} \cap \mathcal{S} \mathcal{M}$
UW
$\bigcap\left\{\mathcal{I}_{f}: f \in \omega^{\omega}\right\} \cap \mathcal{E}_{0}$
UI
\exists uncount. $Y \in \bigcap\left\{\mathcal{I}_{\alpha}: \alpha \in \omega_{1}\right\}$, for any \aleph_{1}-sized family of \mathcal{I}_{α} 's
UH $\longleftarrow \operatorname{proved}(?) 5$ days ago (using $s_{0}^{\text {trans }}$)
$\bigcap\{\mathcal{I}: \mathcal{I}$ is a Sacks dense ideal $\}$
$\left[2^{\omega}\right] \leq \aleph_{0}$
\mathcal{E}
UW
$\bigcap\left\{\mathcal{I}_{f}: f \in \omega^{\omega}\right\} \quad \subseteq$ null-additive $\subseteq \mathcal{S N} \cap \mathcal{S} \mathcal{M}$
U*
$\bigcap\left\{\mathcal{I}_{f}: f \in \omega^{\omega}\right\} \cap \mathcal{E}_{0}$
UI
\exists uncount. $Y \in \bigcap\left\{\mathcal{I}_{\alpha}: \alpha \in \omega_{1}\right\}$, for any \aleph_{1}-sized family of \mathcal{I}_{α} 's
UH $\longleftarrow \operatorname{proved}(?) 5$ days ago (using $s_{0}^{\text {trans }}$)
$\bigcap\{\mathcal{I}: \mathcal{I}$ is a Sacks dense ideal $\}$
UI \longleftarrow "Main Lemma"
$s_{0}{ }^{\star}$
UI
$\left[2^{\omega}\right] \leq \aleph_{0}$

Question

Does $\left[2^{\omega}\right]^{\leq \aleph_{0}}=\bigcap\{\mathcal{I}: \mathcal{I}$ is S.d.i. \} (at least consistently) hold under CH ?
If yes, MBC (i.e., $\left.s_{0}{ }^{\star}=\left[2^{\omega}\right]^{\leq \aleph_{0}}\right)$ follows from $\mathrm{CH}(\mathrm{Con}(\mathrm{MBC}+\mathrm{CH})$, resp. $)$

Theorem

Let $\left\{\mathcal{I}_{\alpha}: \alpha<\omega_{1}\right\}$ be an \mathbb{N}_{1}-sized family of Sacks dense ideals. Then there exists an uncountable set $Y \in \bigcap_{\alpha \in \omega_{1}} \mathcal{I}_{\alpha}$
Moreover, we can construct the set Y in such a way that $Y \notin \mathcal{J}$ for some other Sacks dense ideal \mathcal{J} (proved(?) 5 days ago (using $s_{0}^{\text {trans }}$))

Definition

Question

What can we say about the family stane? Any relation to null-additive?

Question

Does $\left[2^{\omega}\right]^{\leq \aleph_{0}}=\bigcap\{\mathcal{I}: \mathcal{I}$ is S.d.i. $\}$ (at least consistently) hold under CH ?
If yes, $M B C$ (i.e., $s_{0}^{\star}=\left[2^{\omega}\right]^{\leq \aleph_{0}}$) follows from CH (Con(MBC+CH), resp.).
\square

Definition

Question

What can we say about the family soram? Any relation to null-additive?

Question

Does $\left[2^{\omega}\right]^{\leq \aleph_{0}}=\bigcap\{\mathcal{I}: \mathcal{I}$ is S.d.i. $\}$ (at least consistently) hold under CH ?
If yes, $M B C$ (i.e., $s_{0}^{\star}=\left[2^{\omega}\right]^{\leq \aleph_{0}}$) follows from CH (Con(MBC+CH), resp.).

Theorem

Let $\left\{\mathcal{I}_{\alpha}: \alpha<\omega_{1}\right\}$ be an \aleph_{1}-sized family of Sacks dense ideals. Then there exists an uncountable set $Y \in \bigcap_{\alpha \in \omega_{1}} \mathcal{I}_{\alpha}$.
Moreover, we can construct the set Y in such a way that $Y \notin \mathcal{J}$ for some other Sacks dense ideal \mathcal{J} (proved(?) 5 days ago (using $s_{0}^{\text {trans }}$)).

Question

Does $\left[2^{\omega}\right]^{\leq \aleph_{0}}=\bigcap\{\mathcal{I}: \mathcal{I}$ is S.d.i. $\}$ (at least consistently) hold under CH ?
If yes, MBC (i.e., $s_{0}^{\star}=\left[2^{\omega}\right]^{\leq \aleph_{0}}$) follows from CH (Con(MBC+CH), resp.).

Theorem

Let $\left\{\mathcal{I}_{\alpha}: \alpha<\omega_{1}\right\}$ be an \aleph_{1}-sized family of Sacks dense ideals. Then there exists an uncountable set $Y \in \bigcap_{\alpha \in \omega_{1}} \mathcal{I}_{\alpha}$.
Moreover, we can construct the set Y in such a way that $Y \notin \mathcal{J}$ for some other Sacks dense ideal \mathcal{J} (proved(?) 5 days ago (using $s_{0}^{\text {trans }}$)).

$$
Y \in s_{0} \quad: \Longleftrightarrow \forall p \exists q \leq p \quad|[q] \cap Y| \leq \aleph_{0}
$$

Definition

Question

What can we say about the family strane? Any relation to null-additive?

Question

Does $\left[2^{\omega}\right]^{\leq \aleph_{0}}=\bigcap\{\mathcal{I}: \mathcal{I}$ is S.d.i. $\}$ (at least consistently) hold under CH ?
If yes, MBC (i.e., $s_{0}^{\star}=\left[2^{\omega}\right]^{\leq \aleph_{0}}$) follows from CH (Con(MBC+CH), resp.).

Theorem

Let $\left\{\mathcal{I}_{\alpha}: \alpha<\omega_{1}\right\}$ be an \aleph_{1}-sized family of Sacks dense ideals. Then there exists an uncountable set $Y \in \bigcap_{\alpha \in \omega_{1}} \mathcal{I}_{\alpha}$.
Moreover, we can construct the set Y in such a way that $Y \notin \mathcal{J}$ for some other Sacks dense ideal \mathcal{J} (proved(?) 5 days ago (using $s_{0}^{\text {trans }}$)).

$$
Y \in s_{0} \quad: \Longleftrightarrow \forall p \exists q \leq p \quad|[q] \cap Y| \leq \aleph_{0}
$$

Definition

$Y \in s_{0}^{\text {trans }}: \Longleftrightarrow \forall p \exists q \leq p \forall t \in 2^{\omega}|(t+[q]) \cap Y| \leq \aleph_{0}$

Question

What can we say about the family so trans? Any relation to null-additive?

Question

Does $\left[2^{\omega}\right]^{\leq \aleph_{0}}=\bigcap\{\mathcal{I}: \mathcal{I}$ is S.d.i. $\}$ (at least consistently) hold under CH ?
If yes, MBC (i.e., $s_{0}^{\star}=\left[2^{\omega}\right]^{\leq \aleph_{0}}$) follows from CH (Con(MBC+CH), resp.).

Theorem

Let $\left\{\mathcal{I}_{\alpha}: \alpha<\omega_{1}\right\}$ be an \aleph_{1}-sized family of Sacks dense ideals. Then there exists an uncountable set $Y \in \bigcap_{\alpha \in \omega_{1}} \mathcal{I}_{\alpha}$.
Moreover, we can construct the set Y in such a way that $Y \notin \mathcal{J}$ for some other Sacks dense ideal \mathcal{J} (proved(?) 5 days ago (using $s_{0}^{\text {trans }}$)).

$$
Y \in s_{0} \quad: \Longleftrightarrow \forall p \exists q \leq p \quad|[q] \cap Y| \leq \aleph_{0}
$$

Definition

$Y \in s_{0}^{\text {trans }}: \Longleftrightarrow \forall p \exists q \leq p \forall t \in 2^{\omega}|(t+[q]) \cap Y| \leq \aleph_{0}$

Question

What can we say about the family $s_{0}^{\text {trans }}$? Any relation to null-additive?

References

Timothy J. Carlson.
Strong measure zero and strongly meager sets.
Proc. Amer. Math. Soc., 118(2):577-586, 1993.
T- Martin Goldstern, Jakob Kellner, Saharon Shelah, and Wolfgang Wohofsky. Borel Conjecture and dual Borel Conjecture.
Transactions of the American Mathematical Society, to appear.
http://arxiv.org/abs/1105.0823
R Richard Laver.
On the consistency of Borel's conjecture.
Acta Math., 137:151-169, 1976.
(Janusz Pawlikowski.
A characterization of strong measure zero sets.
Israel J. Math., 93:171-183, 1996.

My website: http://wohofsky.eu/math/

Thank you for your attention and enjoy Warsaw...

Myself in Wrocław

Thank you for your attention and enjoy Warsaw...

Danube in Vienna

