THE FREE SET PROPERTY FOR CALIBRATED IDEALS

Jindřich Zapletal

University of Florida Czech Academy of Sciences

joint with Marcin Sabok and Vladimir Kanovei

A book to appear.

Kanovei, Sabok, Zapletal: Canonical Ramsey theory on Polish spaces

Cambridge Tracts in Mathematics

final version date end September 2012

Canonization of equivalence relations

Given a Polish space X, a σ -ideal I, and a Borel (or analytic) equivalence relation E,

is there a Borel *I*-positive set $B \subset X$ such that $E \upharpoonright B$ has a simple form?

Possible outcomes

- Best: $E \upharpoonright B$ is either identity or B^2 (total canonization);
- total canonization for simple equivalences (e.g. classifiable by countable structures);
- canonization up to a known set of obstacles such as $E \upharpoonright B$ is either identity or B^2 or E_0 ;
- canonization down to a Borel complexity class—such as $E \upharpoonright B$ is smooth;
- Negative: $E \upharpoonright B$ maintains its complexity on all Borel I-positive sets.

The free set property

Definition. I has the *free set property* if for every analytic I-positive B and every analytic set $D \subset B \times B$ there is a Borel I-positive free set, a set B such that $D \cap B \times B$ is a subset of the diagonal.

Example. The meager ideal on 2^{ω} does not have the free set property. $(D = E_0)$

Example. The σ -ideal generated by compact subsets of ω^{ω} does have the free set property. (Solecki-Spinas)

Fact. The free set property imples total canonization for analytic equivalence relations.

Calibrated ideals

Definition. A σ -ideal I on a Polish space X is calibrated if for every closed I-positive C and closed I-small $D_n: n \in \omega$ there is a closed I-positive $C' \subset C \setminus \bigcup_n D_n$.

Example. The meager ideal is not calibrated—let the sets D_n enumerate a countable dense subset of X.

Example. The ideal of countable sets is calibrated—the set $C \setminus \bigcup_n D_n$ is positive and contains a perfect subset.

Examples of calibrated ideals

Class 1. σ -ideals with covering property—every positive analytic set contains a closed positive subset. The ideal of countable sets, the ideal of sets of σ -finite packing measure mass, the ideal of sets of extended uniqueness;

Class 2. σ -ideals obtained from class 1 by taking the subideal σ -generated by closed sets. The σ -ideal generated by closed Lebesgue null sets.

Class 3. Other: the σ -ideal σ -generated by closed sets of uniqueness

Class 4. The σ -ideals with stratified calibration: the σ -ideal generated by closed subsets of $[0,1]^{\omega}$ of finite dimension.

The main theorem

Theorem. Let I be a σ -ideal on a compact metric space X, σ -generated by a coanalytic collection of compact sets. If I is calibrated, then I has the free set property.

Corollaries for this class of σ -ideals

- **A.** Total canonization for analytic equivalence relations.
- **B.** Silver property for Borel equivalence relations E: either there is a Borel I-positive set of pairwise inequivalent elements, or the whole space decomposes into countably many classes and an I-small set.
- **C.** If Borel E has an I-positive set consisting of pairwise inequivalent elements, then it has a *Borel* such set.
- **D.** The same for finitely many Borel equivalence relations simultaneously.

Canonization of other objects

Example. (I=ideal of countable sets.) If $G \subset 2^{\omega} \times 2^{\omega}$ is a graph then there is a perfect set $P \subset 2^{\omega}$ such that $G \upharpoonright P$ is either $P \times P$ minus the diagonal, or empty.

Example. (I=the σ -ideal generated by closed null sets.) There is a Borel function $f: 2^{\omega} \times 2^{\omega} \to 2^{\omega}$ such that for all Borel I-positive sets $B, C, f''(B \times C) = 2^{\omega}$.