Definable Hausdorff Gaps Yurii Khomskii (KGRC, University of Vienna)

In 1936, Hausdorff constructed an (ω_1, ω_1) -gap in $\mathcal{P}(\omega)/\text{fin}$, i.e., a pair of sequences $(\{a_{\alpha} \mid \alpha < \omega_1\}, \{b_{\alpha} \mid \alpha < \omega_1\})$ well-ordered by \subseteq^* , but with no c separating them. In general, we define a *Hausdorff gap* to be any orthogonal pair (A, B), where both A and B are σ -directed with respect to \subseteq^* but there is no c separating A from B.

Stevo Todorcevic [1] proved that there are no analytic Hausdorff gaps. We extend this result by showing that there are no Hausdroff gaps in Solovay's model and assuming $AD(\mathbb{R})$, and also that the existence of a Σ_2^1 -definable Hausdorff gap is equivalent to the existence of a Π_1^1 -definable Hausdorff gap, and equivalent to \aleph_1 being inaccessible in L.

[1] Stevo Todorčević, Analytic gaps, Fund. Math. 150 (1996)