Variants of the Borel Conjecture and Sacks dense ideals

Wolfgang Wohofsky

Vienna University of Technology (TU Wien) and Kurt Gödel Research Center, Vienna (KGRC)

wolfgang.wohofsky@gmx.at

Trends in set theory Warsaw, Poland, July 08-11, 2012

Outline of the talk

Special sets of real numbers, Borel Conjecture

- strong measure zero, strongly meager
- Borel Conjecture, dual Borel Conjecture, Con(BC+dBC)

2 Another variant of the Borel Conjecture

- Marczewski ideal s₀, "Marczewski Borel Conjecture"
- ... investigating "Sacks dense ideals"

Outline of the talk

- Special sets of real numbers, Borel Conjecture
 - strong measure zero, strongly meager
 - Borel Conjecture, dual Borel Conjecture, Con(BC + dBC)
- Another variant of the Borel Conjecture
 - Marczewski ideal s₀, "Marczewski Borel Conjecture"
 - ... investigating "Sacks dense ideals"

Special sets of real numbers, Borel Conjecture

O Special sets of real numbers, Borel Conjecture

- strong measure zero, strongly meager
- Borel Conjecture, dual Borel Conjecture, Con(BC + dBC)
- Another variant of the Borel Conjecture
 - Marczewski ideal s₀, "Marczewski Borel Conjecture"
 - ... investigating "Sacks dense ideals"

The real numbers: topology, measure, algebraic structure

The real numbers ("the reals")

- \mathbb{R} , the classical real line
- 2^{\u03c6}, the Cantor space (totally disconnected, compact)

Structure on the reals:

- natural topology (intervals/basic clopen sets form a basis)
- standard (Lebesgue) measure
- group structure
 - $(2^{\omega},+)$ is a topological group, with + bitwise modulo 2
- Two translation-invariant σ -ideals
 - meager sets \mathcal{M}
 - measure zero sets ${\cal N}$

The real numbers: topology, measure, algebraic structure

The real numbers ("the reals")

- \mathbb{R} , the classical real line
- 2^{\u03c6}, the Cantor space (totally disconnected, compact)

Structure on the reals:

- natural topology (intervals/basic clopen sets form a basis)
- standard (Lebesgue) measure
- group structure
 - $(2^{\omega},+)$ is a topological group, with + bitwise modulo 2
- Two translation-invariant σ -ideals
 - ▶ meager sets *M*
 - measure zero sets ${\cal N}$

The real numbers: topology, measure, algebraic structure

The real numbers ("the reals")

- \mathbb{R} , the classical real line
- 2^{\u03c6}, the Cantor space (totally disconnected, compact)

Structure on the reals:

- natural topology (intervals/basic clopen sets form a basis)
- standard (Lebesgue) measure
- group structure
 - $(2^{\omega},+)$ is a topological group, with + bitwise modulo 2
- Two translation-invariant σ -ideals
 - ▶ meager sets *M*
 - measure zero sets N

Strong measure zero sets

For an interval $I \subseteq \mathbb{R}$, let $\lambda(I)$ denote its length.

Definition (well-known)

A set $X \subseteq \mathbb{R}$ is (Lebesgue) measure zero $(X \in \mathcal{N})$ iff for each positive real number $\varepsilon > 0$ there is a sequence of intervals $(I_n)_{n < \omega}$ of total length $\sum_{n < \omega} \lambda(I_n) \le \varepsilon$ such that $X \subseteq \bigcup_{n < \omega} I_n$.

Definition (Borel; 1919)

A set $X \subseteq \mathbb{R}$ is strong measure zero $(X \in SN)$ iff for each sequence of positive real numbers $(\varepsilon_n)_{n < \omega}$ there is a sequence of intervals $(I_n)_{n < \omega}$ with $\forall n \in \omega \ \lambda(I_n) \le \varepsilon_n$ such that $X \subseteq \bigcup_{n < \omega} I_n$.

Strong measure zero sets

For an interval $I \subseteq \mathbb{R}$, let $\lambda(I)$ denote its length.

Definition (well-known)

A set $X \subseteq \mathbb{R}$ is (Lebesgue) measure zero $(X \in \mathcal{N})$ iff for each positive real number $\varepsilon > 0$ there is a sequence of intervals $(I_n)_{n < \omega}$ of total length $\sum_{n < \omega} \lambda(I_n) \le \varepsilon$ such that $X \subseteq \bigcup_{n < \omega} I_n$.

Definition (Borel; 1919)

A set $X \subseteq \mathbb{R}$ is strong measure zero $(X \in SN)$ iff for each sequence of positive real numbers $(\varepsilon_n)_{n < \omega}$ there is a sequence of intervals $(I_n)_{n < \omega}$ with $\forall n \in \omega \ \lambda(I_n) \le \varepsilon_n$ such that $X \subseteq \bigcup_{n < \omega} I_n$.

Equivalent characterization of strong measure zero sets

For
$$Y, Z \subseteq 2^{\omega}$$
, let $Y + Z = \{y + z : y \in Y, z \in Z\}$.

Key Theorem (Galvin, Mycielski, Solovay; 1973)

A set $Y \subseteq 2^{\omega}$ is strong measure zero if and only if for every meager set $M \in \mathcal{M}$, $Y + M \neq 2^{\omega}$.

Note that $Y + M \neq 2^{\omega}$ if and only if Y can be "translated away" from M, i.e., there exists a $t \in 2^{\omega}$ such that $(Y + t) \cap M = \emptyset$.

Key Definition

Let $\mathcal{J} \subseteq \mathcal{P}(2^{\omega})$ be arbitrary. Define

 $\mathcal{J}^{\star} := \{ Y \subseteq 2^{\omega} : Y + Z \neq 2^{\omega} \text{ for every set } Z \in \mathcal{J} \}.$

 \mathcal{J}^* is the collection of " \mathcal{J} -shiftable sets", i.e., $Y \in \mathcal{J}^*$ iff Y can be translated away from every set in \mathcal{J}

イロト 不得下 イヨト イヨト 二日

Equivalent characterization of strong measure zero sets

For
$$Y, Z \subseteq 2^{\omega}$$
, let $Y + Z = \{y + z : y \in Y, z \in Z\}$.

Key Theorem (Galvin, Mycielski, Solovay; 1973)

A set $Y \subseteq 2^{\omega}$ is strong measure zero if and only if for every meager set $M \in \mathcal{M}$, $Y + M \neq 2^{\omega}$.

Note that $Y + M \neq 2^{\omega}$ if and only if Y can be "translated away" from M, i.e., there exists a $t \in 2^{\omega}$ such that $(Y + t) \cap M = \emptyset$.

Key Definition

Let $\mathcal{J} \subseteq \mathcal{P}(2^{\omega})$ be arbitrary. Define

 $\mathcal{J}^{\star} := \{ Y \subseteq 2^{\omega} : Y + Z \neq 2^{\omega} \text{ for every set } Z \in \mathcal{J} \}.$

 \mathcal{J}^* is the collection of " \mathcal{J} -shiftable sets", i.e., $Y \in \mathcal{J}^*$ iff Y can be translated away from every set in \mathcal{J} .

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Strongly meager sets

Key Definition (from previous slide)

Let $\mathcal{J}\subseteq\mathcal{P}(2^\omega)$ be arbitrary. Define

$$\mathcal{J}^{\star} := \{ Y \subseteq 2^{\omega} : Y + Z \neq 2^{\omega} \text{ for every set } Z \in \mathcal{J} \}.$$

Key Theorem (Galvin, Mycielski, Solovay; 1973)

A set Y is strong measure zero if and only if it is " $\mathcal M$ -shiftable", i.e., $\mathcal{SN}=\mathcal M^\star$

Replacing \mathcal{M} by \mathcal{N} yields a notion *dual to strong measure zero*:

Definition

A set Y is strongly meager $(Y \in \mathcal{SM})$ iff it is " \mathcal{N} -shiftable", i.e.,

$\mathcal{SM}:=\mathcal{N}^{\star}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Strongly meager sets

Key Definition (from previous slide)

Let $\mathcal{J} \subseteq \mathcal{P}(2^\omega)$ be arbitrary. Define

 $\mathcal{J}^{\star} := \{ Y \subseteq 2^{\omega} : Y + Z \neq 2^{\omega} \text{ for every set } Z \in \mathcal{J} \}.$

Key Theorem (Galvin, Mycielski, Solovay; 1973)

A set Y is strong measure zero if and only if it is " \mathcal{M} -shiftable", i.e., $\mathcal{SN} = \mathcal{M}^*$

Replacing \mathcal{M} by \mathcal{N} yields a notion *dual to strong measure zero*:

Definition

A set Y is strongly meager $(Y \in SM)$ iff it is "N-shiftable", i.e.,

 $\mathcal{SM}:=\mathcal{N}^{\star}$

ヘロン 人間 とくほとくほど

Strongly meager sets

Key Definition (from previous slide)

Let $\mathcal{J} \subseteq \mathcal{P}(2^\omega)$ be arbitrary. Define

 $\mathcal{J}^{\star} := \{ Y \subseteq 2^{\omega} : Y + Z \neq 2^{\omega} \text{ for every set } Z \in \mathcal{J} \}.$

Key Theorem (Galvin, Mycielski, Solovay; 1973)

A set Y is strong measure zero if and only if it is " \mathcal{M} -shiftable", i.e., $\mathcal{SN} = \mathcal{M}^*$

Replacing \mathcal{M} by \mathcal{N} yields a notion dual to strong measure zero:

Definition

A set Y is strongly meager $(Y \in SM)$ iff it is "*N*-shiftable", i.e.,

 $\mathcal{SM}:=\mathcal{N}^{\star}$

< ロ > < 同 > < 三 > < 三

Borel Conjecture + dual Borel Conjecture

Definition

The Borel Conjecture (BC) is the statement that there are **no** uncountable strong measure zero sets, i.e., $SN = M^* = [2^{\omega}]^{\leq \aleph_0}$.

• Con(BC), actually BC holds in the Laver model (Laver, 1976)

Definition

The dual Borel Conjecture (dBC) is the statement that there are **no** uncountable strongly meager sets, i.e., $SM = N^* = [2^{\omega}]^{\leq \aleph_0}$.

• Con(dBC), actually dBC holds in the Cohen model (Carlson, 1993)

Theorem (Goldstern,Kellner,Shelah,W.; 2011)

There is a model of ZFC in which both the Borel Conjecture and the dual Borel Conjecture hold, i.e., Con(BC + dBC).

Borel Conjecture + dual Borel Conjecture

Definition

The Borel Conjecture (BC) is the statement that there are **no** uncountable strong measure zero sets, i.e., $SN = M^* = [2^{\omega}]^{\leq \aleph_0}$.

• Con(BC), actually BC holds in the Laver model (Laver, 1976)

Definition

The dual Borel Conjecture (dBC) is the statement that there are **no** uncountable strongly meager sets, i.e., $SM = N^* = [2^{\omega}]^{\leq \aleph_0}$.

• Con(dBC), actually dBC holds in the Cohen model (Carlson, 1993)

Theorem (Goldstern,Kellner,Shelah,W.; 2011)

There is a model of ZFC in which both the Borel Conjecture and the dual Borel Conjecture hold, i.e., Con(BC + dBC).

Borel Conjecture + dual Borel Conjecture

Definition

The Borel Conjecture (BC) is the statement that there are **no** uncountable strong measure zero sets, i.e., $SN = M^* = [2^{\omega}]^{\leq \aleph_0}$.

• Con(BC), actually BC holds in the Laver model (Laver, 1976)

Definition

The dual Borel Conjecture (dBC) is the statement that there are **no** uncountable strongly meager sets, i.e., $SM = N^* = [2^{\omega}]^{\leq \aleph_0}$.

• Con(dBC), actually dBC holds in the Cohen model (Carlson, 1993)

Theorem (Goldstern, Kellner, Shelah, W.; 2011)

There is a model of ZFC in which both the Borel Conjecture and the dual Borel Conjecture hold, i.e., Con(BC + dBC).

Small subsets of the real line and generalizations of the Borel Conjecture

Wolfgang Wohofsky (advisor: Martin Goldstern)

Recipient of a DOC-fellowship of the Austrian Academy of Sciences at the Institute of Discrete Mathematics and Geometry 26.02.2010

AP Transie

Beed Confection In

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

TECHNISCHE UNIVERSITÄT

Vienna University of Technology

WIEN WIEN

Another variant of the Borel Conjecture

Special sets of real numbers, Borel Conjecture

- strong measure zero, strongly meager
- Borel Conjecture, dual Borel Conjecture, Con(BC + dBC)

2 Another variant of the Borel Conjecture

- Marczewski ideal s₀, "Marczewski Borel Conjecture"
- ... investigating "Sacks dense ideals"

Assume that $\mathcal{J} \subseteq \mathcal{P}(2^{\omega})$ is a translation-invariant σ -ideal. Recall that $\mathcal{J}^{\star} := \{Y \subseteq 2^{\omega} : Y + Z \neq 2^{\omega} \text{ for every set } Z \in \mathcal{J}\}.$

Definition

The \mathcal{J} -Borel Conjecture (\mathcal{J} -BC) the statement that there are **no** uncountable \mathcal{J} -shiftable sets, i.e., $\mathcal{J}^* = [2^{\omega}]^{\leq \omega}$.

The Marczewski ideal s_0 is the collection of all $Z \subseteq 2^{\omega}$ such that for each perfect set P, there exists a perfect subset $Q \subseteq P$ with $Q \cap Z = \emptyset$.

Definition

The Marczewski Borel Conjecture (MBC) is the statement that there are **no** uncountable s_0 -shiftable sets, i.e., $s_0^* = [2^{\omega}]^{\leq \omega}$.

What about Con(MBC)?

Can MBC be forced?

Wolfgang Wohofsky (TU Wien & KGRC)

イロト イ押ト イヨト イヨト

Assume that $\mathcal{J} \subseteq \mathcal{P}(2^{\omega})$ is a translation-invariant σ -ideal. Recall that $\mathcal{J}^{\star} := \{ Y \subseteq 2^{\omega} : Y + Z \neq 2^{\omega} \text{ for every set } Z \in \mathcal{J} \}.$

Definition

The \mathcal{J} -Borel Conjecture (\mathcal{J} -BC) the statement that there are **no** uncountable \mathcal{J} -shiftable sets, i.e., $\mathcal{J}^* = [2^{\omega}]^{\leq \omega}$.

The Marczewski ideal s_0 is the collection of all $Z \subseteq 2^{\omega}$ such that for each perfect set P, there exists a perfect subset $Q \subseteq P$ with $Q \cap Z = \emptyset$.

Definition

The Marczewski Borel Conjecture (MBC) is the statement that there are **no** uncountable s_0 -shiftable sets, i.e., $s_0^* = [2^{\omega}]^{\leq \omega}$.

What about Con(MBC)?

Can MBC be forced?

Wolfgang Wohofsky (TU Wien & KGRC)

Variants of the Borel Conjecture

イロト 不得下 イヨト イヨト

Assume that $\mathcal{J} \subseteq \mathcal{P}(2^{\omega})$ is a translation-invariant σ -ideal. Recall that $\mathcal{J}^{\star} := \{Y \subseteq 2^{\omega} : Y + Z \neq 2^{\omega} \text{ for every set } Z \in \mathcal{J}\}.$

Definition

The \mathcal{J} -Borel Conjecture (\mathcal{J} -BC) the statement that there are **no** uncountable \mathcal{J} -shiftable sets, i.e., $\mathcal{J}^* = [2^{\omega}]^{\leq \omega}$.

The Marczewski ideal s_0 is the collection of all $Z \subseteq 2^{\omega}$ such that for each perfect set P, there exists a perfect subset $Q \subseteq P$ with $Q \cap Z = \emptyset$.

Definition

The Marczewski Borel Conjecture (MBC) is the statement that there are **no** uncountable s_0 -shiftable sets, i.e., $s_0^* = [2^{\omega}]^{\leq \omega}$.

What about Con(MBC)?

Can MBC be forced?

Wolfgang Wohofsky (TU Wien & KGRC)

・ロン ・聞と ・ ほと ・ ほと

Assume that $\mathcal{J} \subseteq \mathcal{P}(2^{\omega})$ is a translation-invariant σ -ideal. Recall that $\mathcal{J}^{\star} := \{Y \subseteq 2^{\omega} : Y + Z \neq 2^{\omega} \text{ for every set } Z \in \mathcal{J}\}.$

Definition

The \mathcal{J} -Borel Conjecture (\mathcal{J} -BC) the statement that there are **no** uncountable \mathcal{J} -shiftable sets, i.e., $\mathcal{J}^* = [2^{\omega}]^{\leq \omega}$.

The Marczewski ideal s_0 is the collection of all $Z \subseteq 2^{\omega}$ such that for each perfect set P, there exists a perfect subset $Q \subseteq P$ with $Q \cap Z = \emptyset$.

Definition

The Marczewski Borel Conjecture (MBC) is the statement that there are **no** uncountable s_0 -shiftable sets, i.e., $s_0^* = [2^{\omega}]^{\leq \omega}$.

What about Con(MBC)?

Can MBC be forced?

Wolfgang Wohofsky (TU Wien & KGRC)

・ロン ・聞と ・ヨン ・ヨン … ヨ

Assume that $\mathcal{J} \subseteq \mathcal{P}(2^{\omega})$ is a translation-invariant σ -ideal. Recall that $\mathcal{J}^{\star} := \{Y \subseteq 2^{\omega} : Y + Z \neq 2^{\omega} \text{ for every set } Z \in \mathcal{J}\}.$

Definition

The \mathcal{J} -Borel Conjecture (\mathcal{J} -BC) the statement that there are **no** uncountable \mathcal{J} -shiftable sets, i.e., $\mathcal{J}^* = [2^{\omega}]^{\leq \omega}$.

The Marczewski ideal s_0 is the collection of all $Z \subseteq 2^{\omega}$ such that for each perfect set P, there exists a perfect subset $Q \subseteq P$ with $Q \cap Z = \emptyset$.

Definition

The Marczewski Borel Conjecture (MBC) is the statement that there are **no** uncountable s_0 -shiftable sets, i.e., $s_0^* = [2^{\omega}]^{\leq \omega}$.

What about Con(MBC)?

Can MBC be forced?

Wolfgang Wohofsky (TU Wien & KGRC)

・ロト ・ 同ト ・ ヨト ・ ヨト

Sacks dense ideals

Unlike BC and dBC, the status of MBC under CH is unclear...

- Is MBC (i.e., $s_0^{\star} = [2^{\omega}]^{\leq \aleph_0}$) consistent with CH?
- Or does CH even imply MBC?

To investigate the situation under CH, I introduced the following notion:

Definition

A collection $\mathcal{I} \subseteq \mathcal{P}(2^{\omega})$ is a Sacks dense ideal (S.d.i.) iff

- $\mathcal I$ is a σ -ideal
- \mathcal{I} is translation-invariant
- \mathcal{I} is dense in Sacks forcing, more explicitly, for each perfect $P \subseteq 2^{\omega}$, there is a perfect subset Q in the ideal, i.e., $\exists Q \subseteq P, Q \in \mathcal{I}$

Lemma ("Main Lemma"

Assume CH. Let \mathcal{I} be a Sacks dense ideal. Then $s_0^* \subseteq \mathcal{I}$.

Sacks dense ideals

Unlike BC and dBC, the status of MBC under CH is unclear...

- Is MBC (i.e., $s_0^{\star} = [2^{\omega}]^{\leq \aleph_0}$) consistent with CH?
- Or does CH even imply MBC?

To investigate the situation under CH, I introduced the following notion:

Definition

A collection $\mathcal{I} \subseteq \mathcal{P}(2^{\omega})$ is a Sacks dense ideal (S.d.i.) iff

- $\mathcal I$ is a σ -ideal
- *I* is translation-invariant
- \mathcal{I} is dense in Sacks forcing, more explicitly, for each perfect $P \subseteq 2^{\omega}$, there is a perfect subset Q in the ideal, i.e., $\exists Q \subseteq P, Q \in \mathcal{I}$

Lemma ("Main Lemma"

Assume CH. Let \mathcal{I} be a Sacks dense ideal. Then $s_0^* \subseteq \mathcal{I}$.

Sacks dense ideals

Unlike BC and dBC, the status of MBC under CH is unclear...

- Is MBC (i.e., $s_0^{\star} = [2^{\omega}]^{\leq \aleph_0}$) consistent with CH?
- Or does CH even imply MBC?

To investigate the situation under CH, I introduced the following notion:

Definition

A collection $\mathcal{I} \subseteq \mathcal{P}(2^{\omega})$ is a Sacks dense ideal (S.d.i.) iff

- $\mathcal I$ is a σ -ideal
- *I* is translation-invariant
- \mathcal{I} is dense in Sacks forcing, more explicitly, for each perfect $P \subseteq 2^{\omega}$, there is a perfect subset Q in the ideal, i.e., $\exists Q \subseteq P, Q \in \mathcal{I}$

Lemma ("Main Lemma")

Assume CH. Let \mathcal{I} be a Sacks dense ideal. Then $s_0^* \subseteq \mathcal{I}$.

Lemma ("Main Lemma"; from previous slide)

Assume CH. Let \mathcal{I} be a Sacks dense ideal. Then $s_0^* \subseteq \mathcal{I}$.

In other words: $s_0^* \subseteq \bigcap \{ \mathcal{I} : \mathcal{I} \text{ is a Sacks dense ideal} \}.$

Can we (consistently) find many Sacks dense ideals under CH?

 $M \qquad \mathcal{N}$ $\mathcal{I}^{\mathcal{H}} \qquad \mathcal{I}_{\mathcal{H}}$ $\mathcal{M} \cap \mathcal{N}$ $\cup \mathbb{R}$ \mathcal{E}

are Sacks dense ideals

\mathcal{SN} is NOT a Sacks dense ideal, BUT \ldots

Lemma ("Main Lemma"; from previous slide)

Assume CH. Let \mathcal{I} be a Sacks dense ideal. Then $s_0^* \subseteq \mathcal{I}$.

In other words: $s_0^* \subseteq \bigcap \{ \mathcal{I} : \mathcal{I} \text{ is a Sacks dense ideal} \}.$

Can we (consistently) find many Sacks dense ideals under CH?

$$\mathcal{M} \qquad \mathcal{N}$$

$$\mathcal{S} \qquad \mathcal{C}_{\mathcal{F}}$$

$$\mathcal{M} \cap \mathcal{N}$$

$$\cup \mathbb{R}$$

$$\mathcal{E}$$

\mathcal{SN} is NOT a Sacks dense ideal, BUT...

Lemma ("Main Lemma"; from previous slide)

Assume CH. Let \mathcal{I} be a Sacks dense ideal. Then $s_0^* \subseteq \mathcal{I}$.

In other words: $s_0^* \subseteq \bigcap \{ \mathcal{I} : \mathcal{I} \text{ is a Sacks dense ideal} \}.$

Can we (consistently) find many Sacks dense ideals under CH?

$$\mathcal{M} \qquad \mathcal{N} \qquad \text{are Sacks dense ideals}$$

$$\mathcal{M} \cap \mathcal{N}$$

$$\cup_{\mathbb{N}}$$

$$\mathcal{E}$$

 \mathcal{SN} is NOT a Sacks dense ideal, BUT...

Lemma ("Main Lemma"; from previous slide)

Assume CH. Let \mathcal{I} be a Sacks dense ideal. Then $s_0^* \subseteq \mathcal{I}$.

In other words: $s_0^* \subseteq \bigcap \{ \mathcal{I} : \mathcal{I} \text{ is a Sacks dense ideal} \}.$

Can we (consistently) find many Sacks dense ideals under CH?

$$\mathcal{M} \qquad \mathcal{N} \qquad \text{are Sacks dense ideals} \\ \mathcal{K} \qquad \mathcal{M} \cap \mathcal{N} \\ \cup \mathbb{N} \\ \mathcal{E} \end{aligned}$$

\mathcal{SN} is NOT a Sacks dense ideal, BUT...

Lemma ("Main Lemma"; from previous slide)

Assume CH. Let \mathcal{I} be a Sacks dense ideal. Then $s_0^* \subseteq \mathcal{I}$.

In other words: $s_0^* \subseteq \bigcap \{ \mathcal{I} : \mathcal{I} \text{ is a Sacks dense ideal} \}.$

Can we (consistently) find many Sacks dense ideals under CH?

$$\mathcal{M} \qquad \mathcal{N} \qquad \text{are Sacks dense ideals} \\ \mathcal{K} \qquad \mathcal{M} \cap \mathcal{N} \\ \cup \mathbb{N} \\ \mathcal{E} \end{aligned}$$

 \mathcal{SN} is NOT a Sacks dense ideal, BUT. . .

E UN $\bigcap \{ \mathcal{I}_f : f \in \omega^{\omega} \} \subseteq \text{null-additive} \subseteq SN \cap SM$

E UN $\bigcap \{ \mathcal{I}_f : f \in \omega^{\omega} \} \subseteq \text{null-additive} \subseteq SN \cap SM$

E UN $\bigcap \{ \mathcal{I}_f : f \in \omega^{\omega} \} \quad \subset \text{ null-additive } \subset SN \cap SM$ UN $\bigcap \{\mathcal{I}_f : f \in \omega^\omega\} \cap \mathcal{E}_0$

E UN $\bigcap \{ \mathcal{I}_f : f \in \omega^{\omega} \} \quad \subset \text{null-additive} \subseteq SN \cap SM$ UN $\bigcap \{\mathcal{I}_f : f \in \omega^\omega\} \cap \mathcal{E}_0$ UI \exists uncount. $Y \in \bigcap \{ \mathcal{I}_{\alpha} : \alpha \in \omega_1 \}$, for any \aleph_1 -sized family of \mathcal{I}_{α} 's

E UN $\bigcap \{ \mathcal{I}_f : f \in \omega^{\omega} \} \quad \subset \text{null-additive} \subseteq SN \cap SM$ UN $\bigcap \{\mathcal{I}_f : f \in \omega^\omega\} \cap \mathcal{E}_0$ UI \exists uncount. $Y \in \bigcap \{ \mathcal{I}_{\alpha} : \alpha \in \omega_1 \}$, for any \aleph_1 -sized family of \mathcal{I}_{α} 's \cup \land proved(?) 5 days ago (using s_0^{trans}) $\bigcap \{ \mathcal{I} : \mathcal{I} \text{ is a Sacks dense ideal} \}$

E UN $\bigcap \{ \mathcal{I}_f : f \in \omega^{\omega} \} \quad \subset \text{null-additive} \subseteq SN \cap SM$ UN $\bigcap \{\mathcal{I}_f : f \in \omega^\omega\} \cap \mathcal{E}_0$ UI \exists uncount. $Y \in \bigcap \{ \mathcal{I}_{\alpha} : \alpha \in \omega_1 \}$, for any \aleph_1 -sized family of \mathcal{I}_{α} 's \cup \land proved(?) 5 days ago (using s_0^{trans}) $\bigcap \{ \mathcal{I} : \mathcal{I} \text{ is a Sacks dense ideal} \}$ UI ← "Main Lemma" *s*₀* UI $[2^{\omega}]^{\leq \aleph_0}$

Does $[2^{\omega}] \leq \aleph_0 = \bigcap \{ \mathcal{I} : \mathcal{I} \text{ is S.d.i.} \}$ (at least consistently) hold under CH?

$$Y \in s_0^{\text{trans}} :\iff \forall p \; \exists q \leq p \; \; \forall t \in 2^{\omega} \; \; |(t + [q]) \cap Y| \leq \aleph_0$$

Wolfgang Wohofsky (TU Wien & KGRC)

Variants of the Borel Conjecture

Does $[2^{\omega}]^{\leq \aleph_0} = \bigcap \{ \mathcal{I} : \mathcal{I} \text{ is S.d.i.} \}$ (at least consistently) hold under CH?

If yes, MBC (i.e., $s_0^* = [2^{\omega}]^{\leq \aleph_0}$) follows from CH (Con(MBC+CH), resp.).

Theorem

Let $\{\mathcal{I}_{\alpha} : \alpha < \omega_1\}$ be an \aleph_1 -sized family of Sacks dense ideals. Then there exists an uncountable set $Y \in \bigcap_{\alpha \in \omega_1} \mathcal{I}_{\alpha}$. Moreover, we can construct the set Y in such a way that $Y \notin \mathcal{J}$ for some other Sacks dense ideal \mathcal{J} (proved(?) 5 days ago (using s_0^{trans})).

$$Y \in s_0 \quad :\iff \forall p \; \exists q \le p \qquad \qquad |[q] \cap Y| \le \aleph_0$$

Definition

$$Y \in s_0^{\text{trans}} :\iff \forall p \; \exists q \leq p \; \; \forall t \in 2^{\omega} \; \; |(t + [q]) \cap Y| \leq \aleph_0$$

Question

What can we say about the family s_0^{trans} ? Any relation to null-additive?

Does $[2^{\omega}]^{\leq\aleph_0} = \bigcap \{\mathcal{I} : \mathcal{I} \text{ is S.d.i.} \}$ (at least consistently) hold under CH?

If yes, MBC (i.e., $s_0^* = [2^{\omega}]^{\leq \aleph_0}$) follows from CH (Con(MBC+CH), resp.).

Theorem

Let $\{\mathcal{I}_{\alpha} : \alpha < \omega_1\}$ be an \aleph_1 -sized family of Sacks dense ideals. Then there exists an uncountable set $Y \in \bigcap_{\alpha \in \omega_1} \mathcal{I}_{\alpha}$. Moreover, we can construct the set Y in such a way that $Y \notin \mathcal{J}$ for some other Sacks dense ideal \mathcal{J} (proved(?) 5 days ago (using s_0^{trans})).

$Y \in s_0 \quad :\iff \forall p \; \exists q \leq p \qquad \qquad |[q] \cap Y| \leq \aleph_0$

Definition

$$Y \in s_0^{\text{trans}} :\iff \forall p \; \exists q \leq p \; \; \forall t \in 2^{\omega} \; \; |(t + [q]) \cap Y| \leq \aleph_0$$

Question

What can we say about the family s_0^{trans} ? Any relation to null-additive?

Does $[2^{\omega}]^{\leq\aleph_0} = \bigcap \{\mathcal{I} : \mathcal{I} \text{ is S.d.i.} \}$ (at least consistently) hold under CH?

If yes, MBC (i.e., $s_0^* = [2^{\omega}]^{\leq \aleph_0}$) follows from CH (Con(MBC+CH), resp.).

Theorem

Let $\{\mathcal{I}_{\alpha} : \alpha < \omega_1\}$ be an \aleph_1 -sized family of Sacks dense ideals. Then there exists an uncountable set $Y \in \bigcap_{\alpha \in \omega_1} \mathcal{I}_{\alpha}$. Moreover, we can construct the set Y in such a way that $Y \notin \mathcal{J}$ for some other Sacks dense ideal \mathcal{J} (proved(?) 5 days ago (using s_0^{trans})).

$$Y \in s_0 \quad :\iff \forall p \; \exists q \leq p \qquad \qquad |[q] \cap Y| \leq \aleph_0$$

Definition

$$Y \in s_0^{\text{trans}} :\iff \forall p \; \exists q \leq p \; \; \forall t \in 2^{\omega} \; \; |(t + [q]) \cap Y| \leq \aleph_0$$

Question

What can we say about the family s_0^{trans} ? Any relation to null-additive?

Does $[2^{\omega}]^{\leq \aleph_0} = \bigcap \{ \mathcal{I} : \mathcal{I} \text{ is S.d.i.} \}$ (at least consistently) hold under CH?

If yes, MBC (i.e., $s_0^* = [2^{\omega}]^{\leq \aleph_0}$) follows from CH (Con(MBC+CH), resp.).

Theorem

Let $\{\mathcal{I}_{\alpha} : \alpha < \omega_1\}$ be an \aleph_1 -sized family of Sacks dense ideals. Then there exists an uncountable set $Y \in \bigcap_{\alpha \in \omega_1} \mathcal{I}_{\alpha}$. Moreover, we can construct the set Y in such a way that $Y \notin \mathcal{J}$ for some other Sacks dense ideal \mathcal{J} (proved(?) 5 days ago (using s_0^{trans})).

$$Y \in s_0 \quad :\iff \forall p \; \exists q \leq p \qquad \qquad |[q] \cap Y| \leq \aleph_0$$

Definition

$$Y \in s_0^{\text{trans}} :\iff \forall p \; \exists q \leq p \; \; \forall t \in 2^{\omega} \; \; |(t + [q]) \cap Y| \leq \aleph_0$$

Question

What can we say about the family s_0^{trans} ? Any relation to null-additive?

Does $[2^{\omega}]^{\leq \aleph_0} = \bigcap \{ \mathcal{I} : \mathcal{I} \text{ is S.d.i.} \}$ (at least consistently) hold under CH?

If yes, MBC (i.e., $s_0^* = [2^{\omega}]^{\leq \aleph_0}$) follows from CH (Con(MBC+CH), resp.).

Theorem

Let $\{\mathcal{I}_{\alpha} : \alpha < \omega_1\}$ be an \aleph_1 -sized family of Sacks dense ideals. Then there exists an uncountable set $Y \in \bigcap_{\alpha \in \omega_1} \mathcal{I}_{\alpha}$. Moreover, we can construct the set Y in such a way that $Y \notin \mathcal{J}$ for some other Sacks dense ideal \mathcal{J} (proved(?) 5 days ago (using s_0^{trans})).

$$Y \in s_0 \quad :\iff \forall p \; \exists q \leq p \qquad \qquad |[q] \cap Y| \leq \aleph_0$$

Definition

$$Y \in s_0^{\text{trans}} :\iff \forall p \; \exists q \leq p \; \; \forall t \in 2^{\omega} \; \; |(t + [q]) \cap Y| \leq \aleph_0$$

Question

What can we say about the family s_0^{trans} ? Any relation to null-additive?

References

Timothy J. Carlson.

Strong measure zero and strongly meager sets.

Proc. Amer. Math. Soc., 118(2):577-586, 1993.

Martin Goldstern, Jakob Kellner, Saharon Shelah, and Wolfgang Wohofsky. Borel Conjecture and dual Borel Conjecture.

Transactions of the American Mathematical Society, to appear. http://arxiv.org/abs/1105.0823

Richard Laver.

On the consistency of Borel's conjecture.

Acta Math., 137:151-169, 1976.

A characterization of strong measure zero sets.

Israel J. Math., 93:171-183, 1996.

My website: http://wohofsky.eu/math/

Thank you for your attention and enjoy Warsaw...

Myself in Wrocław

Thank you for your attention and enjoy Warsaw...

Danube in Vienna