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Special sets of real numbers, Borel Conjecture “The reals” and their structure

The real numbers: topology, measure, algebraic structure

The real numbers (“the reals”)

R, the classical real line

2ω, the Cantor space (totally disconnected, compact)

Structure on the reals:

natural topology (intervals/basic clopen sets form a basis)

standard (Lebesgue) measure

group structure

I (2ω,+) is a topological group, with + bitwise modulo 2

Two translation-invariant σ-ideals

I meager sets M
I measure zero sets N
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Special sets of real numbers, Borel Conjecture Strong measure zero sets

Strong measure zero sets

For an interval I ⊆ R, let λ(I ) denote its length.

Definition (well-known)

A set X ⊆ R is (Lebesgue) measure zero (X ∈ N ) iff
for each positive real number ε > 0
there is a sequence of intervals (In)n<ω of total length

∑
n<ω λ(In) ≤ ε

such that X ⊆
⋃

n<ω In.

Definition (Borel; 1919)

A set X ⊆ R is strong measure zero (X ∈ SN ) iff
for each sequence of positive real numbers (εn)n<ω

there is a sequence of intervals (In)n<ω with ∀n ∈ ω λ(In) ≤ εn
such that X ⊆

⋃
n<ω In.
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Special sets of real numbers, Borel Conjecture Equivalent characterization of strong measure zero sets

Equivalent characterization of strong measure zero sets

For Y ,Z ⊆ 2ω, let Y + Z = {y + z : y ∈ Y , z ∈ Z}.

Key Theorem (Galvin,Mycielski,Solovay; 1973)

A set Y ⊆ 2ω is strong measure zero if and only if
for every meager set M ∈M, Y + M 6= 2ω.

Note that Y + M 6= 2ω if and only if Y can be “translated away” from M,
i.e., there exists a t ∈ 2ω such that (Y + t) ∩M = ∅.

Key Definition

Let J ⊆ P(2ω) be arbitrary. Define

J ? := {Y ⊆ 2ω : Y + Z 6= 2ω for every set Z ∈ J }.

J ? is the collection of “J -shiftable sets”,
i.e., Y ∈ J ? iff Y can be translated away from every set in J .
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Special sets of real numbers, Borel Conjecture Strongly meager sets

Strongly meager sets

Key Definition (from previous slide)

Let J ⊆ P(2ω) be arbitrary. Define

J ? := {Y ⊆ 2ω : Y + Z 6= 2ω for every set Z ∈ J }.

Key Theorem (Galvin,Mycielski,Solovay; 1973)

A set Y is strong measure zero if and only if it is “M-shiftable”, i.e.,

SN =M?

Replacing M by N yields a notion dual to strong measure zero:

Definition

A set Y is strongly meager (Y ∈ SM) iff it is “N -shiftable”, i.e.,

SM := N ?
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Special sets of real numbers, Borel Conjecture Borel Conjecture, dual Borel Conjecture

Borel Conjecture + dual Borel Conjecture

Definition

The Borel Conjecture (BC) is the statement that there are
no uncountable strong measure zero sets, i.e., SN =M? = [2ω]≤ℵ0 .

Con(BC), actually BC holds in the Laver model (Laver, 1976)

Definition

The dual Borel Conjecture (dBC) is the statement that there are
no uncountable strongly meager sets, i.e., SM = N ? = [2ω]≤ℵ0 .

Con(dBC), actually dBC holds in the Cohen model (Carlson, 1993)

Theorem (Goldstern,Kellner,Shelah,W.; 2011)

There is a model of ZFC in which both the Borel Conjecture
and the dual Borel Conjecture hold, i.e., Con(BC + dBC).
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Another variant of the Borel Conjecture
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1 Special sets of real numbers, Borel Conjecture

I strong measure zero, strongly meager
I Borel Conjecture, dual Borel Conjecture, Con(BC + dBC)

2 Another variant of the Borel Conjecture

I Marczewski ideal s0, “Marczewski Borel Conjecture”
I . . . investigating “Sacks dense ideals”
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Another variant of the Borel Conjecture Marczewski Borel Conjecture (MBC)

Marczewski Borel Conjecture (MBC)

Assume that J ⊆ P(2ω) is a translation-invariant σ-ideal. Recall that

J ? := {Y ⊆ 2ω : Y + Z 6= 2ω for every set Z ∈ J }.

Definition

The J -Borel Conjecture (J -BC) the statement that there are
no uncountable J -shiftable sets, i.e., J ? = [2ω]≤ω.

The Marczewski ideal s0 is the collection of all Z ⊆ 2ω such that
for each perfect set P, there exists a perfect subset Q ⊆ P with Q ∩Z = ∅.

Definition

The Marczewski Borel Conjecture (MBC) is the statement that there are
no uncountable s0-shiftable sets, i.e., s0

? = [2ω]≤ω.

What about Con(MBC)?
Can MBC be forced?
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Another variant of the Borel Conjecture Marczewski Borel Conjecture (MBC)
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Another variant of the Borel Conjecture Sacks dense ideals

Sacks dense ideals

Unlike BC and dBC, the status of MBC under CH is unclear. . .

Is MBC (i.e., s0
? = [2ω]≤ℵ0) consistent with CH?

Or does CH even imply MBC?

To investigate the situation under CH, I introduced the following notion:

Definition

A collection I ⊆ P(2ω) is a Sacks dense ideal (S.d.i.) iff

I is a σ-ideal

I is translation-invariant

I is dense in Sacks forcing, more explicitly, for each perfect P ⊆ 2ω,
there is a perfect subset Q in the ideal, i.e., ∃Q ⊆ P, Q ∈ I

Lemma (“Main Lemma”)

Assume CH. Let I be a Sacks dense ideal. Then s0
? ⊆ I.
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Another variant of the Borel Conjecture Sacks dense ideals

More and more Sacks dense ideals

Lemma (“Main Lemma”; from previous slide)

Assume CH. Let I be a Sacks dense ideal. Then s0
? ⊆ I.

In other words: s0
? ⊆

⋂
{I : I is a Sacks dense ideal}.

Can we (consistently) find many Sacks dense ideals under CH?

M N are Sacks dense ideals

$ $
M∩N

$

E

SN is NOT a Sacks dense ideal, BUT. . .
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Another variant of the Borel Conjecture Sacks dense ideals

E

$⋂
{If : f ∈ ωω} ⊆ null-additive ⊆ SN ∩ SM

$⋂
{If : f ∈ ωω} ∩ E0

⊆
∃ uncount. Y ∈

⋂
{Iα : α ∈ ω1}, for any ℵ1-sized family of Iα’s

$ ←− proved(?) 5 days ago (using strans
0 )⋂

{I : I is a Sacks dense ideal}

⊆ ←− “Main Lemma”

s0
?

⊆

[2ω]≤ℵ0
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Another variant of the Borel Conjecture Sacks dense ideals

Question

Does [2ω]≤ℵ0 =
⋂
{I : I is S.d.i.} (at least consistently) hold under CH?

If yes, MBC (i.e., s0
? = [2ω]≤ℵ0) follows from CH (Con(MBC+CH), resp.).

Theorem

Let {Iα : α < ω1} be an ℵ1-sized family of Sacks dense ideals. Then there
exists an uncountable set Y ∈

⋂
α∈ω1

Iα.
Moreover, we can construct the set Y in such a way that Y /∈ J for some
other Sacks dense ideal J (proved(?) 5 days ago (using strans

0 )).

Y ∈ s0 :⇐⇒ ∀p ∃q ≤ p |[q] ∩ Y | ≤ ℵ0

Definition

Y ∈ strans
0 :⇐⇒ ∀p ∃q ≤ p ∀t ∈ 2ω |(t + [q]) ∩ Y | ≤ ℵ0

Question

What can we say about the family strans
0 ? Any relation to null-additive?
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