CHARACTER OF POINTS IN HIGSON CORONA OF A METRIC SPACE

TARAS BANAKH

Given a metric space (X, d_X) denote by SO(X) the linear algebra of bounded slowly oscillating functions on X. A function $f: X \to \mathbb{R}$ is slowly oscillating if for each positive real number R there is a bounded subset $B \subset X$ such that for any points $x, y \in X \setminus B$ with $d_X(x, y) \leq R$ we get $|f(x) - f(y)| < \frac{1}{R}$. The algebra SO(X) determines the injective map $i: X \to \mathbb{R}^{SO(X)}$, $i: x \mapsto (f(x))_{f \in SO(X)}$ with compact closure $\overline{i(X)} \subset \mathbb{R}^{SO(X)}$.

The Higson corona of X is the intersection $\nu(X) = \bigcap_{B \subset X} \overline{i(X \setminus B)}$ where B runs over all bounded subsets of X. The Higson corona $\nu(X)$ is a compact Hausdorff space reflecting some asymptotic properties of X. In particular, its topological dimension $\dim \nu(X)$ is equal to the asymptotic dimension $\operatorname{asdim}(X)$ of X if X is a proper metric space of finite asymptotic dimension, see [?]. We recall that a metric space X has asymptotic dimension asdim $(X) \leq n$ if for each $\varepsilon > 0$ there is a cover \mathcal{U} of X with finite $\operatorname{mesh}(\mathcal{U}) = \sup_{U \in \mathcal{U}} \operatorname{diam}(U)$ such that each ε -ball $B(x, \varepsilon), x \in X$, meets at most n+1 sets $U \in \mathcal{U}$.

In [?] I.V.Protasov proved that under CH, the Higson corona $\nu(X)$ of each unbounded metric space X of asymptotic dimension zero is homeomorphic to the remainder $\omega^* = \beta(\omega) \setminus \omega$ of the Stone-Cech compactification of positive integers and asked if his result remains true in ZFC. We shall give a negative answer to this question calculating the minimal character of points in the Higson corona $\nu(X)$.

By the character $\chi(x,X)$ of a point x of a topological space X we understand the smallest cardinality $|\mathcal{B}_x|$ of a neighborhood base \mathcal{B}_x of the topology of X at x. The cardinal $m\chi(X) = \min_{x \in X} \chi(x, X)$ is called the *minimal character* of X. The minimal character $m\chi(\omega^*)$ of the Stone-Cech remainder ω^* is a well-known small uncountable cardinal denoted by \mathfrak{u} . By \mathfrak{d} we denote the smallest cardinality of a cover of the Baire space ω^{ω} by compact subsets. It is knowns that $\mathfrak{u} = \mathfrak{d} = \mathfrak{c}$ under Martin's Axiom, but the strict inequality $\mathfrak{u} < \mathfrak{d}$ is consistent with ZFC.

Our main result is the following:

Theorem 1. The minimal character $m\chi(\nu(X))$ of the Higson corona $\nu(X)$ of an unbounded metric space X is equal to

- u if X has asymptotically isolated balls, and
- $\max\{\mathfrak{u},\mathfrak{d}\}$, otherwise.

We say that a metric space X has asymptotically isolated balls if there is $\varepsilon \in$ $(0,\infty)$ such that for each $\delta\in(0,\infty)$ there is a point $x\in X$ such that $B(x,\delta)\subset$ $B(x,\varepsilon)$.

Theorem 1 allows us to give a corona characterization of the Cantor-macro cube $2^{\leq \mathbb{N}}$. The Cantor macro-cube $2^{\leq \mathbb{N}}$ is the set

$$2^{<\mathbb{N}} = \{ (x_n)_{n \in \in} \in \{0, 1\}^{\mathbb{N}} : \exists m \ \forall n \ge m \ x_m = 0 \}$$

endowed with the metric $d((x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}) = \max_{n\in\mathbb{N}} 2^n |x_n - y_n|$. By [?], a metric space X is coarsely equivalent to the Cantor macro-cube $2^{<\mathbb{N}}$ if and only if X is unbounded, has bounded geometry, has asymptotic dimension zero and has no asymptotically isolated balls.

A metric space X has bounded geometry if there is $\varepsilon \in (0,\infty)$ such that for each $\delta \in (0,\infty)$ there is a natural number N such that each δ -ball $B(x,\delta), x \in X$, can be covered by $\leq N$ balls of radius ε . Two metric spaces X,Y are coarsely equivalent if there are two coarse maps $f: X \to Y$ and $g: Y \to X$ such that $\max\{\sup_{x \in X} d_X(g \circ f(x), x), \sup_{y \in Y} d_Y(f \circ g(y), y)\} < \infty$. A map $f: X \to Y$ between metric spaces is coarse if for each $\varepsilon \in (0,\infty)$ there is $\delta \in (0,\infty)$ such that for any two points $x, x' \in X$ with $d_X(x, x') < \varepsilon$ we get $d_Y(f(x), f(x')) < \varepsilon$.

Theorem 2. Under $(\mathfrak{u} < \mathfrak{d})$ for a metric space X of bounded geometry the following conditions are equivalent:

- (1) X is coarsely equivalent to the Cantor macro-cube $2^{<\mathbb{N}}$;
- (2) the Higson coronas $\nu(X)$ and $\nu(2^{<\mathbb{N}})$ are homeomorphic;
- (3) $\dim(\nu(X)) = 0$ and $m\chi(X) = \mathfrak{d}$.

The proofs of these theorems can be found in [?].

References

- [1] T. Banakh, I. Zarichnyi, Characterizing the Cantor bi-cube in asymptotic categories, Groups Geom. Dyn. 5:4 (2011) 691–728.
- [2] T. Banakh, O. Chervak, L. Zdomskyy, On character of points in the Higson corona of a metric space, preprint http://arxiv.org/abs/1206.0626.
- [3] G. Bell, A. Dranishnikov, Asymptotic dimension, Topology Appl. 155:12 (2008) 1265–1296.
- [4] Protasov, I. V. Coronas of ultrametric spaces, Comment. Math. Univ. Carolin. 52:2 (2011) 303–307.

Jan Kochanowski University in Kielce (Poland) and Ivan Franko National University of Lviv (Ukraine)

E-mail address: t.o.banakh@gmail.com