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Abstract
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The new test statistic is a combination of an efficient score statistic and an appropriate selection rule.

Some examples are presented and by using extensive simulations the test is shown to have desirable

properties.
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1. Introduction

Location-scale families play an important role in modeling data. Goodness of fit tests for such

families have been the subject of numerous papers. Various concepts for constructing such tests have

been applied. For example, see Thomas and Pierce (1979), LaRiccia and Mason (1985), D’Agostino

and Stephens (1986), Rayner and Best (1989), LaRiccia (1991), Morales et al. (1993), Stute et al.

(1993), Fromont and Laurent (2006), Meintanis and Swanepoel (2007) and references therein. Inglot

et al. (1997) and Janic-Wróblewska (2004 a) investigated some data-driven smooth tests. The test

statistic is a score statistic based on an appropriate parametric model with the dimension of the model

determined by a suitable selection rule. In these two papers attention was focused on a Schwarz-type

selection rule and some simplifications. For more discussion see Sec. 3.5 of Janic-Wróblewska (2004 a).

1



Some other tests for testing goodness of fit to a parametric model that use model selection criteria have

also been proposed. These include, in particular, tests based on a score or likelihood ratio test (LRT)

statistic combined with Akaike’s information criterion and Schwarz’s rule applied to some nested, as

well as non-nested lists, of models. For more details, see Aerts et al. (1999, 2000) and Claeskens and

Hjort (2004).

The purpose of this paper is to apply and investigate a more convenient selection rule, mimicking

Schwarz’s criterion, and the related data-driven test. We consider a so called score-based selection

rule, a special case of which was considered in Inglot et al. (1994) and Kallenberg and Ledwina (1997

a); see also the brief comment on p. 1240 of Inglot et al. (1997). Advantages of this rule are its

relative simplicity, flexibility and wide applicability. Though the idea is not new, the technical and

practical aspects of this test have not been fully investigated in the case of location–scale families. The

aim of the paper is to fill this gap. For further remarks see Sec. 2.1. The score-based selection rule

and related data-driven test, restricted to the present setting, are introduced in Sec. 2 and discussed

in Sec. 4, while some encouraging simulation results are presented in Sec. 3. In Sec. 3 we consider

applications of the general approach to testing in the cases of extreme value and normal distributions.

These new tests appear to be powerful when compared to the Anderson-Darling and Shapiro-Wilk

tests, widely recommended as the best existing solutions for the two testing problems considered.

Proofs and some technical remarks are presented in Appendices A and B. Some arguments crucial to

the asymptotic analysis of some data-driven smooth tests with Euclidean nuisance parameters were

developed in Inglot et al. (1997) and Inglot and Ledwina (2001). In the case of location-scale families

this technique was further studied and simplified in Janic-Wróblewska (2004 a). In this article we

adapt the arguments used in these papers, to obtain the asymptotic results appropriate to the present

setting.

2. Basic results

We start by introducing some necessary notation. Let X1, ..., Xn be independent and identically

distributed random variables with density function g(x), x ∈ R. Set β = (β1, β2), β ∈ B = R × R+

and

f(x;β) =
1
β2

f
(x− β1

β2

)
, (2.1)

where f is a density function on R. Given f , consider testing the hypothesis

H0 : g(x) ∈
{

f(x;β), β ∈ B
}

.

To construct a data-driven test statistic for H0, we embed f(x;β) into a larger parametric family. For

this purpose set F (x;β) to be the cdf corresponding to f(x;β) and consider the system φ0 ≡ 1, φ1, φ2, ...

of orthonormal Legendre polynomials on [0,1]. Now, for a given natural number k, we define an
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auxiliary parametric family

gk(x; η) = ck(θ) exp
{ k∑

j=1

θjφj(F (x;β))
}

f(x;β),

where θ = (θ1, ..., θk) ∈ Rk, η = (θ, β) and ck(θ) is the normalizing constant. In the family gk(x; η)

the hypothesis H0 is equivalent to

H∗
0(k) : η = η0 = (0, β).

Set

`(x; η) = log gk(x; η), ˙̀
η(x; η) =

∂

∂η
`(x; η) =

(
˙̀
θ(x; η), ˙̀

β(x; η)
)

(2.2)

and

I(η0) = Eη0 [ ˙̀η(X1; η0)]T [ ˙̀η(X1; η0)] =

 Iθθ(η0) Iθβ(η0)

Iβθ(η0) Iββ(η0)

 , (2.3)

where T denotes transposition. Assume that I(η0) is invertible. Note also that the following hold for

the family gk(x; η)

˙̀
θ(x; η0) =

(
φ1(F (x;β)), ..., φk(F (x;β))

)
and ˙̀

β(x; η0) =
∂

∂β
log f(x;β). (2.4)

The efficient score vector for H∗
0(k) is defined by

`∗(x; η0) = ˙̀
θ(x; η0)− ˙̀

β(x; η0)[Iββ(η0)]−1Iβθ(η0).

Now define

I∗(η0) = Eη0 [`
∗(X1; η0)]T [`∗(X1; η0)]. (2.5)

Note that in the case of a location-scale family, I∗(η0) does not depend on η0, or equivalently on β.

Moreover, I∗(η0) is invertible, as I(η0) is, and the following holds[
I∗(η0)

]−1

= I + Iθβ(η0)
[
Iββ(η0)− Iβθ(η0)Iθβ(η0)

]−1

Iβθ(η0),

where I is the k × k identity matrix.

Now set η̃0 = (0, β̃), where β̃ is an estimator of β. We shall also use the following abbreviated

notation

`(x; η0) = `(x;β), ˙̀
η(x; η0) =

(
˙̀
θ(x;β), ˙̀

β(x;β)
)
, I∗(η0) = I∗,

`∗(x; η0) = `∗(x;β) =
(
`∗1(x;β), ..., `∗k(x;β)

)
, `∗(x; η̃0) = `∗(x; β̃). (2.6)

Using this notation, the efficient score statistic for H∗
0(k) is given by

W ∗
k (β̃) =

[ 1√
n

n∑
i=1

`∗(Xi; η̃0)
][

I∗(η̃0)
]−1[ 1√

n

n∑
i=1

`∗(Xi; η̃0)
]T

=
[ 1√

n

n∑
i=1

`∗(Xi; β̃)
][

I∗
]−1[ 1√

n

n∑
i=1

`∗(Xi; β̃)
]T

.
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The notation used here is similar to that used typically in the theory of efficient estimation and is

different from that used earlier in Inglot et al. (1997) and Janic-Wróblewska (2004 a).

Efficient score statistics and tests were introduced by Neyman (1954, 1959) and further extended

by Bühler and Puri (1966). Javitz (1975) studied, among other things, the case of testing H∗
0(k).

Javitz called such a solution a generalized smooth test. Neyman (1959) called such solutions C(α)

tests. For comments on some counterparts of C(α) tests in the econometrics literature see Sec. 3.3 of

Bera and Bilias (2001 a). To close this brief discussion we quote the opinion of Le Cam and Lehmann

(1974) on C(α) tests: “They can be applied to a variety of complex problems which can hardly be

tackled otherwise and constitute a delightfully growing chapter of asymptotic theory.”

2.1. A score-based selection rule and data-driven smooth test

The family gk(x; η) serves to model possible deviations from H0. Given k, W ∗
k (β̃) is an asymptot-

ically optimal test for H0 within gk, i.e. for H∗
0(k), cf. Bühler and Puri (1966), Sec. 3.4 of Rayner

and Best (1989), as well as Bera and Bilias (2001 b). However, the crucial question is what value of k

should be used in practice. Figures 1 and 2 in Kallenberg and Ledwina (1997 b) clearly illustrate the

essence of the problem. Ledwina (1994) suggested using the Schwarz selection rule to solve a similar

problem in a simpler setting. For gk(x; η) a selection rule mimicking Schwarz’s original solution was

proposed and investigated in Inglot et al. (1997) and Kallenberg and Ledwina (1997 b). This solution

requires extensive numerical calculations. Therefore, some simplifications were proposed, cf. ibidem.

After a further decade of research, it seems that the most natural simplification, in the case of a nested

list, is the following selection rule

S1 = S1(β̃) = min
{

k, k = 1, ..., d(n) : W ∗
k (β̃)− k log n ≥ W ∗

j (β̃)− j log n, j = 1, ..., d(n)
}

,

where d(n) is the number of models in the list. One motivation for S1 is that a good approximation

of the LRT statistic under the null hypothesis and local alternatives is given by 1/2 times the efficient

score statistic. For a justification of this fact see Javitz (1975), Sec. 13.

The rule S1 defines a data-driven smooth test or, equivalently, a data-driven efficient score test,

using the test statistic

W ∗
S1(β̃) = W ∗

S1(β̃)
(β̃).

The rule S1 was introduced in Inglot et al. (1994) for the case where β̃ is the maximum likelihood

estimator and later investigated using simulations in Kallenberg and Ledwina (1997 a). Aerts et al.

(2000) also recommended S1 using maximum likelihood estimators. In such cases the efficient score

vector reduces to an ordinary score vector `θ and W ∗
k is corresponds to the standard Rao score statis-

tic, which is the Lagrangian multiplier statistic, in the econometric literature. Further articles, e.g.

Kallenberg and Ledwina (1999) and Inglot and Ledwina (2006 a, b), show that using efficient scores to
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construct data-driven tests is useful in various settings. For some general remarks on the construction

of efficient score vectors we refer the reader to Bickel et. al. (2006) and Inglot and Ledwina (2006

a). Bickel et al. (2006) also present some applications of efficient score vectors in the construction of

”tailor-made tests”.

2.2. Asymptotic results under H0

To introduce the assumptions, we start with some auxiliary notation. Throughout let || · || be the

Euclidean norm in an appropriate space. Let Pβ stand for the distribution pertaining to f(x;β). Set

βo = (0, 1), f(x) = f(x;βo), F (x) = F (x;βo), L(x) = log f(x), L(l)(x) =
∂l

∂xl
L(x). (2.7)

We impose the following restrictions.

(A1)
∫

R
|x|4+δf(x)dx < ∞ for some δ > 0;

(A2) L(l), l = 1, 2, 3, exist almost everywhere and the first derivative of f is continuous;

(A3)
∫

R
(1 + x4)[L(1)(x)]4f(x)dx < ∞;

(A4)
∫

R
(1 + |x|l) sup{||β−βo||<η}

∣∣∣L(l)([x− β1]/β2)
∣∣∣f(x)dx < ∞ for some η ∈ (0, 1) and l = 1, 2, 3.

(A5)
∫

R
(1 + x4)[L(2)(x)]2f(x)dx < ∞;

(A6) The matrix I(η0) is nonsingular and the largest eigenvalue λ(k) of [I∗]−1 satisfies λ(k) = O(kv)

for some positive v;

(A7) β̃ is location-scale equivariant;

(A8) There exist positive constants c1, c2 and n1 such that

Pβ

(√
n||β̃ − β|| ≥ x

)
≤ c1 exp

{
− c2x

2
}

(2.8)

for x = ρ
√

log n with ρ > 0 and n ≥ n1.

Note that (A1)-(A4), together with the assumed positive definiteness of Iββ(η0), imply (R1)-(R3)

in Inglot et al. (1997). (A8) is a slightly stricter version of (R4) from that paper.

Theorem 1. Assume (A1)-(A8) hold, H0 is true and d(n) = o([log n]1/v[log log n]−1). Then

lim
n→∞

Pβ

(
S1(β̃) ≥ 2

)
= 0.

The proof of Theorem 1 is given in Appendix B.
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Corollary 1. Assume that the conditions given in Theorem 1 hold. Then, asymptotically, W ∗
S1(β̃) has

a central chi-square distribution with 1 degree of freedom.

2.3. Consistency of the data-driven test based on W ∗
S1(β̃)

We start by introducing an auxiliary assumption and related ”artificial” parameter.

(A9) If X1, ..., Xn are i.i.d. and X1 ∼ IP , then there exists β = β(IP ) =
(
β1(IP ), β2(IP )

)
such that

||β̃ − β(IP )|| IP→ 0 as n →∞.

So, the new parameter β(IP ) is defined via the distribution IP and the estimator β̃. Note that un-

der the null model Pβ , the following holds for k ∈ N : EPβ

(
`∗1(X1;β), ..., `∗k(X1;β)

)
= 0 ∈ Rk,

where N stands for the set of natural numbers. Therefore, we shall say that IP is the alternative (to

Pβ(IP )) if there exists k = k(IP ) ∈ N such that EIP `∗1(X1;β(IP )) = ... = EIP `∗k−1(X1;β(IP )) = 0 and

EIP `∗k(X1;β(IP )) 6= 0.

Theorem 2. Under the assumptions (A1)-(A9), a test which rejects H0 for large realisations of W ∗
S1(β̃)

is consistent against any alternative IP .

Some arguments related to the proof of Theorem 2 are found in Appendix C.

2.4. Some comments

Remark 1. The assumption regarding the equivariance of β̃ is natural and was imposed to simplify the

formulations of the assumptions, as well as proofs. Analogous results hold without this restriction; cf.

Inglot et al. (1997).

Remark 2. To reduce the number of assumptions and simplify the notation, as in Janic-Wróblewska

(2004 a, b), we restricted attention to the Legendre system when modeling alternatives. Extensions

to many other systems are possible; cf. e.g. Bogdan and Ledwina (1996), as well as Inglot et al. (1997).

Remark 3. Assumptions (A1)-(A5) are easy to check for most standard f , including the extreme value

and normal distributions.

Remark 4. To calculate v, which appears in (A6), one can use the results from Section 5.10 of Inglot
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and Ledwina (2001). It follows that λ(k) = O(k2) for testing exponentiality when Legendre polyno-

mials are used. However, for other distributions the calculations involved are laborious. We briefly

discuss this point in Appendix A. See also the last paragraph of Remark 5.

Remark 5. Checking (A8) requires the most technically involved calculations. However, many results

in this area are already known. For selected results see e.g. Rubin and Sethuraman (1965), Inglot and

Ledwina (1993), Inglot and Kallenberg (2003), Baklanov and Borisov (2003) and references therein.

In particular, in the case of moment estimators, to construct a test for the extreme value distribu-

tion, one can apply (B.3) on p. 349 in Janic-Wróblewska (2004 a), inequality (101) from Rubin and

Sethuraman (1965) and their comment following it, as all moments exist. Also, the method based on

probability-weighted moments, which we may use for the same problem, leads to simple estimators

for which Theorem 6 of Rubin and Sethuraman (1965) is applicable.

Our test of normality, presented below, exploits the estimator of scale parameter developed in

Chen and Shapiro (1995). Using results from Bai and Chen (2003), one can reduce checking that (A8)

holds to investigate the probability of moderate deviations for

σ̄n =
1
n

n∑
i=1

Φ−1
( 1

n

)
Xn:i, (2.9)

where Xn:1 ≤ ... ≤ Xn:n are order statistics for n observations of a normal random variable, while

Φ−1 is the inverse cdf of the N(0, 1) df. To the best of our knowledge, there is no such proof available

in the existing literature. In general, studies of L-statistics with such heavy weights are particularly

difficult. See e.g. Ch. 19 of Shorack and Wellner (1986) for an overview of the techniques used in

analysing the asymptotic behaviour of such structures. Proving such a result is beyond the scope of

this contribution.

Note also that assumption (A8) on the probability of moderate deviations of β̃ is crucial in proving

that under H0, the selection rule chooses a one dimensional model when d(n) →∞ (Theorem 1) with

probability 1. On the other hand, proving consistency against essentially any alternative (Theorem 2)

is possible only if d(n) →∞. From practical point of view, one should be satisfied with consistency for

a smaller class of alternatives, e.g. all distributions with vanishing Fourier coefficients for all indexes

greater than some fixed, but otherwise arbitrary number, say D, then taking d(n) = D,n = 1, 2, ...

greatly simplifies the proofs and assumptions. In particular, the rate of growth of λ(k) in (A6) is

immaterial, while (A8) can be replaced by the
√

n-consistency of β̃.

Remark 6. Assumption (A9) was introduced and discussed in Inglot el al. (1994, 1997) and used in

various forms in later papers.

3. Two illustrative examples
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3.1. Testing for the extreme value distribution

This problem was extensively studied and discussed in Janic-Wróblewska (2004 b). For complete-

ness we recall that in this case

f(x;β) =
1
β2

exp
{x− β1

β2
− exp

(x− β1

β2

)}
, x ∈ R. (3.1)

As in the above paper, we use method of moments estimator β̃ = β̃[m] of β = (β1, β2), given by

β̃[m] =
(
X̄ + γT, T

)
with X̄ =

1
n

n∑
i=1

Xi, T =
√

6
π

{ 1
n

n∑
i=1

(Xi − X̄)2
}1/2

,

where γ is the Euler constant. Moreover, we also considered the estimator β̃ = β̃[pwm] derived by the

method of probability-weighted moments, which was introduced by Landwehr and Matalas (1979). In

the case of the extreme value distribution (3.1), it is of the form

β̃[pwm] =
(
− X̄ + γG, G

)
with G = [n(n− 1) ln 2]−1

∑
1≤j<i≤n

(
X ′

n:i −X ′
n:j

)
,

where X ′
n:1 ≤ ... ≤ X ′

n:n are the order statistics derived from −X1, ...,−Xn (cf. Greenwood et al.

1979, as well as Landwehr and Matalas 1979, Table 2 and (A.10), or Hosking et al. 1985).

The figures below present the empirical powers of the Anderson-Darling statistic (A2), widely

accepted to be the best existing solution in this case, and of the tests based on W ∗
S1(β̃) using the

estimators described above. Inspection of Figures 1–3 in Janic-Wróblewska (2004 b) and the related

comments enables many other comparisons. For brevity, we focus only on the case n = 50. The

significance level α is equal to 0.05 throughout. The simulated critical values and powers are based

on 10 000 Monte Carlo runs. The simulated critical values for A2, W ∗
S1(β̃[m]) and W ∗

S1(β̃[pwm])

are 0.7634, 9.9225 and 6.2686, respectively. The empirical critical values of W ∗
S1(β̃) considerably

exceed the asymptotic values. This is a typical feature of such constructions. For discussion and some

approximations in special cases, see Kallenberg and Ledwina (1995, 1997 b). A description of the

various alternatives considered and corresponding abbreviations is provided in Table 1. The symbol

Z denotes an N(0, 1) r.v. and ϕ its density. U stands for an r.v. with uniform distribution on (0,1).

We omit the definitions of standard distributions, such as Weibull, Beta, Stable. Detailed descriptions

may be found e.g. in Kallenberg and Ledwina (1997 a).
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Table 1. Description of some of the alternatives used in simulations

Symbol Density/Definition

LC(p;m) pϕ(x−m) + (1− p)ϕ(x), x ∈ IR

LG(p; q) q−p{Γ(p)}−1 exp{px− q−1 exp(x)}, x ∈ IR

SB(g; d) X = exp{d−1(Z − g)}[1 + exp{d−1(Z − g)}]−1

SC(p; d) d−1pϕ
(
d−1x

)
+ (1− p)ϕ(x), x ∈ IR

SU(g; d) X = sinh{d−1(Z − g)}

TU(λ, µ) X = [Uλ − 1]/λ− [(1− U)µ − 1]/µ

For completeness, we also simulated powers of W ∗
S1(β̃), with β̃ being the maximum likelihood

estimator of β calculated iteratively. The resulting powers were, in most cases, lower than when the

method of moments estimator was applied. To improve the readability of figures, these results are

not presented. The results of our simulations are presented in Figs. 1 and 2. The corresponding fig-

ures in Janic-Wróblewska (2004 b) contain information on the ranges of skewness and kurtosis. Note

that the simulated powers of W ∗
S1(β̃[m]) are comparable to the corresponding powers of the solution

given in Janic-Wróblewska (2004 b). Probability-weighted moments estimates for the extreme value

distribution are known to be superior in many respects to the method of moments and maximum

likelihood estimators. The results presented here also confirm their appealing properties and greater

overall ability to identify the underlying distribution.

Figures 1 and 2 about here

3.2. Testing for the normal distribution

The parameters of

f(x;β) =
1√

2πβ2

exp
{
− 1

2

(x− β1

β2

)2}
were estimated by β̃ = β̃[ns], where

β̃[ns] = (X̄, σ̃), with X̄ =
1
n

n∑
i=1

Xi, σ̃ =
1

n− 1

n−1∑
i=1

Xn:i+1 −Xn:i

Hi+1 −Hi
,

where Xn:1 ≤ ... ≤ Xn:n are the order statistics based on X1, ..., Xn and Hi = Φ−1
(

i−3/8
n+1/4

)
, cf. Chen

and Shapiro (1995). Since σ̃ is based on normalized spacings, we denote the estimate of β by β̃[ns].

For comparison, we used the recognized standard given by the Shapiro-Wilk statistic W .

We repeated and extended the simulations reported in Tables V–VII of Kallenberg and Led-

wina (1997 a). In particular, many cases from the well known simulation study of Pearson et
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al. (1977) were included. This enables many further conclusions. To retain a balance between

symmetric and skewed alternatives, we added few symmetric distributions not considered in the

above papers. In particular, we additionally used the Laplace distribution. It has density func-

tion (λ/2) exp{−λ|x|}, x ∈ R, λ ∈ R+. A selection of empirical powers is presented in Figs. 3 and

4. Again, we focus on n = 50 using a significance level of α = 0.05. To obtain exactly the same

conditions as in Kallenberg and Ledwina (1997 a), we assumed d(50) = 12. The influence of d(n) on

empirical significance levels and powers has been already investigated in many earlier papers. Roughly

speaking, the results obtained setting d(50) = 12 were almost identical to the ones obtained when e.g.

d(50) = 15. For some discussion and examples see e.g. Kallenberg and Ledwina (1997 b).

Figures 3 and 4 about here

The simulated critical value for W ∗
S1(β̃[ns]) was 5.3549. The simulated powers of W ∗

S1(β̃), where

β̃ is the maximum likelihood estimate of β, are available in Tables V–VII of Kallenberg and Ledwina

(1997 a). It can be seen that the new method of estimation leads to slightly higher powers. We also

tried some M -estimates of β discussed in Sec. 6.4 and 6.5 of Huber (1981), as well as some simple

robust estimators (e.g. median, median deviation). The results were not encouraging.

The estimator σ̃ is unbiased and asymptotically equivalent to the asymptotically efficient estimator

σ̄n, given by (2.9). The simulated powers of W ∗
S1(β̃) using β̃ = (X̄, σ̄n), are comparable to those

obtained using the estimator (X̄, σ̃), except in the case T (λ, µ) when the values of the parameters are

relatively small. In this case the method was very unstable.

Finally, note that in the case of the extreme value distribution the probability-weighted moments

estimate of β2 is a normalized version of Gini’s mean difference. A similar estimator of β2 in the

case of the normal distribution was derived, by different means, in Downton (1966). More precisely,

Downton’s linear estimate of β = (β1, β2) is of the form

β̃[l] =
(
X̄,
√

π[n(n− 1)]−1
∑

1≤j<i≤n

(Xn:i −Xn:j)
)
,

where Xn:1 ≤ ... ≤ Xn:n are the order statistics for a sample from the N(β1, β2) distribution. The

empirical powers of W ∗
S1(β̃[l]) are in most cases slightly higher than obtained when the estimator β̃[ns]

is used. However, as in the case of the estimator (X̄, σ̄n) under alternatives T (λ, µ), a substantial loss

of power was observed when the values of parameters were relatively small.

In view of the above evidence, we recommend the most stable solution W ∗
S1([ns]).

4. Discussion

As previously stated, the construction presented here is based on a general idea, which successfully
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can be applied to many other cases. This idea is to match efficient score statistics, or generalized

smooth statistics using Javitz’s terminology, with an appropriate score based selection rule. This

gives us a lot of freedom to choose appropriate estimates of nuisance parameters. In particular, it

enables us to extend the theory to nonparametric and semiparametric problems.

In the applications presented in this paper, the distributions considered in the alternatives are not

very complex in the sense that few first terms of the Fourier expansion in the Legendre basis describe

them sufficiently well. In such cases, a score-based selection rule with a Schwarz-type penalty proved

to be useful. If one wishes to detect distributions with sharp peaks or high frequency oscillations, it

is advisable to modify and improve this rule to be sensitive to such deviations and, at the same time,

retain power in the case of low dimensional departures. For some proposals and results in this field

see Inglot and Ledwina (2006 a, b, c).

Note also that data-driven smooth tests have nonstandard asymptotic properties. Roughly speak-

ing, for a large class of local alternatives they are as efficient as if the alternatives were known. For

some illustration of this we refer the reader to e.g. Inglot and Ledwina (2001).

R code for data driven smooth tests considered in this paper are available at

http://cran.r-project.org/web/packages/ddst/index.html.

Acknowledgments. T. Ledwina warmly thanks Dr. J.M. Landwehr for making some of his papers

available to her.
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Appendix A. Some analytical properties of the matrices Iββ(η0) and Iββ(η0)−Iβθ(η0)Iθβ(η0)

We refer here to the results from Appendix A of Janic-Wróblewska (2004 a) and Sec. 5.10 of Inglot

and Ledwina (2001). Recall that in the present paper row vectors are used. From (2.3)–(2.5) and

(2.7), we obtain

Iβθ(0, βo) = Iβ0 , Iββ(0, βo) = Iβ0β0

using the notation from Janic-Wróblewska (2004 a). We have

Iβθ(0, βo) =

 m11 . . . m1k

m21 . . . m2k

 ,
m1j = −

∫
R
L(1)(x)φj(F (x))f(x)dx,

m2j = −
∫

R
xL(1)(x)φj(F (x))f(x)dx.

(a.1)

Additionally set mj = (m1j ,m2j), j = 1, ..., k. Assumption (A3) implies that mij , i = 1, 2, j = 1, ..., k

are well defined and finite. Using (A3) again, one obtains

Iββ(0, βo) =

 ∫
R
[L(1)(x)]2f(x)dx

∫
R

x[L(1)(x)]2f(x)dx∫
R

x[L(1)(x)]2f(x)dx
∫

R
x2[L(1)(x)]2f(x)dx− 1

 =

 ∑∞
j=1 m2

1j

∑∞
j=1 m1jm2j∑∞

j=1 m1jm2j

∑∞
j=1 m2

2j

 . (a.2)

Note also that

Iβθ(η0) =
1
β2

Iβθ(0, βo) and Iββ(η0) =
1
β2

2

Iββ(0, βo).

Hence,

Iββ(η0)− Iβθ(η0)Iθβ(η0) =
1
β2

2

 ∑∞
j=k+1 m2

1j

∑∞
j=k+1 m1jm2j∑∞

j=k+1 m1jm2j

∑∞
j=k+1 m2

2j

 . (a.3)

Obviously, Iββ(η0) is the Fisher information matrix for (2.1). We introduce the following auxiliary

notation:

Iββ(η0) =
1
β2

2

 e1 e

e e2

 , Iββ(η0)− Iβθ(η0)Iθβ(η0) =
1
β2

2

 r1 r

r r2

 . (a.4)
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Formula (a.3) indicates how the second matrix in (a.4) depends on k. Under the additional assumption:

(A10) There exists ε ∈ (0, 1] such that r2 ≤ (1− ε)r1r2 for all 1 ≤ k < ∞;

the result from p. 68 of Inglot and Ledwina (2001) implies that λ(k), the largest eigenvalue of

[I∗]−1 = I + Iθβ(η0)
[
Iββ(η0)− Iβθ(η0)Iθβ(η0)

]−1

Iβθ(η0), is bounded above by

λ∗(k) = 2ε−1(e1/r1 + e2/r2).

For illustration, we briefly comment on this bound in the case of the extreme value distribution. For

this distribution we have e1 = 1, e2 = π2/6 + (1− γ)2 and e = 1− γ, where γ is the Euler constant.

Moreover, from (a.1),

m1j =
∫ 1

0

[1 + log(1− u)]φj(u)du, m2j =
∫ 1

0

[1 + log(1− u)][log(− log(1− u))]φj(u)du.

Also, recall that

φj(u) =
√

2j + 1
j∑

l=0

(−1)l+j

(
j

l

)(
j + l

l

)
ul.

From Sec. 2.1 of Janic-Wróblewska (2004 b), we obtain

r1 =
∞∑

j=k+1

m2
1j =

∞∑
j=k+1

(2j + 1)j−2(j + 1)−2 > (k + 2)−3.

This indicates that the magnitude of λ(k) is presumably at least O(k3). Since this discussion serves

only to explain the need for assumption (A6) and is not crucial for practical applications, we do not

consider the technical details involved any further. See also Remark 4.

Appendix B. Proof of Theorem 1

Since λ(k) is the largest eigenvalue of the k × k matrix [I∗]−1, one obtains

W ∗
k (β̃) ≤ λ(k)

∣∣∣∣∣∣ 1√
n

n∑
i=1

`∗(Xi; β̃)
∣∣∣∣∣∣2. (b.1)

To simplify the notation and to make it more similar to that used in Janic-Wróblewska (2004 a), set

Ỹn(β) =
1
n

n∑
i=1

`∗(Xi;β) and bk = ak/λ(k) with ak = (k − 1)n−1 log n. (b.2)

To shorten the exposition of the proof, in a few places we shall make use of relevant calculations made

in the paper mentioned above. Observe that

{
S1(β̃) ≥ 2

}
⊂

d(n)⋃
k=2

{
W ∗

k (β̃) ≥ (k − 1) log n
}
⊂

d(n)⋃
k=2

{
||Ỹn(β̃)|| ≥

√
bk

}
.
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From axiom (A7), using (2.7), one obtains

Pβ

(
S1(β̃) ≥ 2

)
≤

d(n)∑
k=2

Pβo

(
||Ỹn(βo)|| ≥

√
bk/2

)
+

d(n)∑
k=2

Pβo

(
||Ỹn(β̃)− Ỹn(βo)|| ≥

√
bk/2

)
. (b.3)

The relation (b.3) is a counterpart of (C.1) on p. 350 of Janic-Wróblewska (2004 a) with bk = ak/λ(k)

in place of ak. Since, in typical situations, λ(k) → ∞ as k → ∞, one has to adapt the argument to

these more restrictive conditions. Note also that our assumption (A8) is slightly stronger than the

related condition (10) in the aforementioned paper. This allows for more flexibility in the proof. Using

(A6) we set a∗k = c3k
1−vn−1 log n, where c3 is an absolute constant, and consider the bound

Pβ

(
S1(β̃) ≥ 2

)
≤

d(n)∑
k=2

Pβo

(
||Ỹn(βo)|| ≥

√
a∗k

)
+

d(n)∑
k=2

Pβo

(
||Ỹn(β̃)− Ỹn(βo)|| ≥

√
a∗k

)
. (b.4)

First we analyse the first term in (b.4). For this purpose we introduce

Tj =
1
n

[ n∑
i=1

`∗j (Xi;βo)
]2

+ sj − 1 with sj = mjI
−1
ββ (0, βo)mT

j ,

where mj is defined in Appendix A. Note that sj ≥ 0, V arβ`∗j (X1;β) = 1 − sj and
∑∞

j=1 sj = 2.

Moreover, one has EβoTj = 0. Therefore, using the properties of Legendre polynomials, taking

ãk = c4k
1−v log n− k +

∑k
j=1 sj and arguing as in Step 1 of Janic-Wróblewska (2004 a), one obtains

for some absolute constant c5

Pβo

(
||Ỹn(βo)|| ≥

√
a∗k

)
≤ c5k

2v−1/(log n− kv)2.

Hence,
d(n)∑
k=2

Pβo

(
||Ỹn(βo)|| ≥

√
a∗k

)
→ 0 if d(n) = o

(
[log n]1/v

)
. (b.5)

Analysis of the remainder of (b.4) consists of a few steps. This part of the proof extensively exploits the

closeness of β̃ to β, as expressed in assumption (A8). First observe that, using the Taylor expansion,

the j-th component, j = 1, ..., k, of Ỹn(β̃)− Ỹn(β) can be written as Zj +R1j +R2j , where

Zj = (β̃ − βo)Eβo

[ ∂

∂βT
`∗j (X1;β)

∣∣∣
β=βo

]
,

R1j = (β̃ − βo)UT
j , Uj = (U1j , U2j), Utj =

1
n

n∑
i=1

[ ∂

∂βt
`∗j (Xi;β)

∣∣∣
β=βo

− Eβo

[ ∂

∂βt
`∗j (X1;β)

∣∣∣
β=βo

]
,

R2j =
1
2
(β̃ − βo)

[ 1
n

n∑
i=1

∂2

∂βT ∂β
`∗j (Xi;β)

∣∣∣
β=ξi

]
(β̃ − βo)T ,

where, for each Xi, the point ξi lies between β̃ and βo. Finally, set

Z = (Z1, ...,Zk), R1 = (R11, ...,R1k) and R2 = (R21, ...,R2k).
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The triangle inequality implies that

Pβo

(
||Ỹn(β̃)− Yn(βo)|| ≥

√
a∗k

)
≤

Pβo

(
||Z|| ≥

√
a∗k/3

)
+ Pβo

(
||R1|| ≥

√
a∗k/3

)
+ Pβo

(
||R2|| ≥

√
a∗k/3

)
.

As in (C.8) of Janic-Wróblewska (2004 a), one obtains∣∣∣Eβ
∂

∂βt
`∗j (F (X1;β))

∣∣∣2 ≤ (1− sj)V arβ

[ ∂

∂βt
log f(X1;β)

]
, t = 1, 2.

Therefore, from the definition of Zj and relation (2.4) it follows that

Z2
j ≤ ||β̃ − βo||2

∣∣∣∣∣∣Eβo

[ ∂

∂β
`∗j (X1;β)

∣∣∣
β=βo

]∣∣∣∣∣∣2 ≤ b2||β̃ − βo||2,

where

b2 =
2∑

t=1

V arβo

[ ∂

∂βt
log f(X1;β)

∣∣∣
β=βo

]
=

∫
R

(1 + x2)
[
L(1)(x)

]2

f(x)dx− 1.

Under assumption (A3), b2 exists and is finite. It follows that for some absolute constant c6

Pβo

(
||Z|| ≥

√
a∗k/3

)
≤ Pβo

(√
n||β̃ − βo|| ≥ c6

√
k−v log n

)
.

Therefore, from (A8), one may infer that

d(n)∑
k=2

Pβo

(
||Z|| ≥

√
a∗k/3

)
→ 0 if d(n) = o

(
[log n]1/v[log log n]−1

)
. (b.6)

From the definition of R1 it follows that for some positive absolute constants c8 and c9

Pβo

(
||R1|| ≥

√
a∗k/3

)
≤ Pβo

(√
n||β̃ − βo|| ≥ c7

√
log n

)
+ Pβo

( k∑
j=1

2∑
t=1

U2
tj ≥ c8k

1−v
)
.

Using (A5) and (A8) and repeating an elementary argument from p. 353 of Janic-Wróblewska (2004

a), one obtains

d(n)∑
k=2

Pβo

(
||R1|| ≥

√
a∗k/3

)
→ 0 if d(n) = o(nw) with w = min

{
c2, 1/(5 + v)

}
. (b.7)

To analyse the tails of ||R2|| we introduce the event Bn =
{√

n||β̃ − βo|| ≤
√

log n
}

and denote its

complement by Bc
n. We have

Pβo

(
||R2|| ≥

√
a∗k/3

)
≤ Pβo

(
Bc

n

)
+ Pβo

(
||R2|| ≥

√
a∗k/3, Bn

)
.

Suppose Bn holds. From axiom (A4), one can apply (C.17) in Janic-Wróblewska (2004 a). This,

together with (A8), results in

d(n)∑
k=2

Pβo

(
||R2|| ≥

√
a∗k/3

)
→ 0 if d(n) = min

{
o(nc2), o([n/ log n]1/(11+v))

}
. (b.8)
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The proof follows from (b.5)–(b.8).

Appendix C. Proof of Theorem 2

The main concept behind this proof can be found in Sec. 4 of Inglot et al. (1994). If IP is an

alternative to Pβ(IP ), then there exists a natural number k = k(IP ), such that

EIP `∗k(X1;β(IP )) 6= 0. (c.1)

Let K = K(IP ) be the smallest number for which (c.1) holds and consider the case K > 1. We have

EIP `∗1(X1;β(IP )) = ... = EIP `∗K−1(X1;β(IP )) = 0 and EIP `∗K(X1;β(IP )) 6= 0. Thus the component `∗K

provides a non-zero shift under IP and W ∗
K(β̃) IP→∞. Therefore, the proof is complete provided that

we show that IP (S1(β̃) ≥ K) → 1. For this purpose, observe that, by (b1) and (b2) of Appendix B,

W ∗
k (β̃) ≤ nλ(k)||Ỹn(β̃)||2, k ∈ N . In addition, given k, we have [I∗]−1 = I + R(β), where I is the

k × k identity matrix and

R(β) = Iθβ(η0)
[
Iββ(η0)− Iβθ(η0)Iθβ(η0)

]−1

Iβθ(η0).

The matrix R(β) is nonnegative definite and independent of β. Hence, W ∗
k (β̃) ≥ n||Ỹn(β̃)||2, k ∈ N .

In this way the analysis of S1(β̃) under IP can be reduced to a similar analysis of the rule S2(β̃)

pertaining to ||Ỹn(β̃)||2, which has already been carried out in some of our earlier papers. See for

example Sec. C.2 of Janic-Wróblewska (2004 a). The case K = 1 can be treated similarly.

18



●
●

●

●
●

1 2 3 4 5

20
40

60
80

10
0

LC(0.5,m)

m

po
w

er

●

●
● ●

●
●

●

0.1 0.2 0.3 0.4 0.5 0.6 0.7

20
40

60
80

10
0

SC(0.2,d)

d
po

w
er

●

● ● ● ● ●

1 2 3 4 5 6

20
40

60
80

10
0

Beta(p,p)

p

po
w

er

●
●

● ● ●

0.05 0.10 0.15 0.20 0.25

20
40

60
80

10
0

SC(p,2)

p

po
w

er

●

●
● ●

●

0.1 0.2 0.3 0.4 0.5

20
40

60
80

10
0

TU((λλ,,  λλ))

λλ

po
w

er

●

●

● ●
●

2.0 2.5 3.0 3.5 4.0

20
40

60
80

10
0

TU((λλ,,  λλ))

λλ

po
w

er

Figure 1: Testing for the extreme value distribution. Empirical powers (in %) of A2 : − • −,

W ∗
S1(β̃[m]) : − ?−, W ∗

S1(β̃[pwm]) : − � −. Symmetric alternatives.
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Figure 2: Testing for the extreme value distribution. Empirical powers (in %) of A2 : − • −,

W ∗
S1(β̃[m]) : − ?−, W ∗

S1(β̃[pwm]) : − � −. Skewed alternatives.

20



●

●
●

●

●

0.5 1.0 1.5 2.0 2.5

20
40

60
80

10
0

TU((λλ,,  λλ))

λλ

po
w

er

●

●

●

●

●

●

5.5 6.0 6.5 7.0 7.5 8.0

20
40

60
80

10
0

TU((λλ,,  λλ))

λλ
po

w
er

●

●

●

●

●
●

2.0 2.5 3.0 3.5 4.0 4.5

20
40

60
80

10
0

SC(0.2,d)

d

po
w

er

●

●

●

●

●

●
●

1.3 1.4 1.5 1.6 1.7 1.8 1.9

20
40

60
80

10
0

Stable(a,0)

a

po
w

er

●
●

●
● ● ● ●

0.4 0.5 0.6 0.7 0.8 0.9 1.0

20
40

60
80

10
0

((1 −− εε))N((0,,  1)) ++ εεLaplace((1))

εε

po
w

er

●

●

●

●

●

0.6 0.8 1.0 1.2 1.4

20
40

60
80

10
0

SU(0,d)

d

po
w

er

Figure 3: Testing for normality. Empirical powers (in %) of W : − ◦ −, W ∗
S1(β̃[ns]) : − ? −.

Symmetric alternatives.
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Figure 4: Testing for normality. Empirical powers (in %) of W : −◦−, W ∗
S1(β̃[ns]) : − ?−. Skewed

alternatives.
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