On Borel sets belonging to every invariant ccc $$\sigma$-ideal on $2^{\mathbb{N}}$$

Piotr Zakrzewski

Institute of Mathematics University of Warsaw

Trends in Set Theory, Warsaw 2012

Basic definitions

- A σ-ideal on an uncountable Polish space X is a family

 I ⊆ P(X) which is closed under taking subsets and countable unions. We assume that *I* contains all singletons and every set from *I* is covered by a Borel set from *I*.
- We say that a σ-ideal I on X is ccc if there is no uncountable family of disjoint Borel subsets of X outside I.
- $2^{\mathbb{N}}$ is considered with the coordinatewise addition modulo 2.
- A σ -ideal \mathcal{I} on $2^{\mathbb{N}}$ is *invariant*, if

 $\forall t \in 2^{\mathbb{N}} \; \forall A \subseteq 2^{\mathbb{N}} \; (A \in \mathcal{I} \; \Rightarrow \; t + A \in \mathcal{I}).$

- A σ-ideal on an uncountable Polish space X is a family
 I ⊆ *P*(X) which is closed under taking subsets and countable unions. We assume that *I* contains all singletons and every set from *I* is covered by a Borel set from *I*.
- We say that a σ-ideal I on X is ccc if there is no uncountable family of disjoint Borel subsets of X outside I.
- $2^{\mathbb{N}}$ is considered with the coordinatewise addition modulo 2.
- A σ -ideal \mathcal{I} on $2^{\mathbb{N}}$ is *invariant*, if

 $\forall t \in 2^{\mathbb{N}} \; \forall A \subseteq 2^{\mathbb{N}} \; (A \in \mathcal{I} \; \Rightarrow \; t + A \in \mathcal{I}).$

- A σ-ideal on an uncountable Polish space X is a family
 I ⊆ *P*(X) which is closed under taking subsets and countable unions. We assume that *I* contains all singletons and every set from *I* is covered by a Borel set from *I*.
- We say that a σ-ideal I on X is ccc if there is no uncountable family of disjoint Borel subsets of X outside I.
- $2^{\mathbb{N}}$ is considered with the coordinatewise addition modulo 2.
- A σ -ideal $\mathcal I$ on $2^{\mathbb N}$ is *invariant*, if

 $\forall t \in 2^{\mathbb{N}} \; \forall A \subseteq 2^{\mathbb{N}} \; (A \in \mathcal{I} \; \Rightarrow \; t + A \in \mathcal{I}).$

- A σ-ideal on an uncountable Polish space X is a family
 I ⊆ *P*(X) which is closed under taking subsets and countable unions. We assume that *I* contains all singletons and every set from *I* is covered by a Borel set from *I*.
- We say that a σ-ideal I on X is ccc if there is no uncountable family of disjoint Borel subsets of X outside I.
- 2^N is considered with the coordinatewise addition modulo 2.
 A σ-ideal I on 2^N is *invariant*, if

$\forall t \in 2^{\mathbb{N}} \ \forall A \subseteq 2^{\mathbb{N}} \ (A \in \mathcal{I} \ \Rightarrow \ t + A \in \mathcal{I}).$

- A σ-ideal on an uncountable Polish space X is a family
 I ⊆ *P*(X) which is closed under taking subsets and countable unions. We assume that *I* contains all singletons and every set from *I* is covered by a Borel set from *I*.
- We say that a σ-ideal I on X is ccc if there is no uncountable family of disjoint Borel subsets of X outside I.
- $2^{\mathbb{N}}$ is considered with the coordinatewise addition modulo 2.
- A σ -ideal \mathcal{I} on $2^{\mathbb{N}}$ is *invariant*, if

$$\forall t \in 2^{\mathbb{N}} \ \forall A \subseteq 2^{\mathbb{N}} \ (A \in \mathcal{I} \ \Rightarrow \ t + A \in \mathcal{I}).$$

• \mathcal{M} – the σ -ideal of meager subsets of $2^{\mathbb{N}}$,

- \mathcal{N} the σ -ideal of null subsets of $2^{\mathbb{N}}$,
- $\mathcal{M} \cap \mathcal{N}$,
- $\mathcal{N} \otimes \mathscr{M}$ the Fubini product of \mathcal{N} and \mathscr{M} is the σ -ideal generated by the Borel sets $B \subseteq 2^{\mathbb{N}} \times 2^{\mathbb{N}}$ with $\{x \in 2^{\mathbb{N}} : B_x \notin \mathscr{M}\} \in \mathcal{N},$
- $\mathscr{M} \otimes \mathscr{N}$ the Fubini product of \mathscr{M} and \mathscr{N} ,
- Rosłanowski–Shelah invariant σ-ideals constructed in Norms on possibilities II: More ccc ideals on 2^ω, [J Applied Analysis 3 (1997), 103–127].

- \mathcal{M} the σ -ideal of meager subsets of $2^{\mathbb{N}}$,
- \mathcal{N} the σ -ideal of null subsets of $2^{\mathbb{N}}$,
- $\mathcal{M} \cap \mathcal{N}$,
- $\mathcal{N} \otimes \mathscr{M}$ the Fubini product of \mathcal{N} and \mathscr{M} is the σ -ideal generated by the Borel sets $B \subseteq 2^{\mathbb{N}} \times 2^{\mathbb{N}}$ with $\{x \in 2^{\mathbb{N}} : B_x \notin \mathscr{M}\} \in \mathcal{N},$
- $\mathscr{M} \otimes \mathscr{N}$ the Fubini product of \mathscr{M} and \mathscr{N} ,
- Rosłanowski–Shelah invariant σ-ideals constructed in Norms on possibilities II: More ccc ideals on 2^ω, [J Applied Analysis 3 (1997), 103–127].

- \mathcal{M} the σ -ideal of meager subsets of $2^{\mathbb{N}}$,
- \mathcal{N} the σ -ideal of null subsets of $2^{\mathbb{N}}$,
- $\mathcal{M} \cap \mathcal{N}$,
- $\mathcal{N} \otimes \mathscr{M}$ the Fubini product of \mathcal{N} and \mathscr{M} is the σ -ideal generated by the Borel sets $B \subseteq 2^{\mathbb{N}} \times 2^{\mathbb{N}}$ with $\{x \in 2^{\mathbb{N}} : B_x \notin \mathscr{M}\} \in \mathcal{N},$
- $\mathscr{M}\otimes \mathcal{N}$ the Fubini product of \mathscr{M} and \mathcal{N} ,
- Rosłanowski–Shelah invariant σ-ideals constructed in Norms on possibilities II: More ccc ideals on 2^ω, [J Applied Analysis 3 (1997), 103–127].

- \mathcal{M} the σ -ideal of meager subsets of $2^{\mathbb{N}}$,
- \mathcal{N} the σ -ideal of null subsets of $2^{\mathbb{N}}$,
- $\mathcal{M} \cap \mathcal{N}$,
- $\mathcal{N} \otimes \mathscr{M}$ the Fubini product of \mathcal{N} and \mathscr{M} is the σ -ideal generated by the Borel sets $B \subseteq 2^{\mathbb{N}} \times 2^{\mathbb{N}}$ with $\{x \in 2^{\mathbb{N}} : B_x \notin \mathscr{M}\} \in \mathcal{N},$
- $\mathscr{M} \otimes \mathscr{N}$ the Fubini product of \mathscr{M} and \mathscr{N} ,
- Rosłanowski–Shelah invariant σ-ideals constructed in Norms on possibilities II: More ccc ideals on 2^ω, [J Applied Analysis 3 (1997), 103–127].

- \mathcal{M} the σ -ideal of meager subsets of $2^{\mathbb{N}}$,
- \mathcal{N} the σ -ideal of null subsets of $2^{\mathbb{N}}$,
- $\mathcal{M} \cap \mathcal{N}$,
- $\mathcal{N} \otimes \mathscr{M}$ the Fubini product of \mathcal{N} and \mathscr{M} is the σ -ideal generated by the Borel sets $B \subseteq 2^{\mathbb{N}} \times 2^{\mathbb{N}}$ with $\{x \in 2^{\mathbb{N}} : B_x \notin \mathscr{M}\} \in \mathcal{N},$
- $\mathscr{M} \otimes \mathscr{N}$ the Fubini product of \mathscr{M} and \mathscr{N} ,
- Rosłanowski–Shelah invariant σ-ideals constructed in Norms on possibilities II: More ccc ideals on 2^ω, [J Applied Analysis 3 (1997), 103–127].

- \mathcal{M} the σ -ideal of meager subsets of $2^{\mathbb{N}}$,
- \mathcal{N} the σ -ideal of null subsets of $2^{\mathbb{N}}$,
- $\mathcal{M} \cap \mathcal{N}$,
- $\mathcal{N} \otimes \mathscr{M}$ the Fubini product of \mathcal{N} and \mathscr{M} is the σ -ideal generated by the Borel sets $B \subseteq 2^{\mathbb{N}} \times 2^{\mathbb{N}}$ with $\{x \in 2^{\mathbb{N}} : B_x \notin \mathscr{M}\} \in \mathcal{N},$
- $\mathscr{M}\otimes \mathcal{N}$ the Fubini product of \mathscr{M} and \mathcal{N} ,
- Rosłanowski–Shelah invariant σ-ideals constructed in Norms on possibilities II: More ccc ideals on 2^ω, [J Applied Analysis 3 (1997), 103–127].

 \mathcal{I}_{ccc} – the σ -ideal on $2^{\mathbb{N}}$ generated by Borel sets which belong to every invariant ccc σ -ideal on $2^{\mathbb{N}}$.

Open problem: Is \mathcal{I}_{ccc} equal to the intersection of all invariant ccc σ -ideals on $2^{\mathbb{N}}$? In other words: is it true for a set $A \subseteq 2^{\mathbb{N}}$ that if for every invariant ccc σ -ideal \mathcal{I} on $2^{\mathbb{N}}$ the set A is covered by a Borel member of \mathcal{I} , then A is covered by a Borel set which belongs to every invariant ccc σ -ideal on $2^{\mathbb{N}}$?

\mathcal{I}_{ccc} – the σ -ideal on $2^{\mathbb{N}}$ generated by Borel sets which belong to every invariant ccc σ -ideal on $2^{\mathbb{N}}$.

Open problem: Is \mathcal{I}_{ccc} equal to the intersection of all invariant ccc σ -ideals on $2^{\mathbb{N}}$? In other words: is it true for a set $A \subseteq 2^{\mathbb{N}}$ that if for every invariant ccc σ -ideal \mathcal{I} on $2^{\mathbb{N}}$ the set A is covered by a Borel member of \mathcal{I} , then A is covered by a Borel set which belongs to every invariant ccc σ -ideal on $2^{\mathbb{N}}$?

 \mathcal{I}_{ccc} – the σ -ideal on $2^{\mathbb{N}}$ generated by Borel sets which belong to every invariant ccc σ -ideal on $2^{\mathbb{N}}$.

Open problem: Is \mathcal{I}_{ccc} equal to the intersection of all invariant ccc σ -ideals on $2^{\mathbb{N}}$? In other words: is it true for a set $A \subseteq 2^{\mathbb{N}}$ that if for every invariant ccc σ -ideal \mathcal{I} on $2^{\mathbb{N}}$ the set A is covered by a Borel member of \mathcal{I} , then A is covered by a Borel set which belongs to every invariant ccc σ -ideal on $2^{\mathbb{N}}$?

 \mathcal{I}_0 – the σ -ideal on $2^{\mathbb{N}}$ generated by the family of all Borel sets $B \subseteq 2^{\mathbb{N}}$ such that there exists a perfect set $P \subseteq 2^{\mathbb{N}}$ with $(B + x) \cap (B + y) = \emptyset$ for $x, y \in P$ and $x \neq y$.

\$\mathcal{I}_0\$ was defined by Bukovsky and studied by Balcerzak,
Rosłanowski and Shelah, [*Ideals without ccc*, J. Symb. Logic **63** (1998), 128–148] and Solecki, [*A Fubini theorem*, Topology Appl. **154** (2007), 2462–2464].

 \mathcal{I}_0 – the σ -ideal on $2^{\mathbb{N}}$ generated by the family of all Borel sets $B \subseteq 2^{\mathbb{N}}$ such that there exists a perfect set $P \subseteq 2^{\mathbb{N}}$ with $(B+x) \cap (B+y) = \emptyset$ for $x, y \in P$ and $x \neq y$.

I₀ was defined by Bukovsky and studied by Balcerzak, Rosłanowski and Shelah, [*Ideals without ccc*, J. Symb. Logic **63** (1998), 128–148] and Solecki, [*A Fubini theorem*, Topology Appl. **154** (2007), 2462–2464]. \mathcal{I}_0 – the σ -ideal on $2^{\mathbb{N}}$ generated by the family of all Borel sets $B \subseteq 2^{\mathbb{N}}$ such that there exists a perfect set $P \subseteq 2^{\mathbb{N}}$ with $(B+x) \cap (B+y) = \emptyset$ for $x, y \in P$ and $x \neq y$.

 \mathcal{I}_0 was defined by Bukovsky and studied by Balcerzak, Rosłanowski and Shelah, [*Ideals without ccc*, J. Symb. Logic **63** (1998), 128–148] and Solecki, [*A Fubini theorem*, Topology Appl. **154** (2007), 2462–2464]. \mathcal{I}_0 – the σ -ideal on $2^{\mathbb{N}}$ generated by the family of all Borel sets $B \subseteq 2^{\mathbb{N}}$ such that there exists a perfect set $P \subseteq 2^{\mathbb{N}}$ with $(B+x) \cap (B+y) = \emptyset$ for $x, y \in P$ and $x \neq y$.

 \mathcal{I}_0 was defined by Bukovsky and studied by Balcerzak, Rosłanowski and Shelah, [*Ideals without ccc*, J. Symb. Logic **63** (1998), 128–148] and Solecki, [*A Fubini theorem*, Topology Appl. **154** (2007), 2462–2464].

- Structural properties of \mathcal{I}_{ccc} .
- Which Borel sets are in \mathcal{I}_{ccc} ?

• Structural properties of \mathcal{I}_{ccc} .

• Which Borel sets are in \mathcal{I}_{ccc} ?

- Structural properties of \mathcal{I}_{ccc} .
- Which Borel sets are in \mathcal{I}_{ccc} ?

- Structural properties of \mathcal{I}_{ccc} .
- Which Borel sets are in \mathcal{I}_{ccc} ?

Theorem (Balcerzak, Rosłanowski and Shelah)

 \mathcal{I}_0 , the σ -ideal generated by Borel sets having perfectly many pairwise disjoint translates, is not ccc. In fact, \mathcal{I}_0 has property (M).

Theorem (Balcerzak, Rosłanowski and Shelah)

 \mathcal{I}_0 , the σ -ideal generated by Borel sets having perfectly many pairwise disjoint translates, is not ccc. In fact, \mathcal{I}_0 has property (M).

Theorem (Balcerzak, Rosłanowski and Shelah)

 \mathcal{I}_0 , the σ -ideal generated by Borel sets having perfectly many pairwise disjoint translates, is not ccc. In fact, \mathcal{I}_0 has property (M).

Theorem (Balcerzak, Rosłanowski and Shelah)

 \mathcal{I}_0 , the σ -ideal generated by Borel sets having perfectly many pairwise disjoint translates, is not ccc. In fact, \mathcal{I}_0 has property (M).

• What can be the reasons for failing ccc?

A related question:

Can we single out a particular property of a Borel subset of 2^N that prevents it from being a member of *any* invariant ccc σ-ideal (like having perfectly many disjoint translates) so that the failure of ccc of an invariant σ-ideal *I* (even in the strong form of (M)) is always witnessed by an *I*-positive Borel set with the property under consideration?

B-R-S: "NO" in the case of the property of having perfectly many disjoint translates.

• What can be the reasons for failing ccc?

A related question:

- Can we single out a particular property of a Borel subset of 2^N that prevents it from being a member of *any* invariant ccc σ-ideal (like having perfectly many disjoint translates) so that the failure of ccc of an invariant σ-ideal *I* (even in the strong form of (M)) is always witnessed by an *I*-positive Borel set with the property under consideration?
- B-R-S: "NO" in the case of the property of having perfectly many disjoint translates.

• What can be the reasons for failing ccc?

A related question:

Can we single out a particular property of a Borel subset of 2^N that prevents it from being a member of *any* invariant ccc σ-ideal (like having perfectly many disjoint translates) so that the failure of ccc of an invariant σ-ideal *I* (even in the strong form of (M)) is always witnessed by an *I*-positive Borel set with the property under consideration?

B-R-S: "NO" in the case of the property of having perfectly many disjoint translates.

伺 ト イヨト イヨ

• What can be the reasons for failing ccc?

A related question:

Can we single out a particular property of a Borel subset of 2^N that prevents it from being a member of *any* invariant ccc σ-ideal (like having perfectly many disjoint translates) so that the failure of ccc of an invariant σ-ideal *I* (even in the strong form of (M)) is always witnessed by an *I*-positive Borel set with the property under consideration?

B-R-S: "NO" in the case of the property of having perfectly many disjoint translates.

- What can be the reasons for failing ccc?
- A related question:
 - Can we single out a particular property of a Borel subset of 2^N that prevents it from being a member of *any* invariant ccc σ-ideal (like having perfectly many disjoint translates) so that the failure of ccc of an invariant σ-ideal *I* (even in the strong form of (M)) is always witnessed by an *I*-positive Borel set with the property under consideration?

B-R-S: "NO" in the case of the property of having perfectly many disjoint translates.

- What can be the reasons for failing ccc?
- A related question:
 - Can we single out a particular property of a Borel subset of 2^N that prevents it from being a member of *any* invariant ccc σ-ideal (like having perfectly many disjoint translates) so that the failure of ccc of an invariant σ-ideal *I* (even in the strong form of (M)) is always witnessed by an *I*-positive Borel set with the property under consideration?

B-R-S: "NO" in the case of the property of having perfectly many disjoint translates.

• • = = • • = =

Actually, the answer is just: "NO".

Theorem

 \mathcal{I}_{ccc} , the σ -ideal on $2^{\mathbb{N}}$ generated by Borel sets which belong to every invariant ccc σ -ideal, is not ccc. In fact, \mathcal{I}_{ccc} has property (*M*).

Since $\mathcal{I}_0 \subseteq \mathcal{I}_{ccc}$, the latter generalizes the B-R-S theorem.

The proof is based on ideas of Solecki, with further simplifications.

Actually, the answer is just: "NO".

Theorem

 \mathcal{I}_{ccc} , the σ -ideal on $2^{\mathbb{N}}$ generated by Borel sets which belong to every invariant ccc σ -ideal, is not ccc. In fact, \mathcal{I}_{ccc} has property (*M*).

Since $\mathcal{I}_0 \subseteq \mathcal{I}_{ccc}$, the latter generalizes the B-R-S theorem.

The proof is based on ideas of Solecki, with further simplifications.

Actually, the answer is just: "NO".

Theorem

 \mathcal{I}_{ccc} , the σ -ideal on $2^{\mathbb{N}}$ generated by Borel sets which belong to every invariant ccc σ -ideal, is not ccc. In fact, \mathcal{I}_{ccc} has property (*M*).

Since $\mathcal{I}_0 \subseteq \mathcal{I}_{ccc}$, the latter generalizes the B-R-S theorem.

The proof is based on ideas of Solecki, with further simplifications.

Actually, the answer is just: "NO".

Theorem

 \mathcal{I}_{ccc} , the σ -ideal on $2^{\mathbb{N}}$ generated by Borel sets which belong to every invariant ccc σ -ideal, is not ccc. In fact, \mathcal{I}_{ccc} has property (*M*).

Since $\mathcal{I}_0 \subseteq \mathcal{I}_{\textit{ccc}}$, the latter generalizes the B-R-S theorem.

The proof is based on ideas of Solecki, with further simplifications.

Actually, the answer is just: "NO".

Theorem

 \mathcal{I}_{ccc} , the σ -ideal on $2^{\mathbb{N}}$ generated by Borel sets which belong to every invariant ccc σ -ideal, is not ccc. In fact, \mathcal{I}_{ccc} has property (*M*).

Since $\mathcal{I}_0 \subseteq \mathcal{I}_{ccc}$, the latter generalizes the B-R-S theorem.

The proof is based on ideas of Solecki, with further simplifications.

To see that \mathcal{I}_{ccc} is not ccc, it is enough to prove that:

- (Based on an idea of Solecki) There exists a collection of continuum many pairwise orthogonal ccc invariant σ-ideals on 2^N; in fact, each of them is essentially equal (more precisely, Borel isomorphic) to N ⊗ M.
- (A general observation) If 𝒮 is an uncountable collection of pairwise orthogonal ccc σ-ideals on 2^N, then any ccc σ-ideal on 2^N is orthogonal to a member of 𝒮; in particular, their intersection is not ccc.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

To see that \mathcal{I}_{ccc} is not ccc, it is enough to prove that:

- (Based on an idea of Solecki) There exists a collection of continuum many pairwise orthogonal ccc invariant σ-ideals on 2^N; in fact, each of them is essentially equal (more precisely, Borel isomorphic) to N ⊗ M.
- (A general observation) If 𝒮 is an uncountable collection of pairwise orthogonal ccc σ-ideals on 2^N, then any ccc σ-ideal on 2^N is orthogonal to a member of 𝒮; in particular, their intersection is not ccc.

・ 同 ト ・ ヨ ト ・ ヨ ト

To see that \mathcal{I}_{ccc} is not ccc, it is enough to prove that:

- (Based on an idea of Solecki) There exists a collection of continuum many pairwise orthogonal ccc invariant σ-ideals on 2^N; in fact, each of them is essentially equal (more precisely, Borel isomorphic) to N ⊗ M.
- (A general observation) If *T* is an uncountable collection of pairwise orthogonal ccc σ-ideals on 2^N, then any ccc σ-ideal on 2^N is orthogonal to a member of *T*; in particular, their intersection is not ccc.

To see that \mathcal{I}_{ccc} is not ccc, it is enough to prove that:

- (Based on an idea of Solecki) There exists a collection of continuum many pairwise orthogonal ccc invariant σ-ideals on 2^N; in fact, each of them is essentially equal (more precisely, Borel isomorphic) to N ⊗ M.
- (A general observation) If *T* is an uncountable collection of pairwise orthogonal ccc σ-ideals on 2^N, then any ccc σ-ideal on 2^N is orthogonal to a member of *T*; in particular, their intersection is not ccc.

To see that \mathcal{I}_{ccc} is not ccc, it is enough to prove that:

- (Based on an idea of Solecki) There exists a collection of continuum many pairwise orthogonal ccc invariant σ-ideals on 2^N; in fact, each of them is essentially equal (more precisely, Borel isomorphic) to N ⊗ M.
- (A general observation) If *T* is an uncountable collection of pairwise orthogonal ccc σ-ideals on 2^N, then any ccc σ-ideal on 2^N is orthogonal to a member of *T*; in particular, their intersection is not ccc.

2^{\aleph_0} many pairwise orthogonal ccc invariant σ -ideals on 2^{\aleph}

Let
$$G_y = (2^{\mathbb{N}})^{\{n:y(n)=0\}}$$
, $H_y = (2^{\mathbb{N}})^{\{n:y(n)=1\}}$; for $y \in 2^{\mathbb{N}} \setminus \{\overline{0},\overline{1}\}$.
Identifying $2^{\mathbb{N}}$ with $G_y \times H_y$ let $\mathcal{I}_y = \mathcal{N}_y \otimes \mathcal{M}_y$ where \mathcal{N}_y is the σ -ideal of null sets in G_y (with respect to the product of ordinary measures on $2^{\mathbb{N}}$) and \mathcal{M}_y is the σ -ideal of meager subsets of H_y .

Partition $2^{\mathbb{N}}$ into Borel sets: A of measure 1 and comeager B. Let $C_y = A^{\{n:y(n)=0\}} \times B^{\{n:y(n)=1\}}$.

To see that $\mathcal{I}_y \perp \mathcal{I}_z$ if $y \neq z$, note that $2^{\mathbb{N}} \setminus C_y \in \mathcal{I}_y$, $2^{\mathbb{N}} \setminus C_z \in \mathcal{I}_z$ and $C_y \cap C_z = \emptyset$.

Let $G_y = (2^{\mathbb{N}})^{\{n: y(n)=0\}}$, $H_y = (2^{\mathbb{N}})^{\{n: y(n)=1\}}$; for $y \in 2^{\mathbb{N}} \setminus \{\overline{0}, \overline{1}\}$.

Identifying $2^{\mathbb{N}}$ with $G_y \times H_y$ let $\mathcal{I}_y = \mathcal{N}_y \otimes \mathcal{M}_y$ where \mathcal{N}_y is the σ -ideal of null sets in G_y (with respect to the product of ordinary measures on $2^{\mathbb{N}}$) and \mathcal{M}_y is the σ -ideal of meager subsets of H_y .

Partition $2^{\mathbb{N}}$ into Borel sets: A of measure 1 and comeager B. Let $C_y = A^{\{n:y(n)=0\}} \times B^{\{n:y(n)=1\}}$.

To see that $\mathcal{I}_y \perp \mathcal{I}_z$ if $y \neq z$, note that $2^{\mathbb{N}} \setminus C_y \in \mathcal{I}_y$, $2^{\mathbb{N}} \setminus C_z \in \mathcal{I}_z$ and $C_y \cap C_z = \emptyset$.

2^{\aleph_0} many pairwise orthogonal ccc invariant σ -ideals on $2^{\mathbb{N}}$

Let
$$G_y = (2^{\mathbb{N}})^{\{n:y(n)=0\}}$$
, $H_y = (2^{\mathbb{N}})^{\{n:y(n)=1\}}$; for $y \in 2^{\mathbb{N}} \setminus \{\overline{0}, \overline{1}\}$.
Identifying $2^{\mathbb{N}}$ with $G_y \times H_y$ let $\mathcal{I}_y = \mathcal{N}_y \otimes \mathcal{M}_y$ where \mathcal{N}_y is the σ -ideal of null sets in G_y (with respect to the product of ordinary measures on $2^{\mathbb{N}}$) and \mathcal{M}_y is the σ -ideal of meager subsets of H_y .
Partition $2^{\mathbb{N}}$ into Borel sets: A of measure 1 and comeager B .
Let $C_y = A^{\{n:y(n)=0\}} \times B^{\{n:y(n)=1\}}$.

To see that $\mathcal{I}_y \perp \mathcal{I}_z$ if $y \neq z$, note that $2^{\mathbb{N}} \setminus C_y \in \mathcal{I}_y$, $2^{\mathbb{N}} \setminus C_z \in \mathcal{I}_z$ and $C_y \cap C_z = \emptyset$.

何 ト イ ヨ ト イ ヨ ト

2^{\aleph_0} many pairwise orthogonal ccc invariant σ -ideals on 2^{\aleph}

Let $G_y = (2^{\mathbb{N}})^{\{n:y(n)=0\}}$, $H_y = (2^{\mathbb{N}})^{\{n:y(n)=1\}}$; for $y \in 2^{\mathbb{N}} \setminus \{\overline{0},\overline{1}\}$. Identifying $2^{\mathbb{N}}$ with $G_y \times H_y$ let $\mathcal{I}_y = \mathcal{N}_y \otimes \mathcal{M}_y$ where \mathcal{N}_y is the σ -ideal of null sets in G_y (with respect to the product of ordinary measures on $2^{\mathbb{N}}$) and \mathcal{M}_y is the σ -ideal of meager subsets of H_y . Partition $2^{\mathbb{N}}$ into Borel sets: A of measure 1 and comeager B. Let $C_y = A^{\{n:y(n)=0\}} \times B^{\{n:y(n)=1\}}$.

To see that $\mathcal{I}_y \perp \mathcal{I}_z$ if $y \neq z$, note that $2^{\mathbb{N}} \setminus C_y \in \mathcal{I}_y$, $2^{\mathbb{N}} \setminus C_z \in \mathcal{I}_z$ and $C_y \cap C_z = \emptyset$.

2^{\aleph_0} many pairwise orthogonal ccc invariant σ -ideals on $2^{\mathbb{N}}$

Let
$$G_y = (2^{\mathbb{N}})^{\{n:y(n)=0\}}$$
, $H_y = (2^{\mathbb{N}})^{\{n:y(n)=1\}}$; for $y \in 2^{\mathbb{N}} \setminus \{\overline{0}, \overline{1}\}$.
Identifying $2^{\mathbb{N}}$ with $G_y \times H_y$ let $\mathcal{I}_y = \mathcal{N}_y \otimes \mathcal{M}_y$ where \mathcal{N}_y is the σ -ideal of null sets in G_y (with respect to the product of ordinary measures on $2^{\mathbb{N}}$) and \mathcal{M}_y is the σ -ideal of meager subsets of H_y .
Partition $2^{\mathbb{N}}$ into Borel sets: A of measure 1 and comeager B .
Let $C_y = A^{\{n:y(n)=0\}} \times B^{\{n:y(n)=1\}}$.

To see that $\mathcal{I}_y \perp \mathcal{I}_z$ if $y \neq z$, note that $2^{\mathbb{N}} \setminus C_y \in \mathcal{I}_y$, $2^{\mathbb{N}} \setminus C_z \in \mathcal{I}_z$ and $C_y \cap C_z = \emptyset$.

→ < Ξ → <</p>

2^{\aleph_0} many pairwise orthogonal ccc invariant σ -ideals on $2^{\mathbb{N}}$

Let
$$G_y = (2^{\mathbb{N}})^{\{n:y(n)=0\}}$$
, $H_y = (2^{\mathbb{N}})^{\{n:y(n)=1\}}$; for $y \in 2^{\mathbb{N}} \setminus \{\overline{0}, \overline{1}\}$.
Identifying $2^{\mathbb{N}}$ with $G_y \times H_y$ let $\mathcal{I}_y = \mathcal{N}_y \otimes \mathcal{M}_y$ where \mathcal{N}_y is the σ -ideal of null sets in G_y (with respect to the product of ordinary measures on $2^{\mathbb{N}}$) and \mathcal{M}_y is the σ -ideal of meager subsets of H_y .
Partition $2^{\mathbb{N}}$ into Borel sets: A of measure 1 and comeager B .
Let $C_y = A^{\{n:y(n)=0\}} \times B^{\{n:y(n)=1\}}$.
To see that $\mathcal{I}_y = \mathcal{I}_y$ if $y \neq z$ note that $2^{\mathbb{N}} \setminus C_y \in \mathcal{I}$.

To see that
$$\mathcal{I}_y \perp \mathcal{I}_z$$
 if $y \neq z$, note that $2^{\mathbb{N}} \setminus C_y \in \mathcal{I}_y$,
 $2^{\mathbb{N}} \setminus C_z \in \mathcal{I}_z$ and $C_y \cap C_z = \emptyset$.

Proposition (Recław)

Let \mathcal{I} be an invariant ccc σ -ideal on $2^{\mathbb{N}}$. Then

 $non(\mathcal{I}) \ge \min(cov(\mathcal{N}), cov(\mathcal{M})).$

Proof:

- Rothberger: If *I* and *J* are orthogonal invariant ccc σ-ideals on 2^N, then non(*I*) ≥ cov(*J*).
- $\operatorname{cov}(\mathcal{N}\otimes \mathscr{M}) = \min(\operatorname{cov}(\mathcal{N}), \operatorname{cov}(\mathscr{M})).$

Related results:

- Recław (1998): non(I) ≥ p; p=the pseudointersection number,
- Kraszewski (2005): $non(\mathcal{I}) \ge s$; s=the splitting number.

ロト (得) (ヨト (ヨト) ヨ

Proposition (Recław)

Let \mathcal{I} be an invariant ccc σ -ideal on $2^{\mathbb{N}}$. Then

$$\mathit{non}(\mathcal{I}) \geq \min(\mathit{cov}(\mathcal{N}), \mathit{cov}(\mathcal{M})).$$

Proof:

- Rothberger: If *I* and *J* are orthogonal invariant ccc σ-ideals on 2^N, then non(*I*) ≥ cov(*J*).
- $\operatorname{cov}(\mathcal{N}\otimes \mathscr{M}) = \min(\operatorname{cov}(\mathcal{N}), \operatorname{cov}(\mathscr{M})).$

- Recław (1998): non(I) ≥ p; p=the pseudointersection number,
- Kraszewski (2005): non $(\mathcal{I}) \ge s$; s=the splitting number.

Proposition (Recław)

Let \mathcal{I} be an invariant ccc σ -ideal on $2^{\mathbb{N}}$. Then

$$\mathit{non}(\mathcal{I}) \geq \min(\mathit{cov}(\mathcal{N}), \mathit{cov}(\mathcal{M})).$$

Proof:

- Rothberger: If *I* and *J* are orthogonal invariant ccc σ-ideals on 2^N, then non(*I*) ≥ cov(*J*).
- $\operatorname{cov}(\mathcal{N}\otimes \mathscr{M}) = \min(\operatorname{cov}(\mathcal{N}), \operatorname{cov}(\mathscr{M})).$

- Recław (1998): non(I) ≥ p; p=the pseudointersection number,
- Kraszewski (2005): non(\mathcal{I}) $\geq s$; s=the splitting number.

Proposition (Recław)

Let \mathcal{I} be an invariant ccc σ -ideal on $2^{\mathbb{N}}$. Then

 $\mathit{non}(\mathcal{I}) \geq \min(\mathit{cov}(\mathcal{N}), \mathit{cov}(\mathcal{M})).$

Proof:

- Rothberger: If *I* and *J* are orthogonal invariant ccc σ-ideals on 2^ℕ, then non(*I*) ≥ cov(*J*).
- $\operatorname{cov}(\mathcal{N}\otimes \mathscr{M}) = \min(\operatorname{cov}(\mathcal{N}), \operatorname{cov}(\mathscr{M})).$

- Recław (1998): non(I) ≥ p; p=the pseudointersection number,
- Kraszewski (2005): non $(\mathcal{I}) \ge s$; s=the splitting number.

Proposition (Recław)

Let \mathcal{I} be an invariant ccc σ -ideal on $2^{\mathbb{N}}$. Then

$$non(\mathcal{I}) \geq min(cov(\mathcal{N}), cov(\mathcal{M})).$$

Proof:

- Rothberger: If *I* and *J* are orthogonal invariant ccc σ-ideals on 2^ℕ, then non(*I*) ≥ cov(*J*).
- $\operatorname{cov}(\mathcal{N}\otimes \mathscr{M}) = \min(\operatorname{cov}(\mathcal{N}), \operatorname{cov}(\mathscr{M})).$

- Recław (1998): non(I) ≥ p; p=the pseudointersection number,
- Kraszewski (2005): non(\mathcal{I}) $\geq s$; s=the splitting number.

Proposition (Recław)

Let \mathcal{I} be an invariant ccc σ -ideal on $2^{\mathbb{N}}$. Then

$$non(\mathcal{I}) \geq min(cov(\mathcal{N}), cov(\mathcal{M})).$$

Proof:

- Rothberger: If *I* and *J* are orthogonal invariant ccc σ-ideals on 2^ℕ, then non(*I*) ≥ cov(*J*).
- $\operatorname{cov}(\mathcal{N}\otimes \mathscr{M}) = \min(\operatorname{cov}(\mathcal{N}), \operatorname{cov}(\mathscr{M})).$

Related results:

- Recław (1998): non(I) ≥ p; p=the pseudointersection number,
- Kraszewski (2005): $non(\mathcal{I}) \ge s$; s=the splitting number.

3 K K 3 K - 3

Proposition (Recław)

Let \mathcal{I} be an invariant ccc σ -ideal on $2^{\mathbb{N}}$. Then

$$non(\mathcal{I}) \geq min(cov(\mathcal{N}), cov(\mathcal{M})).$$

Proof:

- Rothberger: If *I* and *J* are orthogonal invariant ccc σ-ideals on 2^ℕ, then non(*I*) ≥ cov(*J*).
- $\operatorname{cov}(\mathcal{N}\otimes \mathscr{M}) = \min(\operatorname{cov}(\mathcal{N}), \operatorname{cov}(\mathscr{M})).$

Related results:

- Recław (1998): non(I) ≥ p; p=the pseudointersection number,
- Kraszewski (2005): $non(\mathcal{I}) \ge s$; s=the splitting number.

Proposition (Recław)

Let \mathcal{I} be an invariant ccc σ -ideal on $2^{\mathbb{N}}$. Then

$$non(\mathcal{I}) \geq min(cov(\mathcal{N}), cov(\mathcal{M})).$$

Proof:

- Rothberger: If *I* and *J* are orthogonal invariant ccc σ-ideals on 2^ℕ, then non(*I*) ≥ cov(*J*).
- $\operatorname{cov}(\mathcal{N}\otimes \mathscr{M}) = \min(\operatorname{cov}(\mathcal{N}), \operatorname{cov}(\mathscr{M})).$

- Recław (1998): non(I) ≥ p; p=the pseudointersection number,
- Kraszewski (2005): non $(\mathcal{I}) \ge s$; s=the splitting number.

 $|(t+A) \cap P| < \kappa$ for every $t \in 2^{\mathbb{N}}$.

_emma

For $0 < \kappa \leq \aleph_1$ and $A, P \subseteq 2^{\mathbb{N}}, |P| \geq \aleph_1$, the following are equivalent:

- P is a witness that A is κ -small,
- $\bigcap_{\alpha < \kappa} (p_{\alpha} + A) = \emptyset$ for every κ many different elements $p_{\alpha} \in P$.

伺 ト イヨト イヨ

 $|(t+A)\cap P|<\kappa \quad ext{for every} \quad t\in 2^{\mathbb{N}}.$

_emma

For $0 < \kappa \leq \aleph_1$ and $A, P \subseteq 2^{\mathbb{N}}, |P| \geq \aleph_1$, the following are equivalent:

- P is a witness that A is κ -small,
- $\bigcap_{\alpha < \kappa} (p_{\alpha} + A) = \emptyset$ for every κ many different elements $p_{\alpha} \in P$.

周 ト イ ヨ ト イ ヨ ト

$$|(t+A)\cap P|<\kappa \quad ext{for every} \quad t\in 2^{\mathbb{N}}.$$

Lemma

For $0 < \kappa \leq \aleph_1$ and A, $P \subseteq 2^{\mathbb{N}}$, $|P| \ge \aleph_1$, the following are equivalent:

- P is a witness that A is κ -small,
- $\bigcap_{\alpha < \kappa} (p_{\alpha} + A) = \emptyset$ for every κ many different elements $p_{\alpha} \in P$.

伺 ト イ ヨ ト イ ヨ

 $|(t+A)\cap P|<\kappa \quad ext{for every} \quad t\in 2^{\mathbb{N}}.$

Lemma

For $0 < \kappa \leq \aleph_1$ and A, $P \subseteq 2^{\mathbb{N}}$, $|P| \ge \aleph_1$, the following are equivalent:

• *P* is a witness that A is κ-small,

• $\bigcap_{\alpha < \kappa} (p_{\alpha} + A) = \emptyset$ for every κ many different elements $p_{\alpha} \in P$.

伺下 イヨト イヨト

 $|(t+A)\cap P|<\kappa \quad ext{for every} \quad t\in 2^{\mathbb{N}}.$

Lemma

For $0 < \kappa \leq \aleph_1$ and A, $P \subseteq 2^{\mathbb{N}}$, $|P| \ge \aleph_1$, the following are equivalent:

- *P* is a witness that A is κ-small,
- $\bigcap_{\alpha < \kappa} (p_{\alpha} + A) = \emptyset$ for every κ many different elements $p_{\alpha} \in P$.

伺下 イヨト イヨト

A is 2-small with a witness of cardinality λ iff there are λ many pairwise disjoint translations of A.

Perfectly 2-small sets generate the σ -ideal \mathcal{I}_0 .

A is \aleph_0 -small (\aleph_1 -small) iff there is an uncountable set P such that the family { $p + A : p \in P$ } is point-finite (point-countable respectively).

A is 2-small with a witness of cardinality λ iff there are λ many pairwise disjoint translations of A.

Perfectly 2-small sets generate the σ -ideal \mathcal{I}_0 .

A is \aleph_0 -small (\aleph_1 -small) iff there is an uncountable set P such that the family { $p + A : p \in P$ } is point-finite (point-countable respectively).

A is 2-small with a witness of cardinality λ iff there are λ many pairwise disjoint translations of A.

Perfectly 2-small sets generate the σ -ideal \mathcal{I}_0 .

A is \aleph_0 -small (\aleph_1 -small) iff there is an uncountable set P such that the family { $p + A : p \in P$ } is point-finite (point-countable respectively).

白 ト イ ヨ ト イ ヨ

A is 2-small with a witness of cardinality λ iff there are λ many pairwise disjoint translations of A.

Perfectly 2-small sets generate the σ -ideal \mathcal{I}_0 .

A is \aleph_0 -small (\aleph_1 -small) iff there is an uncountable set P such that the family { $p + A : p \in P$ } is point-finite (point-countable respectively).

• • = • • = •

A is 2-small with a witness of cardinality λ iff there are λ many pairwise disjoint translations of A.

Perfectly 2-small sets generate the σ -ideal \mathcal{I}_0 .

A is \aleph_0 -small (\aleph_1 -small) iff there is an uncountable set P such that the family $\{p + A : p \in P\}$ is point-finite (point-countable respectively).

- If *K* is perfectly ℵ₁-small, then not (observed by Darji and Keleti).
- There exists a compact subset of ℝ of Lebesgue measure zero which is not perfectly ℵ₁-small (Elekes and Steprans).
- If K is not perfectly ℵ₁-small (and more), then it is consistent that 2^N is covered by < 2^{ℵ0} translations of K (Bartoszyński and Shelah).

▲ 同 ▶ ▲ 国 ▶ ▲ 国

- If *K* is perfectly ℵ₁-small, then not (observed by Darji and Keleti).
- There exists a compact subset of ℝ of Lebesgue measure zero which is not perfectly ℵ₁-small (Elekes and Steprans).
- If K is not perfectly ℵ₁-small (and more), then it is consistent that 2^N is covered by < 2^{ℵ0} translations of K (Bartoszyński and Shelah).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- If K is perfectly ℵ₁-small, then not (observed by Darji and Keleti).
- There exists a compact subset of ℝ of Lebesgue measure zero which is not perfectly ℵ₁-small (Elekes and Steprans).
- If K is not perfectly ℵ₁-small (and more), then it is consistent that 2^N is covered by < 2^{ℵ0} translations of K (Bartoszyński and Shelah).

・ 同 ト ・ ヨ ト ・ ヨ ト

- If K is perfectly ℵ₁-small, then not (observed by Darji and Keleti).
- There exists a compact subset of ℝ of Lebesgue measure zero which is not perfectly ℵ₁-small (Elekes and Steprans).
- If K is not perfectly ℵ₁-small (and more), then it is consistent that 2^N is covered by < 2^{ℵ₀} translations of K (Bartoszyński and Shelah).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- If K is perfectly ℵ₁-small, then not (observed by Darji and Keleti).
- There exists a compact subset of ℝ of Lebesgue measure zero which is not perfectly ℵ₁-small (Elekes and Steprans).
- If K is not perfectly ℵ₁-small (and more), then it is consistent that 2^N is covered by < 2^{ℵ₀} translations of K (Bartoszyński and Shelah).

周 ト イ ヨ ト イ ヨ ト

 $F_{\kappa}: 2^{\mathbb{N}} \times (2^{\mathbb{N}})^{\kappa} \to (2^{\mathbb{N}})^{\kappa}$ is the action of $2^{\mathbb{N}}$ on the product group $(2^{\mathbb{N}})^{\kappa}$ by coordinate-wise translations, i.e.,

$$F_{\kappa}(t, \langle x_{\alpha} : \alpha < \kappa \rangle) = \langle t + x_{\alpha} : \alpha < \kappa \rangle.$$

 $IS_{\kappa}(P)$ is the set of all injective sequences of length κ of elements of $P \subseteq 2^{\mathbb{N}}$.

Lemma

For $0 < \kappa \leq \aleph_1$ and A, $P \subseteq 2^{\mathbb{N}}$, $|P| \ge \aleph_1$, the following are equivalent:

- *P* is a witness that *A* is κ -small,
- $F_{\kappa}[2^{\mathbb{N}} \times A^{\kappa}] \cap IS_{\kappa}(P) = \emptyset.$

周下 イヨト イヨ

 $F_{\kappa}: 2^{\mathbb{N}} \times (2^{\mathbb{N}})^{\kappa} \to (2^{\mathbb{N}})^{\kappa}$ is the action of $2^{\mathbb{N}}$ on the product group $(2^{\mathbb{N}})^{\kappa}$ by coordinate-wise translations, i.e.,

$$F_{\kappa}(t, \langle x_{\alpha} : \alpha < \kappa \rangle) = \langle t + x_{\alpha} : \alpha < \kappa \rangle.$$

 $IS_{\kappa}(P)$ is the set of all injective sequences of length κ of elements of $P \subseteq 2^{\mathbb{N}}$.

Lemma

For $0 < \kappa \leq \aleph_1$ and A, $P \subseteq 2^{\mathbb{N}}$, $|P| \ge \aleph_1$, the following are equivalent:

- *P* is a witness that *A* is κ -small,
- $F_{\kappa}[2^{\mathbb{N}} \times A^{\kappa}] \cap IS_{\kappa}(P) = \emptyset.$

伺下 イヨト イヨト

 $F_{\kappa}: 2^{\mathbb{N}} \times (2^{\mathbb{N}})^{\kappa} \to (2^{\mathbb{N}})^{\kappa}$ is the action of $2^{\mathbb{N}}$ on the product group $(2^{\mathbb{N}})^{\kappa}$ by coordinate-wise translations, i.e.,

$$F_{\kappa}(t, \langle x_{\alpha} : \alpha < \kappa \rangle) = \langle t + x_{\alpha} : \alpha < \kappa \rangle.$$

 $IS_{\kappa}(P)$ is the set of all injective sequences of length κ of elements of $P \subseteq 2^{\mathbb{N}}$.

Lemma

For $0 < \kappa \leq \aleph_1$ and A, $P \subseteq 2^{\mathbb{N}}$, $|P| \ge \aleph_1$, the following are equivalent:

- *P* is a witness that *A* is κ -small,
- $F_{\kappa}[2^{\mathbb{N}} \times A^{\kappa}] \cap IS_{\kappa}(P) = \emptyset.$

伺下 イヨト イヨト

 $F_{\kappa}: 2^{\mathbb{N}} \times (2^{\mathbb{N}})^{\kappa} \to (2^{\mathbb{N}})^{\kappa}$ is the action of $2^{\mathbb{N}}$ on the product group $(2^{\mathbb{N}})^{\kappa}$ by coordinate-wise translations, i.e.,

$$F_{\kappa}(t, \langle x_{\alpha} : \alpha < \kappa \rangle) = \langle t + x_{\alpha} : \alpha < \kappa \rangle.$$

 $IS_{\kappa}(P)$ is the set of all injective sequences of length κ of elements of $P \subseteq 2^{\mathbb{N}}$.

_emma

For $0 < \kappa \leq \aleph_1$ and A, $P \subseteq 2^{\mathbb{N}}$, $|P| \ge \aleph_1$, the following are equivalent:

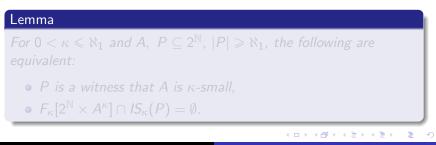
- *P* is a witness that *A* is κ -small,
- $F_{\kappa}[2^{\mathbb{N}} \times A^{\kappa}] \cap IS_{\kappa}(P) = \emptyset.$

• • = = • • = =

 $F_{\kappa}: 2^{\mathbb{N}} \times (2^{\mathbb{N}})^{\kappa} \to (2^{\mathbb{N}})^{\kappa}$ is the action of $2^{\mathbb{N}}$ on the product group $(2^{\mathbb{N}})^{\kappa}$ by coordinate-wise translations, i.e.,

$$F_{\kappa}(t, \langle x_{\alpha} : \alpha < \kappa \rangle) = \langle t + x_{\alpha} : \alpha < \kappa \rangle.$$

 $IS_{\kappa}(P)$ is the set of all injective sequences of length κ of elements of $P \subseteq 2^{\mathbb{N}}$.



 $F_{\kappa}: 2^{\mathbb{N}} \times (2^{\mathbb{N}})^{\kappa} \to (2^{\mathbb{N}})^{\kappa}$ is the action of $2^{\mathbb{N}}$ on the product group $(2^{\mathbb{N}})^{\kappa}$ by coordinate-wise translations, i.e.,

$$F_{\kappa}(t, \langle x_{\alpha} : \alpha < \kappa \rangle) = \langle t + x_{\alpha} : \alpha < \kappa \rangle.$$

 $IS_{\kappa}(P)$ is the set of all injective sequences of length κ of elements of $P \subseteq 2^{\mathbb{N}}$.

Lemma

For $0 < \kappa \leq \aleph_1$ and A, $P \subseteq 2^{\mathbb{N}}$, $|P| \ge \aleph_1$, the following are equivalent:

- *P* is a witness that *A* is κ -small,
- $F_{\kappa}[2^{\mathbb{N}} \times A^{\kappa}] \cap IS_{\kappa}(P) = \emptyset.$

不同下 不同下 不同下

ъ

 $F_{\kappa}: 2^{\mathbb{N}} \times (2^{\mathbb{N}})^{\kappa} \to (2^{\mathbb{N}})^{\kappa}$ is the action of $2^{\mathbb{N}}$ on the product group $(2^{\mathbb{N}})^{\kappa}$ by coordinate-wise translations, i.e.,

$$F_{\kappa}(t, \langle x_{\alpha} : \alpha < \kappa \rangle) = \langle t + x_{\alpha} : \alpha < \kappa \rangle.$$

 $IS_{\kappa}(P)$ is the set of all injective sequences of length κ of elements of $P \subseteq 2^{\mathbb{N}}$.

Lemma

For $0 < \kappa \leq \aleph_1$ and A, $P \subseteq 2^{\mathbb{N}}$, $|P| \ge \aleph_1$, the following are equivalent:

- *P* is a witness that A is κ -small,
- $F_{\kappa}[2^{\mathbb{N}} \times A^{\kappa}] \cap IS_{\kappa}(P) = \emptyset.$

不同下 不同下 不同下

ъ

 $F_{\kappa}: 2^{\mathbb{N}} \times (2^{\mathbb{N}})^{\kappa} \to (2^{\mathbb{N}})^{\kappa}$ is the action of $2^{\mathbb{N}}$ on the product group $(2^{\mathbb{N}})^{\kappa}$ by coordinate-wise translations, i.e.,

$$F_{\kappa}(t, \langle x_{\alpha} : \alpha < \kappa \rangle) = \langle t + x_{\alpha} : \alpha < \kappa \rangle.$$

 $IS_{\kappa}(P)$ is the set of all injective sequences of length κ of elements of $P \subseteq 2^{\mathbb{N}}$.

Lemma

For $0 < \kappa \leq \aleph_1$ and A, $P \subseteq 2^{\mathbb{N}}$, $|P| \ge \aleph_1$, the following are equivalent:

- P is a witness that A is κ -small,
- $F_{\kappa}[2^{\mathbb{N}} \times A^{\kappa}] \cap IS_{\kappa}(P) = \emptyset.$

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

 P is a witness that A is κ-small iff P is C-homogeneous where C is the complement of F_κ[2^N × A^κ] in (2^N)^κ (i.e., all injective κ-sequences of elements of P are in C).

Results of Kubiś and Matrai assuring (in certain cases) that if there exists an uncountable *C*-homogeneous set then there exists also a perfect one, readily give:

▲ 同 ▶ ▲ 国 ▶ ▲ 国

 P is a witness that A is κ-small iff P is C-homogeneous where C is the complement of F_κ[2^N × A^κ] in (2^N)^κ (i.e., all injective κ-sequences of elements of P are in C).

Results of Kubiś and Matrai assuring (in certain cases) that if there exists an uncountable *C*-homogeneous set then there exists also a perfect one, readily give:

・ 同 ト ・ ヨ ト ・ ヨ ト

 P is a witness that A is κ-small iff P is C-homogeneous where C is the complement of F_κ[2^N × A^κ] in (2^N)^κ (i.e., all injective κ-sequences of elements of P are in C).

Results of Kubiś and Matrai assuring (in certain cases) that if there exists an uncountable *C*-homogeneous set then there exists also a perfect one, readily give:

・ 同 ト ・ ヨ ト ・ ヨ ト

 P is a witness that A is κ-small iff P is C-homogeneous where C is the complement of F_κ[2^N × A^κ] in (2^N)^κ (i.e., all injective κ-sequences of elements of P are in C).

Results of Kubiś and Matrai assuring (in certain cases) that if there exists an uncountable *C*-homogeneous set then there exists also a perfect one, readily give:

伺下 イヨト イヨト

Proposition

- If A is F_σ and n-small for a certain n, 0 < n < ℵ₀, then A is perfectly n-small.
- If A is analytic and ℵ₀-small with a non-meager witness, then A is perfectly ℵ₀-small.
- Let ℵ₁ < λ ≤ c. It is consistent with ZFC that if A is analytic and ℵ₀-small with a witness of cardinality λ, then A is perfectly ℵ₀-small.

Proposition

- If A is F_σ and n-small for a certain n, 0 < n < ℵ₀, then A is perfectly n-small.
- If A is analytic and ℵ₀-small with a non-meager witness, then A is perfectly ℵ₀-small.
- Let ℵ₁ < λ ≤ c. It is consistent with ZFC that if A is analytic and ℵ₀-small with a witness of cardinality λ, then A is perfectly ℵ₀-small.

Proposition

- If A is F_σ and n-small for a certain n, 0 < n < ℵ₀, then A is perfectly n-small.
- If A is analytic and ℵ₀-small with a non-meager witness, then A is perfectly ℵ₀-small.
- Let ℵ₁ < λ ≤ c. It is consistent with ZFC that if A is analytic and ℵ₀-small with a witness of cardinality λ, then A is perfectly ℵ₀-small.

Proposition

- If A is F_σ and n-small for a certain n, 0 < n < ℵ₀, then A is perfectly n-small.
- If A is analytic and ℵ₀-small with a non-meager witness, then A is perfectly ℵ₀-small.
- Let ℵ₁ < λ ≤ c. It is consistent with ZFC that if A is analytic and ℵ₀-small with a witness of cardinality λ, then A is perfectly ℵ₀-small.

Proposition

- If A is F_σ and n-small for a certain n, 0 < n < ℵ₀, then A is perfectly n-small.
- If A is analytic and ℵ₀-small with a non-meager witness, then A is perfectly ℵ₀-small.
- Let ℵ₁ < λ ≤ c. It is consistent with ZFC that if A is analytic and ℵ₀-small with a witness of cardinality λ, then A is perfectly ℵ₀-small.

Proposition

- If A is F_σ and n-small for a certain n, 0 < n < ℵ₀, then A is perfectly n-small.
- If A is analytic and ℵ₀-small with a non-meager witness, then A is perfectly ℵ₀-small.
- Let ℵ₁ < λ ≤ c. It is consistent with ZFC that if A is analytic and ℵ₀-small with a witness of cardinality λ, then A is perfectly ℵ₀-small.

Open problem: Is every Borel *n*-small, $1 < n < \aleph_0$, subset of $2^{\mathbb{N}}$ perfectly *n*-small?

Remark (Matrai)

There exists an F_{σ} -set $C \subseteq (2^{\mathbb{N}})^2$ with uncountable but not perfect *C*-homogeneous sets.

Piotr Zakrzewski On Borel sets belonging to every invariant ccc σ -ideal

/□ ▶ ◀ ⋽ ▶ ◀

Open problem: Is every Borel *n*-small, $1 < n < \aleph_0$, subset of $2^{\mathbb{N}}$ perfectly *n*-small?

Remark (Matrai)

There exists an F_{σ} -set $C \subseteq (2^{\mathbb{N}})^2$ with uncountable but not perfect C-homogeneous sets.

Piotr Zakrzewski On Borel sets belonging to every invariant ccc σ -ideal

伺 ト イヨ ト イヨト

Open problem: Is every Borel *n*-small, $1 < n < \aleph_0$, subset of $2^{\mathbb{N}}$ perfectly *n*-small?

Remark (Matrai)

There exists an F_{σ} -set $C \subseteq (2^{\mathbb{N}})^2$ with uncountable but not perfect *C*-homogeneous sets.

Proposition (Banakh, Lyaskovska and Repovs)

- C is perfectly 2-small,
- C + C does not contain a neighbourhood of the zero sequence,
- C + C has empty interior in $2^{\mathbb{N}}$.

Proposition (Banakh, Lyaskovska and Repovs)

- C is perfectly 2-small,
- C + C does not contain a neighbourhood of the zero sequence,
- C + C has empty interior in $2^{\mathbb{N}}$.

Proposition (Banakh, Lyaskovska and Repovs)

- C is perfectly 2-small,
- *C* + *C* does not contain a neighbourhood of the zero sequence,
- C + C has empty interior in $2^{\mathbb{N}}$.

Proposition (Banakh, Lyaskovska and Repovs)

- C is perfectly 2-small,
- *C* + *C* does not contain a neighbourhood of the zero sequence,
- C + C has empty interior in $2^{\mathbb{N}}$.

Proposition (Banakh, Lyaskovska and Repovs)

- C is perfectly 2-small,
- C + C does not contain a neighbourhood of the zero sequence,
- C + C has empty interior in $2^{\mathbb{N}}$.

Proposition (Banakh, Lyaskovska and Repovs)

- C is perfectly 2-small,
- C + C does not contain a neighbourhood of the zero sequence,
- C + C has empty interior in $2^{\mathbb{N}}$.

Small sets are in $\mathcal{I}_{\textit{ccc}}$

Theorem

Let B be a Borel subset of $2^{\mathbb{N}}$.

- If B is \aleph_0 -small, then $B \in \mathcal{I}_{ccc}$.
- Under $MA + \neg CH$, if B is \aleph_1 -small, then $B \in \mathcal{I}_{ccc}$.
- If *B* is perfectly \aleph_1 -small, then $B \in \mathcal{I}_{ccc}$.

Remark

If there exists a Sierpiński set $S \subseteq 2^{\mathbb{N}}$, then every Borel null-set $B \subseteq 2^{\mathbb{N}}$ is \aleph_1 -small with a witness S. In particular, there is one not in \mathcal{I}_{ccc} .

Small sets are in $\mathcal{I}_{\textit{ccc}}$

Theorem

Let B be a Borel subset of $2^{\mathbb{N}}$.

• If B is \aleph_0 -small, then $B \in \mathcal{I}_{ccc}$.

- Under $MA + \neg CH$, if B is \aleph_1 -small, then $B \in \mathcal{I}_{ccc}$.
- If *B* is perfectly \aleph_1 -small, then $B \in \mathcal{I}_{ccc}$.

Remark

If there exists a Sierpiński set $S \subseteq 2^{\mathbb{N}}$, then every Borel null-set $B \subseteq 2^{\mathbb{N}}$ is \aleph_1 -small with a witness S. In particular, there is one not in \mathcal{I}_{ccc} .

・ 一 マ ト ・ 日 ト ・

Theorem

Let B be a Borel subset of $2^{\mathbb{N}}$.

- If B is \aleph_0 -small, then $B \in \mathcal{I}_{ccc}$.
- Under $MA + \neg CH$, if B is \aleph_1 -small, then $B \in \mathcal{I}_{ccc}$.
- If *B* is perfectly \aleph_1 -small, then $B \in \mathcal{I}_{ccc}$.

Remark

If there exists a Sierpiński set $S \subseteq 2^{\mathbb{N}}$, then every Borel null-set $B \subseteq 2^{\mathbb{N}}$ is \aleph_1 -small with a witness S. In particular, there is one not in \mathcal{I}_{ccc} .

▲ □ ▶ ▲ □ ▶ ▲

Theorem

Let B be a Borel subset of $2^{\mathbb{N}}$.

- If B is \aleph_0 -small, then $B \in \mathcal{I}_{ccc}$.
- Under $MA + \neg CH$, if B is \aleph_1 -small, then $B \in \mathcal{I}_{ccc}$.
- If *B* is perfectly \aleph_1 -small, then $B \in \mathcal{I}_{ccc}$.

Remark

If there exists a Sierpiński set $S \subseteq 2^{\mathbb{N}}$, then every Borel null-set $B \subseteq 2^{\mathbb{N}}$ is \aleph_1 -small with a witness S. In particular, there is one not in \mathcal{I}_{ccc} .

・ 一 マ ト ・ 日 ト ・

Theorem

Let B be a Borel subset of $2^{\mathbb{N}}$.

- If B is \aleph_0 -small, then $B \in \mathcal{I}_{ccc}$.
- Under $MA + \neg CH$, if B is \aleph_1 -small, then $B \in \mathcal{I}_{ccc}$.
- If B is perfectly \aleph_1 -small, then $B \in \mathcal{I}_{ccc}$.

Remark

If there exists a Sierpiński set $S \subseteq 2^{\mathbb{N}}$, then every Borel null-set $B \subseteq 2^{\mathbb{N}}$ is \aleph_1 -small with a witness S. In particular, there is one not in \mathcal{I}_{ccc} .

Theorem

Let B be a Borel subset of $2^{\mathbb{N}}$.

- If B is \aleph_0 -small, then $B \in \mathcal{I}_{ccc}$.
- Under $MA + \neg CH$, if B is \aleph_1 -small, then $B \in \mathcal{I}_{ccc}$.
- If B is perfectly \aleph_1 -small, then $B \in \mathcal{I}_{ccc}$.

Remark

If there exists a Sierpiński set $S \subseteq 2^{\mathbb{N}}$, then every Borel null-set $B \subseteq 2^{\mathbb{N}}$ is \aleph_1 -small with a witness S. In particular, there is one not in \mathcal{I}_{ccc} .

Open problem:

Is \mathcal{I}_{ccc} generated by Borel perfectly \aleph_1 -small subsets of $2^{\mathbb{N}}$?

Proposition

- There exists a compact, perfectly 3-small subset C of 2^N such that C + C = 2^N. In particular, C ∈ I_{ccc} but C is not perfectly 2-small.
- In every invariant, ccc σ-ideal in 2^N there is a compact set which is not perfectly ℵ₁-small.

Open problem:

Is \mathcal{I}_{ccc} generated by Borel perfectly \aleph_1 -small subsets of $2^{\mathbb{N}}$?

Proposition

- There exists a compact, perfectly 3-small subset C of 2^N such that C + C = 2^N. In particular, C ∈ I_{ccc} but C is not perfectly 2-small.
- In every invariant, ccc σ-ideal in 2^N there is a compact set which is not perfectly ℵ₁-small.

Open problem:

Is \mathcal{I}_{ccc} generated by Borel perfectly \aleph_1 -small subsets of $2^{\mathbb{N}}$?

Proposition

- There exists a compact, perfectly 3-small subset C of 2^N such that C + C = 2^N. In particular, C ∈ I_{ccc} but C is not perfectly 2-small.
- In every invariant, ccc σ-ideal in 2^N there is a compact set which is not perfectly ℵ₁-small.

Open problem:

Is \mathcal{I}_{ccc} generated by Borel perfectly \aleph_1 -small subsets of $2^{\mathbb{N}}$?

Proposition

- There exists a compact, perfectly 3-small subset C of 2^N such that C + C = 2^N. In particular, C ∈ I_{ccc} but C is not perfectly 2-small.
- In every invariant, ccc σ-ideal in 2^N there is a compact set which is not perfectly ℵ₁-small.

.

Open problem:

Is \mathcal{I}_{ccc} generated by Borel perfectly \aleph_1 -small subsets of $2^{\mathbb{N}}$?

Proposition

- There exists a compact, perfectly 3-small subset C of 2^N such that C + C = 2^N. In particular, C ∈ I_{ccc} but C is not perfectly 2-small.
- In every invariant, ccc σ-ideal in 2^N there is a compact set which is not perfectly ℵ₁-small.

The second part of the last theorem, i.e.,

 In every invariant, ccc σ-ideal in 2^N there is a compact set which is not perfectly ℵ₁-small,

strengthens (for $2^{\mathbb{N}}$) a theorem of Elekes and Steprans [*Less than* 2^{ω} many translates of a compact nullsets may cover the real line, Fund. Math. **181(1)** (2004), 89–96] who proved, answering a question of Darji and Keleti, that there exists a compact subset of \mathbb{R} of Lebesgue measure zero which is not perfectly \aleph_1 -small. The second part of the last theorem, i.e.,

 In every invariant, ccc σ-ideal in 2^ℕ there is a compact set which is not perfectly ℵ₁-small,

strengthens (for $2^{\mathbb{N}}$) a theorem of Elekes and Steprans [*Less than* 2^{ω} many translates of a compact nullsets may cover the real line, Fund. Math. **181(1)** (2004), 89–96] who proved, answering a question of Darji and Keleti, that there exists a compact subset of \mathbb{R} of Lebesgue measure zero which is not perfectly \aleph_1 -small. The second part of the last theorem, i.e.,

 In every invariant, ccc σ-ideal in 2^N there is a compact set which is not perfectly ℵ₁-small,

strengthens (for $2^{\mathbb{N}}$) a theorem of Elekes and Steprans [*Less than* 2^{ω} many translates of a compact nullsets may cover the real line, Fund. Math. **181(1)** (2004), 89–96] who proved, answering a question of Darji and Keleti, that there exists a compact subset of \mathbb{R} of Lebesgue measure zero which is not perfectly \aleph_1 -small.

Observations:

- Assume that ℵ₁ ≤ κ ≤ c. Then less than κ many translates of a ℵ₁-small set with a witness of cardinality at least κ do not cover 2^N (observed by Darji and Keleti)
- It is consistent with the negation of CH that there is a compact null set A ⊆ 2^N such that A ∉ I_{ccc} but no ℵ₁ many translates of A cover 2^N. Clearly, the latter is true for any null set A provided cov(N) > ℵ₁.

Open problem: Is there a (compact) Borel set in $C \in \mathcal{I}_{ccc}$ such that $< 2^{\aleph_0}$ many translates of C cover $2^{\mathbb{N}}$?

A (1) < A (2) < A (2)</p>

Observations:

- Assume that ℵ₁ ≤ κ ≤ c. Then less than κ many translates of a ℵ₁-small set with a witness of cardinality at least κ do not cover 2^N (observed by Darji and Keleti)
- It is consistent with the negation of CH that there is a compact null set A ⊆ 2^N such that A ∉ I_{ccc} but no ℵ₁ many translates of A cover 2^N. Clearly, the latter is true for any null set A provided cov(N) > ℵ₁.

Open problem: Is there a (compact) Borel set in $C \in \mathcal{I}_{ccc}$ such that $< 2^{\aleph_0}$ many translates of C cover $2^{\mathbb{N}}$?

Observations:

- Assume that ℵ₁ ≤ κ ≤ c. Then less than κ many translates of a ℵ₁-small set with a witness of cardinality at least κ do not cover 2^N (observed by Darji and Keleti)
- It is consistent with the negation of CH that there is a compact null set A ⊆ 2^N such that A ∉ I_{ccc} but no ℵ₁ many translates of A cover 2^N. Clearly, the latter is true for any null set A provided cov(N) > ℵ₁.

Open problem: Is there a (compact) Borel set in $C \in \mathcal{I}_{ccc}$ such that $< 2^{\aleph_0}$ many translates of C cover $2^{\mathbb{N}}$?

周下 イヨト イヨ

Observations:

- Assume that ℵ₁ ≤ κ ≤ c. Then less than κ many translates of a ℵ₁-small set with a witness of cardinality at least κ do not cover 2^N (observed by Darji and Keleti)
- It is consistent with the negation of CH that there is a compact null set A ⊆ 2^N such that A ∉ I_{ccc} but no ℵ₁ many translates of A cover 2^N. Clearly, the latter is true for any null set A provided cov(N) > ℵ₁.

Open problem: Is there a (compact) Borel set in $C \in \mathcal{I}_{ccc}$ such that $< 2^{\aleph_0}$ many translates of C cover $2^{\mathbb{N}}$?

Observations:

- Assume that ℵ₁ ≤ κ ≤ c. Then less than κ many translates of a ℵ₁-small set with a witness of cardinality at least κ do not cover 2^N (observed by Darji and Keleti)
- It is consistent with the negation of CH that there is a compact null set A ⊆ 2^N such that A ∉ I_{ccc} but no ℵ₁ many translates of A cover 2^N. Clearly, the latter is true for any null set A provided cov(N) > ℵ₁.

Open problem: Is there a (compact) Borel set in $C \in \mathcal{I}_{ccc}$ such that $< 2^{\aleph_0}$ many translates of C cover $2^{\mathbb{N}}$?

Theorem (Baumgartner)

It is consistent with the negation of CH that $2^{\mathbb{N}}$ can be partitioned into \aleph_1 many disjoint non-empty compact sets.

Theorem

CH is equivalent to the statement that $2^{\mathbb{N}}$ can be partitioned into \aleph_1 many disjoint translates of a compact set. Moreover, $\neg CH$ implies that if $2^{\mathbb{N}}$ is the union of a collection \mathcal{A} of \aleph_1 many translates of a compact set then for every natural number n there is $x \in 2^{\mathbb{N}}$ such that x is a member of at least n elements of \mathcal{A} .

Theorem (Baumgartner)

It is consistent with the negation of CH that $2^{\mathbb{N}}$ can be partitioned into \aleph_1 many disjoint non-empty compact sets.

Theorem

CH is equivalent to the statement that $2^{\mathbb{N}}$ can be partitioned into \aleph_1 many disjoint translates of a compact set. Moreover, $\neg CH$ implies that if $2^{\mathbb{N}}$ is the union of a collection \mathcal{A} of \aleph_1 many translates of a compact set then for every natural number n there is $x \in 2^{\mathbb{N}}$ such that x is a member of at least n elements of \mathcal{A} .

A I > A I > A

Theorem (Baumgartner)

It is consistent with the negation of CH that $2^{\mathbb{N}}$ can be partitioned into \aleph_1 many disjoint non-empty compact sets.

Theorem

CH is equivalent to the statement that $2^{\mathbb{N}}$ can be partitioned into \aleph_1 many disjoint translates of a compact set.

Moreover, $\neg CH$ implies that if $2^{\mathbb{N}}$ is the union of a collection \mathcal{A} of \aleph_1 many translates of a compact set then for every natural number n there is $x \in 2^{\mathbb{N}}$ such that x is a member of at least n elements of \mathcal{A} .

Theorem (Baumgartner)

It is consistent with the negation of CH that $2^{\mathbb{N}}$ can be partitioned into \aleph_1 many disjoint non-empty compact sets.

Theorem

CH is equivalent to the statement that $2^{\mathbb{N}}$ can be partitioned into \aleph_1 many disjoint translates of a compact set. Moreover, $\neg CH$ implies that if $2^{\mathbb{N}}$ is the union of a collection \mathcal{A} of \aleph_1 many translates of a compact set then for every natural number n there is $x \in 2^{\mathbb{N}}$ such that x is a member of at least n elements of \mathcal{A} .

Theorem (Baumgartner)

It is consistent with the negation of CH that $2^{\mathbb{N}}$ can be partitioned into \aleph_1 many disjoint non-empty compact sets.

Theorem

CH is equivalent to the statement that $2^{\mathbb{N}}$ can be partitioned into \aleph_1 many disjoint translates of a compact set. Moreover, $\neg CH$ implies that if $2^{\mathbb{N}}$ is the union of a collection \mathcal{A} of \aleph_1 many translates of a compact set then for every natural number n there is $x \in 2^{\mathbb{N}}$ such that x is a member of at least n elements of \mathcal{A} . Proof: Suppose that $A \subseteq 2^{\mathbb{N}}$ is compact and for some n > 1 there is a covering of $2^{\mathbb{N}}$ by \aleph_1 many translates of A such that no $x \in 2^{\mathbb{N}}$ is a member of n elements of the covering. Then A is n-small and, being compact, it is also perfectly n-small with a perfect witness P. But P being covered by \aleph_1 many translates of A and having countable intersection with each of them, this implies that $|P| = \aleph_1$ hence CH holds.

Thank you for your attention

Proof: Suppose that $A \subseteq 2^{\mathbb{N}}$ is compact and for some n > 1 there is a covering of $2^{\mathbb{N}}$ by \aleph_1 many translates of A such that no $x \in 2^{\mathbb{N}}$ is a member of n elements of the covering. Then A is n-small and, being compact, it is also perfectly n-small with a perfect witness P. But P being covered by \aleph_1 many translates of A and having countable intersection with each of them, this implies that $|P| = \aleph_1$ hence CH holds.

Thank you for your attention

Proof: Suppose that $A \subseteq 2^{\mathbb{N}}$ is compact and for some n > 1 there is a covering of $2^{\mathbb{N}}$ by \aleph_1 many translates of A such that no $x \in 2^{\mathbb{N}}$ is a member of n elements of the covering. Then A is n-small and, being compact, it is also perfectly n-small with a perfect witness P. But P being covered by \aleph_1 many translates of A and having countable intersection with each of them, this implies that $|P| = \aleph_1$ hence CH holds.

Thank you for your attention