Recent results on splitting and almost disjointness

Jörg Brendle

June 29, 2012

A classical theorem of Mathias says that a maximal almost disjoint (mad) family of subsets of the natural numbers cannot be analytic. Thus, if we let \mathfrak{a}_{closed} denote the least size of a family of closed a.d. sets whose union is a mad family, then $\mathfrak{a} \geq \mathfrak{a}_{closed} \geq \aleph_1$. A number of interesting results have been proved recently on \mathfrak{a}_{closed} . For example, Raghavan and Shelah showed that $\mathfrak{d} = \aleph_1$ implies $\mathfrak{a}_{closed} = \aleph_1$. (For \mathfrak{a} instead of \mathfrak{a}_{closed} , this is a famous open problem of Roitman.) In joint work with Khomskii we proved the consistency of $\mathfrak{a}_{closed} < \mathfrak{b}$, and in the joint work with Raghavan, the consistency of $\mathfrak{a}_{closed} > \mathfrak{b}$. In this talk I will present some of the main ideas behind results on \mathfrak{a}_{closed} and on the related phenomenon of splitting.