Symplectic Reduction and Quantum Gauge Theory

Gerd Rudolph Institute for Theoretical Physics, University of Leipzig

Abstract

The models under consideration arise from lattice approximation of nonabelian gauge theories. On the classical level, they are formulated as Hamiltonian systems endowed with a gauge symmetry and with a natural momentum mapping. First, I will discuss singular Marsden-Weinstein reduction, which yields the stratified reduced phase space. Next, I will present the canonical quantization procedure in this context, and I will mention results on the structure of the field and the observable algebras of these models. For implementing the stratified structure on quantum level I will use the generalized Bargmann-Segal transform for compact Lie groups as developed by B. C. Hall and the concept of a costratified Hilbert space as proposed by J. Huebschmann. Finally, I will discuss a simple exactly solvable example. In the talk, I will comment on reduction after quantization vs. quantization after reduction.